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We study a uniform flow in a parallel plate geometry to model contaminant transport through
a saturated porous medium in a semi-infinite domain in order to simulate an experimental
apparatus mainly constituted by a chamber filled with a glass beads bed. The general solution
of the advection dispersion equation in a porous medium was obtained by utilizing the
Jacobi θ3 Function. The analytical solution here presented has been provided when the inlet
(Dirac) and the boundary conditions (Dirichelet, Neumann, and mixed types) are fixed. The
proposed solution was used to study experimental data acquired by using a noninvasive
technique.

1. Introduction

The contamination of groundwater by substances of various kinds and the study of the
behavior of compounds into natural or artificial porous media is a topic of growing interest.
Laboratory flow experiments have been used in several works to study solute flow and
transport phenomena at different spatial and temporal scales. Transmissive or reflective
imaging techniques, in conjunction with dye tracer, allow to monitor the solute plume in
a porous medium confined in a transparent box, satisfying the requirements of high spatial
resolution and accuracy and achieving two or three orders of magnitude additional sampling
points if compared to conventional analysis methods.
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A growing number of applications of imaging technique to investigate solute transport
in porousmedia are present in the literature [1–8]. Experimental measurements are compared
with simplified theoretical models, based upon advection-dispersion equation, and they
show reasonable agreement [3, 4].

The advection-dispersion equation is commonly used as governing equation for
transport of contaminants, or more generally solutes, in saturated porous media [9]. Often
the solution of this equation with particular boundary conditions requires the application of
numerical methods. In other cases, where an analytical approach is possible, the solutions
often deal with constant velocities. Many analytical solutions for constant velocity and
dispersion coefficients and different boundary conditions are available. Lee in [10] offers
exhaustive list of references and explanation of derivation techniques.

Analytical solutions in semi-infinite domain with different initial and boundary
conditions have been derived by several authors [11–14]. Extension to domain with finite
thickness has been derived by Sim and Chrysikopoulos [15] and Park and Zhan [16]. Batu in
[17, 18] proposes a two-dimensional analytical solution for solute transport in a bounded
aquifer by adopting Fourier analysis and Laplace transform. Chen et al. [19] derive an
analytical solution in finite thickness domain with zero gradient boundary condition at
the outlet of the domain and also consider a nonconstant dispersion coefficient. Analytical
solutions for time-dependent dispersion coefficients have been derived by Aral and Liao [20]
for a two-dimensional system and infinite domain. An analytical solution for the 2D steady-
state convection-dispersion equation with nonconstant velocity and dispersion coefficients
is given in [21]; the authors obtained the solution at steady state by the application of the
Dupuit-Forchheimer approximation. Analytical solutions in cylindrical geometry, bounded
domain and different source conditions are presented in [22]; these solutions, recovered by
using a Bessel function expansion, have been used in order to estimate transport parameters
[23, 24]. In this work an exact analytical solution of the advection-dispersion equation for the
two-dimensional semi-infinite and laterally bounded domain is derived. The mathematical
model wants to represent typical laboratory flow tank experiments where a tracer is injected
in the porous medium and the domain is finite. The availability of an analytical solution
taking into account the effects of the lateral borders and the influence of the upstream
boundary condition in relation to the injection point can be necessary if one wants to use the
whole set of experimental data acquired in the physical domain and if one wants to verify the
experimental conditions for some fluctuations of the operative variables.

The proposed analytical solution is discussed by means of comparison with the well-
known two-dimensional infinite domain solution proposed by Bear [9] and with some
limit analytical solutions. The influence of the boundary conditions on the solution is also
discussed in terms of Péclet numbers, and some suggestions are given in order to choose
the right analytical model depending on the experimental conditions. Finally, the analytical
solution is comparedwith experimental data obtained from an experimental apparatus based
on a noninvasive measuring technique, designed and constructed by some of the authors of
[8].

2. Problem Formulation

Mass conservation of nonreactive solutes transported through porous media is described by
a partial differential equation known as advection-dispersion equation. Here we consider the
transport of a solute through a thin chamber filled with a homogeneous porous medium.
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Figure 1: A schematization of the experimental apparatus and mathematical domain considered. L
represents the length of the domain.
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Figure 2: Effects of the lateral boundary conditions on our solution and comparison with the Bear one in a
transverse cross-section at x/L = 1 and t = (x − q)/u (Pe(ch)L = 5 and Pe(ch)T = 10).

