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Abstract

In several economic fields, such as those related to
health, education or poverty, the individuals’ char-
acteristics are measured by bounded variables. Ac-
cordingly, these characteristics may be indistinctly
represented by achievements or shortfalls. A diffi-
culty arises when inequality needs to be assessed.
One may focus either on achievements or on short-
falls but the respective inequality rankings may
lead to contradictory results. Specifically, this pa-
per concentrates on the poverty measure proposed
by Sen. According to this measure the inequality
among the poor is captured by the Gini index. How-
ever, the rankings obtained by the Gini index ap-
plied to either the achievements or the shortfalls do
not coincide in general. To overcome this drawback,
we show that an OWA operator is underlying in the
definition of the Sen measure. The dual decom-
position of the OWA operators into a self-dual core
and anti-self-dual remainder allows us to propose an
inequality component which measures consistently
the achievement and shortfall inequality among the
poor.

Keywords: Aggregation functions, OWA opera-
tors, Gini index, achievement and shortfall inequal-
ity, dual decomposition.

1. Introduction

Poverty reduction is without doubt a goal of de-
velopment policy in most countries. To evaluate
the evolution of poverty over time in some particu-
lar region, the differences of poverty across differ-
ent countries or the effect of different policies in
the alleviation of poverty, one should be first able
to measure poverty. According to the 1998 Nobel
Prize Laureate A.K. Sen [30], any poverty index
should be sensitive to the number of people below
the poverty line, to the extent of the income short-
fall of the poor from the poverty line, and to the ex-
act pattern of the income distribution of the poor.
In other words, every poverty measure should be
expressed as a function of these three poverty in-
dicators, showing the incidence, the intensity and
the inequality of the poverty, respectively. Poverty
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changes can be more meaningful and easily under-
standable if poverty indices can be decomposed into
these underlying contributing factors. A number of
poverty indices and their decompositions have been
proposed to explicitly identify these three compo-
nents. For comprehensive surveys on poverty and
inequality measures see [32] and [7]. Besides [§],
[27], [34] and [1], some of them may be found in
[21].

As regards the inequality component, Sen [30]
points out that “a transfer of income from a person
below the poverty line to anyone who is richer must
increase the poverty measure”. All the inequality
indices satisfy the Pigou-Dalton principle, which is
considered the basic axiom of inequality measure-
ment. This principle establishes that a transfer of
income from a rich individual to a poorer one de-
creases inequality as long as the poor individual
does not become richer than the rich one.

Since a transfer of income from a poorer to a
richer person entails a transfer of the shortfall from
the latter to the former, the poverty measure is
bound to decrease if the inequality component in-
volved in the index is defined in terms of either in-
comes or shortfalls. In fact, in the mentioned de-
compositions this third component refers to income
inequality or to shortfall inequality indistinctly. For
instance, whereas in the original proposals of [30]
and [31] the “Gini index of the poor income” takes
part in the decompositions, [27] and [34] derive al-
ternative decompositions in which the “Gini index
of the gaps” is included. Similarly, the “inequality
among the poor” is captured in terms of gaps in
the TIP curves introduced by [20] and in the de-
composition for the FGT indices ([14]) proposed by
[1]. However, as will be shown below, the choice
between income and shortfall inequality is not in-
nocuous and different choices may lead to contra-
dictory results. This difficulty arises not only in
poverty measurement but also in different economic
fields in which bounded variables are involved. Re-
cent papers (among them [9], [12] and [23]) deal
with this issue in health measurement. The results
derived by [23] may have a straightforward appli-
cation to the measurement of the inequality among
the poor. They introduce a property of consistency
which requires that achievement and shortfall in-



equality rankings should not be reversed, and show
that all relative and intermediate inequality indices
fail their requirement. Accordingly, whenever a rel-
ative or intermediate inequality index is involved
in the decomposition of a poverty index, the in-
equality component is not consistent. We think
this is a serious drawback which may distort the
conclusions in the analysis of the poverty trends
and, consequently, the poverty decompositions are
found wanting in displaying changes in the inequal-
ity among the poor, one of their main points.

This paper concentrates on the Sen index [30].
Two different decompositions of this index have
been proposed ([30] and [34]). The inequality
among the poor is captured by the Gini index, ap-
plied either to the poor income or to the shortfall
of the poor. However, as shown in [23], no relative
inequality index offers consistent results.