Figure 1 shows a graphical representation of the problem: the water flow is along the x
coordinate, the length of the chamber is L, and the chambers width is 2l. Fresh water is
fed from the inlet of the chamber while a pulse injection of solute mass is initially provided
from a source placed at a distance q from the inlet. For thin chambers, where the thickness is
much smaller than the other two dimensions in which the transport phenomenon occurs,
the governing equation of solute concentration can be expressed by the two-dimensional
advection-dispersion equation as follows [9]:

∂C

∂t
+ u

∂C

∂x
= DL

∂2C

∂x2 +DT
∂2C

∂y2 , (2.1)

where u[L/T] is the pore scale velocity, C[M/L3] is the resident fluid solute concentration,
and DL[L2/T] and DT [L2/T] are the longitudinal and transverse dispersion coefficients
which are related to the pore scale velocity by [9]

DL = d
p
wm + αLu, DT = d

p
wm + αTu, (2.2)
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where d
p
wm is the molecular diffusion coefficient in a porous medium, where d

p
wm ≡ εdwm is

the molecular diffusion coefficient of the solute in water and dwmε is the porosity.DL andDT

are the longitudinal and transverse dispersivity, respectively.
Initial and boundary conditions are to be set in order to solve (2.1). No solute flux

across the lateral boundaries has to be imposed; the condition can be expressed as a second-
type boundary condition as follows:

∂C

∂y

∣
∣
∣
∣
y=±L

= 0. (2.3)

Concerning the longitudinal domain, two boundary conditions must be imposed. Exhaustive
discussion of physical meaning of boundary condition is reported by Kreft and Zuber [25]
and Parker and Van Genuchten [26]. The boundary condition for the inlet section (x = 0) is
represented by a mass balance equation, thus the solute flux across the left size of the section
equals the flux from the right. The mass balance across x = 0 is expressed in terms of resident
concentration as [25]

[uC]x=0− =
[

uC −DL
∂C

∂x

]

x=0+
, (2.4)

where Cx=0+ is the concentration of the inlet stream, which is zero in our case since the
chamber is fed with pure water. In regard to the mass balance, the resulting boundary
condition is then expressible as a mixed boundary value problem as follows:

[

uC −DL
∂C

∂x

]

x=0+
= 0. (2.5)

It is important to notice that this boundary condition takes into account the fact that
even if the source position is set in x = q, the solute can reach the inlet section by dispersion,
so Cx=0− can be different from zero. Thus, the previous condition could represent a fresh
groundwater that could be polluted by a spill located in a section relatively near to the inlet
one, at a certain temporal instant. Similarly, mass balance should be imposed at x = l resulting
in

[

uC −DL
∂C

∂x

]

x=l−
= [uC]x=l+ , (2.6)

where Cx=l+ is the concentration at the outlet section, which cannot be known a priori, thus
the problem cannot be solved unless simplifications are assumed. Two different ways exist
in order to treat this issue, the most common in chemical engineering is to assume that
concentrations are continuous across the outlet section [27], namely, Cx=l− = Cx=l+ , resulting
in

∂C

∂x

∣
∣
∣
∣
x=l−

= 0. (2.7)
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The second way is to assume an infinite chamber in the longitudinal direction (x axis for
the problem considered). This assumption can be reasonably chosen when one is interested
in the plume profile far from the outlet boundary condition. In this case we get a first type
boundary condition expressed as

lim
x→+∞

C
(

x, y, t
)

= 0. (2.8)

Finally, the initial condition for the point pulse injection at y = 0 and x = q yields

C
(

x, y, 0
)

= Mδ
(

y
)

δ
(

x − q
)

, (2.9)

where δ represents the Dirac delta function. Note that M is the total mass per unit thickness
of the chamber injected in the porous medium.

3. The Analytical Solution

The derivation of an analytical solution of (2.1) subject to boundary conditions (2.3), (2.5),
and (2.8) and initial condition (2.9) is here illustrated. Due to the symmetry of both the
transversal boundaries and the injection position with respect to the longitudinal axis, the
solution of the PDE will be symmetric as well, resulting in C(x, y, t) = C(x,−y, t).

Starting from this consideration, we consider a cosine Fourier series expansion for the
solution, and we write

C
(

x, y, t
)

=
1
2
a0(x, t) +

+∞∑

n=1

an(x, t) cos
(nπy

l

)

, (3.1)

where the coefficients of the expansion are

an(x, t) =
1
l

∫+l

−l
C
(

x, y, t
)

cos
(nπy

l

)

dy, for n = 0, 1, 2, . . . . (3.2)

It is important to notice that (3.1) satisfies the no-flux boundary condition (2.3). By
substituting (3.1) into (2.1) we get a set of partial different equations for the coefficients:

∂2an(x, t)
∂x2 − n2π2DT

l2DL
an(x, t) − u

DL

∂an(x, t)
∂x

− 1
DL

∂an(x, t)
∂t

= 0. (3.3)

Similarly, boundaries and initial conditions (2.5), (2.8), and (2.9) may be written as

[

u an(x, t) −DL
∂an(x, t)

∂x

]

x=0+
= 0, (3.4)

lim
x→+∞

an(x, t) = 0, (3.5)

an(x, 0) =
M

L
δ
(

x − q
)

. (3.6)
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The solution of (3.3) subject to (3.4), (3.5), and (3.6) is obtained by applying the
Laplace transform. Details are reported in the appendix for completeness. By substituting
(A.14) in (3.1) C(x, y, t) becomes

C
(

x, y, t
)

=
1
2
a0(x, t)

(

1 + 2
+∞∑

n=0

cos
(nπy

l

)

e−(n
2π2DT t/l

2)

)

. (3.7)

The expansion present in this equation gives rise to the Jacobi function θ3(z, r) whose
definition can be found, for example, in the work of Abramowitz and Stegun [28] as

θ3(z, r) = 1 + 2
+∞∑

n=1

rn
2
cos(2nz). (3.8)

By using this definition, we obtain the final expression for C(x, y, t):

C
(

x, y, t
)

=
M

4l
θ3
(πy

2l
, e(DTπ

2/l2)
)
(

1
√

DLπt

[

e((x−q−ut)
2/4DT t)−(uq/DL) − e((x+q−ut)

2/4DT t)
]

− u

DL
erfc

(

x + q + ut

2
√

DLt

))

.

(3.9)

4. Influence of Boundary Conditions

The transport phenomenon into the chamber is mainly regulated by two time scales: the
advection time scale related to the transport of the fluid from the inlet section to the outlet
section and the dispersion time scale related to the dispersion of the solute from the source
position in all the directions. The ratio between the longitudinal t(ch)

Ldisp = l2/DL dispersion

time scale and the advection time scale of the chamber t(ch)adv = l/u is the longitudinal Péclet
number, and it is defined as Pe(ch)L = ul/DL (where the superscript ch stands for chamber).

The ratio between the transverse dispersion time scale t(ch)
Tdisp = l2/DT and the advection

time scale of the chamber t(ch)adv = l/u is the transversal Péclet number, and it is defined as
Pe(ch)T = t

(ch)
Tdisp/t

(ch)
adv = ul2/LDT .

The aim of this section is to evaluate the influence of lateral and upstream boundary
conditions on the proposed solution. In order to illustrate this point the new solution has
been compared with the solution of a 2D transport problem in a unbounded domain for a
pulse injection point at x = q presented by [9]

C
(

x, y, t
)

=
M

4πt
√

DT

√

DL

e((x−q−ut)
2/4DLt)−(y2/4DT t). (4.1)

In principle, for Pe(ch)T � 1 the lateral boundary condition has no influence on the solution
since the transport of the solute by transversal dispersion is much slower than the transport
by advection, and during the passage into the chamber the solute does not reach the borders.
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Figure 3: Effects of the upstream boundary condition on our solution and comparison with the Bear one
in a longitudinal cross-section at y = 0 and two different times (Pe(ch)L = .1 and Pe(ch)T = 10).
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Figure 4: A schematization of the experimental apparatus and imaging set up.