In this paper a different point of view is pro-
posed. We show that the Sen poverty index may
be interpreted as an OWA operator ([37]). Con-
sequently, the dual decomposition of aggregation
functions into a self-dual core and anti-self-dual re-
mainder proposed by [17] may be used. We show
that these two terms can be interpreted as measures
of the intensity and the inequality among the poor,
respectively. The anti-self-duality of the remainder
component guarantees that inequality among the
poor does not change if one focus either on incomes
or on shortfalls. These inequality components will
allow policy makers to determine in a consistent way
if inequality among the poor has increased or de-
creased.

2. Aggregation functions

In this section we present notation and basic defini-
tions regarding aggregation functions on I™, where
either I = [0,1] or I = [0,00), with n € N and
n > 2 throughout the text.

Notation. Points in I™ will be de-
noted by means of boldface characters:
z = (r1,...,2,), 1 = (1,...,1), 0 = (0,...,0)

and, consequently, for every = € I we have
x-1=(x,...,2). Given z,y € I", by = > y we
mean z; > y; for every i € {1,...,n}; by * > y
we mean ¢ > y and x # y. Given x € I, with
(#(1),--+,2(m)) we denote the increasing ordered
version of @, i.e., z(; is the i-th lowest number of

{#1,...,2,}. Moreover, z(;) = min{xy,...,2,}
and z(,) = max{zi,...,r,}. On the other
hand, p will denote the arithmetic mean,
ie, wulx) = (r1 + -+ + x,)/n.  Given a
permutation on {1,...,n}, ie, a bijection
o:{l,...,n} — {1,...,n}, with z, we denote

(xo(l)a s 71'0(7L))'

We begin by defining standard properties of real
functions on I™. For further details the interested
reader is referred to [13], [6], [3], [17] and [19].
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Definition 1 Let A: I"™ — R be a function.

~

. A isidempotent if for everyx € I: A(x-1) = x.

2. A is symmetric if for every permutation o on
{1,...,n} and every x€ I": A(z,) = A(z).

3. A is monotonic if for all x,ye I": x>y =
Al) > Ay).

4. A is strictly monotonic if for all x,y € I™:
x>y = Alz) > Aly).

5. A is compensative if for every € I": (1) <
Az) < Z(n)-

6. A is self-dual if I = [0,1] and for every x €
[0,1]": AQ—z)=1-— A(=).

7. A is anti-self-dual if I = [0,1] and for every
ze[0,1]": A1 —z) = A(x).

8. A is invariant for translations if for all t € R
and x € I": A(x+1t-1) = A(xz) whenever
c+t-1el™

9. A is stable for translations if for all t € R
and z€ I": A(xz+1t-1) = A(z) +t whenever
z+t-1el™.

10. A is scale invariant (or homothetic) if for all
A>0 and zeI™: A(M-x) = \-A(x) whenever
A-xelm

Definition 2 Let {A®)},cy be a sequence of func-
tions, with A% . [F — R and AV (z) =z for ev-
ery v € I. {AM)},cy is invariant for replications
if for all * € I™ and any number of replications
meN of x:

m

AT (2T TR = A (@),

Definition 3 Consider the binary relation > on
I™ defined as

n n
TryY & Zﬂci:Zyi and
i=1 i=1

for every ke {1,...,n—1}.

k

Zx(i)

i=1

k
< Z Yy
=1

1. A: I — I is Schur-convex or S-convex if
forall x,ye I":

2y = Al) > Ay).

2. A:I" — I is Schur-concave or S-concave if
for all z,ye I™:

vy = Al2) < A(y).

Definition 4 Given x,y € I™, we say that y is ob-
tained from x by a progressive transfer if there exist
two individuals 1,5 € {1,...,n} and h > 0 such
that z; < xj, ¥y = x; +h < x; —h = y; and
Yy =z for every k € {1,...,n}\ {i,5}.

A classical result (see [25, Ch. 4, Prop. A.1]) es-
tablishes that x = y if and only if y can be derived
from by means of a finite sequence of permuta-
tions and/or progressive transfers.