Figure 2 shows the concentration profiles of the two solutions for Pe(ch)T = 5 and Pe(ch)T = 10
at x/L = 1 and t = ((x − q)/u). Note that the series appearing in the Jacobi θ3 function of
Equation (18) converge very fast [28] for

exp

(

−DTπ2t

l2

)

< 1, (4.2)

which is always satisfied for arbitrary positive t.
The concentration profile of Figure 2 roughly corresponds to the passage of the peak

of the plume. The influence of the lateral boundary condition is, obviously, mainly evident
close to the edge of the chamber and it is maximum at y/l = 1. The difference between
the two solutions becomes less than 1% at Pe(ch)T greater than about 20. The influence of the
lateral boundaries is muchmore evident at small Pe(ch)T . Small Pe(ch)T means that the transverse
dispersion coefficient is high or that the lateral dimension of the chamber is smaller than
the longitudinal one. In this last case, the solution of our bounded two-dimensional analytical
solution tends to the monodimensional solution.
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Figure 5: Comparison between analytical simulations and experimental data, for different times and fixed
longitudinal cross-section at y = 0.
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The influence of the upstream boundary condition is regulated by both advection and
dispersion longitudinal time scales but defined taking into account the position of the source
injection. The advection time scale t

(s)
adv (where the superscript s stands for source) is related

to the transport of the fluid from the inlet section to the source position and the dispersion
time scale t

(s)
disp is related to the dispersion of the solute from the source position and so on,

also back to the inlet section.
We define another longitudinal Péclet number, related to the source position, as the

dimensionless ratio between t
(s)
disp and t

(s)
adv, namely,

Pe(s)L =
t
(s)
disp

t
(s)
adv

=
q2/DL

q/u
=

uq

DL
. (4.3)

The Pe(s)L can be easily related to Pe(ch)L through Pe(s)L = Pe(ch)L (q/L) . In principle, for
Pe(s)L � 1 the time scale of advection is smaller than the time scale of back dispersion and the
upstream boundary condition does not influence the solution.

Figure 3 shows the longitudinal profiles of the concentration solutions at y = 0 for
Pe(s)L = 0.1. The chamber longitudinal Péclet number is 100. It is possible to notice that, close
to the inlet section, the profile of the new solution is different from the Bear one in both
magnitude of the concentration (10% in the case proposed in Figure 3) and position of the
center of mass. Both the former and the latter differences are induced by the presence of the
upstream boundary condition which rebounds the solute back to the chamber. The influence
of this boundary condition decreases with increasing the distance from the source injection
point due to the longitudinal dispersion.

Several simulations allowed to verify that the effect of the upstream boundary
condition is still significant in proximity of the source for Pe(s)L between 1 and 2, while
negligible effects are present for Pe(s)L > 2 in any section.

For experimental application, it is important to put in evidence that small Pe(s)L

means either that the longitudinal dispersion coefficient is high or the velocity is small, or,
equivalently, the injection point is very close to the inlet section (q/L small).

5. Application to Laboratory Experiments

The authors designed and constructed a laboratory scale flow chamber made of a Perspex
box and filled it with transparent glass beads to study solute transport. The physical model
represents a quasi-2-dimensional porous medium; indeed the thickness of the chamber
is much smaller than the horizontal direction. The chamber is a Perspex box of internal
dimension 200 × 280 × 10mm3 and is packed with glass beads of uniform diameter (1mm).

The solute is introduced by a pulse-like injection. Themodel is illuminated by a diffuse
backlight UV source and uses the transmitted light technique to detect the dye emission
(visible light) by a CCD camera; a scheme of the experimental apparatus is shown in Figure 4.
The acquired images are processed to estimate the 2D distribution of tracer concentrations
by using a pixel-by-pixel calibration curve linking fluorescent intensity to concentration and
taking into account the influence of the most common sources of errors due to the optical
detection technique (photo-bleaching, nonuniform illumination, and vignetting).
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Sodium fluorescent (formula: C20H10Na2O5) has been chosen as tracer for experimen-
tal tests. It has a moderately high resistance to sorption [29]. Details of the experimental
apparatus, illumination, imaging processing, and concentration estimation can be found in
[8].

The experimental campaign allows to obtain a complete set of fluorescein concentra-
tion data in the real domain. The dimension of the chamber and the solute mass are known,
while pore-scale velocity (u) and the dispersion coefficients (DL and DT ) are unknown.

The proposed analytical solution has been used to simulate the experimental
campaign. For the conducted experimental campaign the estimated pore-scale velocity (from
flow-rate and porosity measurements) was u = 2.9 × 10−4 m/s and the ratio between q and L

was 0.1786. Pe(ch)L and Pe(ch)T have been estimated by residual minimization and least square
best fit of Equation (25) and experimental data. Pe(ch)L and Pe(ch)T resulted to be, respectively,
87.3 and 37.5. Under these conditions, as stated in the previous paragraph, the lateral and the
upstream borders should not influence the plume behavior at least at low times.

In Figures 5 and 6 the analytical simulations and the experimental data are compared,
by considering the curves representative of the plume characteristics in the middle
longitudinal cross-section (y = 0) at different times (t1 = 375 s, t2 = 400 s, and t3 = 425 s) and
at a fixed transverse cross-section in the middle part of the longitudinal domain (x = 0.14m)
for the same three times previously chosen. Domains have been scaled.

From Figure 4 it is possible to notice that the real plume at longer times is more
advanced—in the longitudinal direction—than the analytical one. This happens in spite of
using our analytical solution that gives, as discussed in paragraph 3, plume profiles whose
center of mass is put forward with respect to the profile obtained with the Bear solution. This
difference in position can be ascribed to the fact that the homogeneity of the porous medium
is difficult to achieve in experiments, hence local heterogeneity of the hydraulic conductivity,
which is not accounted for in the model, may produce local pore-scale velocity variation and
hence the observed deviation of the center of mass.

By observing Figure 6 it is possible to notice again the effect of local medium
heterogeneities (present in the physical domain of the experimental apparatus). Figure 6
is a transverse profile of plume concentration at different times; Figure 6 shows that the
experimental plume has a slightly deviated shape with respect to the theoretical profile—in
particular for t = 425 s, the deviationmay be ascribed to local heterogeneity that is responsible
of plume meandering [24] and deviation of the transverse coordinate of the center of mass.
However the fitting of experimental data and model solution is acceptable.

6. Conclusions

This study principally concerns the development of a new analytical solution of the
advection-dispersion equation in 2D by taking into account a semi-infinite and laterally
bounded domain and a point-like injection. The simulated domain is considered as
constituted by a chamber filled with a porous medium, and the advective velocity is fixed as
constant. The solution proposed, where both upstream and lateral boundaries are considered,
shows a good applicability to real cases of typical flow tank experiments. In the second part
of the present paper, a brief analysis of the new solution is given in terms of Péclet numbers,
and some typical experimental situations are discussed.

Finally, a comparison between the new solution and real experimental data is
performed. Results show that the analytical solution correctly simulate the processes
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considered in all the physical domains chosen. With this analytical solution it will be possible
to perform data analysis for parameters estimation using all the experimental data obtained
by relatively long time experimental campaigns and also data taken near the injection point.

Appendix

In this appendix we give some details of the procedure necessary to get the solution of (3.3)
subject to boundaries and initial conditions (3.4), (3.5), and (3.6). The Laplace transform of
an is defined as

An(x, s) =
∫+∞

0
e−stan(x, t)dt, (A.1)

where s is the frequency variable of the Laplace transform. By applying the Laplace transform
to (3.3) and rearranging, we get

∂2An(x, s)
∂x2

− u

DL

∂An(x, s)
∂x

−
(

s

DL
+
n2π2 DT

l2DL

)

An(x, s) = − 1
DL

an(x, 0), n = 0, 1, 2, . . . ,

(A.2)

where an(x, 0) is expressed by (3.6). Initial and boundary conditions then become

[

u an(x, s) −Dl
∂An

∂x

]

x=0+
= 0, n = 0, 1, 2, . . . , (A.3)

lim
x→+∞

An(x, s) = 0, n = 0, 1, 2, . . . . (A.4)

Equation (A.2) is a nonhomogeneous ordinary differential equation that can be solved with
classical methods. The general solution of (A.2) is

An(x, s) = eu(x−q)/2DL

[

Qn(s) e(x
√

W2
n+4DLs)/2DL + Pn(s)e−(x

√
W2

n+4DLs)/2DL

]

− 2M

l
√

W2
n + 4DLs

sinh

⎛

⎜
⎝

(

x − q
)
√

W2
n + 4DLs

2DL

⎞

⎟
⎠ eu(x−q)/2DLH

(

x − q
)

(A.5)

for each n = 0, 1, 2, . . . , whereH(x) is the Heaviside function andW2
n is defined as follows:

W2
n = u2 + 4

n2DLDTπ2

l2
, n = 0, 1, 2, . . . . (A.6)
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The functionsQn(s) and Pn(s) have to be determined by using boundaries conditions of (A.3)
and (A.4).Qn(s) can be computed by using the right boundary condition for the longitudinal
domain (A.4). If we compute the limits for x → +∞, we get

lim
s→+∞

An(x, s) = lim
s→+∞

eu(x−q)/2DLe(x
√

W2
n+4DLs)/2DL

⎡

⎢
⎣Qn(s) − Me−(q

√
W2

n+4DLs)/2DL

l
√

W2
n + 4DLs

⎤

⎥
⎦. (A.7)

By imposing in (A.7) that the limit of An is zero for x → +∞, the terms Qn(s) can be found:

Qn(s) = −Me−(q
√

W2
n+4DLs)/2DL

l
√

W2
n + 4DLs

. (A.8)

The terms Pn(s) can be computed by using the upstream boundary condition (3.4). By
substituting An(x, s) in (A.3) and rearranging, we get

− exp−uq/2DL

×

(

Qn(s)
(

W2
n + 4sDL − u

√

W2
n + 4DLs

)

− Pn(s)
(

W2
n + 4sDL + u

√

W2
n + 4DLs

))

2
√

W2
n + 4DLs

= 0.

(A.9)

The expressions for Pn(s) can be found from (A.9):

Pn(s) =
Qn(s)

(

W2
n + 4sDL − u

√

W2
n + 4DLs

)

u
√

W2
n + 4DLs +W2

n + 4sDL

(A.10)

or, explicitly,

Pn(s) = −M
l

u −
√

W2
n + 4DLs

u
√

W2
n + 4DLs +W2

n + 4sDL

e−(q
√

W2
n+4DLs)/2DL. (A.11)

The final expressions for An(x, s), n = 0, 1, 2, . . ., can be written as follows:

An(x, s) =
Z0(x)H

(

q − x
)

e((x−q)
√

W2
n+4DLs)/2DL

√

W2
n + 4DLs

− Z0(x)ue(−(x+q)
√

W2
n+4DLs)/2DL

W2
n + 4DLs + u

√

W2
n + 4DLs

+
Z0(x) e(−(x+q)

√
W2

n+4DLs)/2DL

u +
√

W2
n + 4DLs

+
Z0(x)H

(

x − q
)

e(−(x−q)
√

W2
n+4DLs)/2DL

√

W2
n + 4DLs

,

(A.12)
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where we have set

Z0(x) =
M

l
eu(x−q)/2DL . (A.13)

It is possible now to obtain the final solution by computing the inverse Laplace transform of
An(x, s); so doing, we get

an(x, t) = a0(x, t) e−n
2π2Dlt/l

2 (A.14)

a0(x, t)=
M

2l

[

1
√

DLπt

(

e−(x−q−ut)
2/4DLt+ e−(x+q−ut)

2/4DLt−(uq/DL)
)

− u

DL
eux/DL erfc

(

x + q + ut

2t
√

DL

)]

.

(A.15)
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[24] M. Massabó, F. Catania, and O. Paladino, “A new method for laboratory estimation of the transverse
dispersion coefficient,” Ground Water, vol. 45, no. 3, pp. 339–347, 2007.

[25] A. Kreft and A. Zuber, “On the physical meaning of the dispersion equation and its solutions for
different initial and boundary conditions,” Chemical Engineering Science, vol. 33, no. 11, pp. 1471–1480,
1978.

[26] J. C. Parker and M. T. Van Genuchten, “Flux-averaged and volume-averaged concentrations in
continuum approaches to solute transport,”Water Resources Research, vol. 20, no. 7, pp. 866–872, 1984.

[27] P. V. Danckwerts, “Continuous flow systems. Distribution of residence times,” Chemical Engineering
Science, vol. 2, no. 1, pp. 1–13, 1953.

[28] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Dover, New York, NY, USA, 1972.

[29] P. L. Smart and I. M. S. Laidlaw, “An evaluation of some fluorescent dyes for water tracing,” Water
Resources Research, vol. 13, no. 1, pp. 15–33, 1977.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