Definition 5 A function A: 1" — I is called an
n-ary averaging aggregation function (AAF) if it is
idempotent and monotonic. An AAF is said to be
strict if it is strictly monotonic.

For the sake of simplicity, the n-arity is omitted
whenever it is clear from the context.

It is easy to see that every AAF is compensative.
Anti-self-duality and invariance for translations are
incompatible with idempotency, one of the defining
properties of AAFs. Nevertheless, anti-self-duality
and invariance for translations play an important
role in this paper.

3. Dual decomposition

In this section we briefly recall the so-called dual de-
composition of an AAF into its self-dual core and as-
sociated anti-self-dual remainder, due to [17] (a gen-
eralization of that dual decomposition can be found
in [24]). First we introduce the concepts of self-dual
core and anti-self-dual remainder of an AAF, estab-
lishing which properties are inherited in each case
from the original AAF.

Definition 6 Let A:[0,1]" — [0,1] be an AAF.
The AAF A* :[0,1]" — [0,1] defined as

A*(x)=1—-A(1—=x)
is known as the dual of A.

Clearly, (A*)* = A, which means that dualization
is an involution. An AAF A is self-dual if and only
if A* = A.

3.1. The self-dual core

Aggregation functions are not in general self-dual.
However, a self-dual AAF can be associated to any
AAF in a simple manner. The construction of the
so-called self-dual core of an AAF A is as follows.

Definition 7 Let A:[0,1]" — [0,1] be an AAF.
The function A :[0,1]" — [0,1] defined as
Alx) = A(z) + A*(x) _ Alx) —AQ1—x)+1
2 2
1s called the core of A.

Since A is self-dual, we say that A is the self-
dual core of the AAF A. Notice that A is clearly
an AAF.

The following results (excepting that invariance
for replications is inherited by the core; the proof is
immediate) can be found in [17].

Proposition 1 Let A : [0,1]" — [0,1] be an
AAF. A is self-dual if and only if A(x) = A(x)

for every x € [0,1]™.

Proposition 2 The self-dual core A inherits from
A the properties of continuity, idempotency (hence,
compensativeness), symmetry, strict monotonicity,
stability for translations, and invariance for replica-
tions, whenever A has these properties.
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3.2. The anti-self-dual remainder

We now introduce the anti-self-dual remainder ,1
which is simply the difference between the original
AAF A and its self-dual core A.

Definition 8 Let A:[0,1]" — [0,1] be an AAF.
The function A : [0,1]" — R defined as A(x) =
A(x) — A\(m), that is
Ala) = A(z) — A*(x) _ Alz) + A1 —=) — 1 7
2 2
is called the remainder of A.

Since A is anti-self-dual, we say that A is the
anti-self-dual remainder of the AAF A. Clearly, A
is not an AAF. In particular, A(0) = A(1) =0 vio-
lates idempotency and implies that A is either non
monotonic or everywhere null. Moreover, —0.5 <
A(z) < 0.5 for every x € [0, 1]".

The following results can be found in [17] (except-
ing that invariance for replications is inherited by
the remainder —the proof is immediate— and that S-
convexity and S-concavity are also inherited by the
remainder).

Proposition 3 Let A : [0,1]" — [0,1] be an
AAF. A is self-dual if and only if A(x) = 0 for

every x € [0,1]™.

Proposition 4 The anti-self-dual remainder A in-
herits from A the properties of continuity, sym-
metry, invariance for replications, plus also S-
convexity and S-concavity, whenever A has these
properties.

Summarizing, every AAF A decomposes addi-
tively A= A+ A in two components: the self-dual
core A and the anti-self-dual remainder A, where
only A is an AAF.

The following result concerns two more proper-
ties of the anti-self-dual remainder based directly
on the definition A = A — A and the corresponding
properties of the self-dual core (see [17]).

Proposition 5 Let A : [0,1]" — [0,1] be an

AAF.

1. A(z-1) =0 for every z € [0,1].
2. If A is stable for translations, then A is invari-
ant for translations.

These properties of the anti-self-dual remainder
are suggestive. The first statement establish that
anti-self-dual remainders are null on the main diago-
nal. The second statement applies to the subclass of
stable AAFs. In such case, self-dual cores are stable
and therefore anti-self-dual remainders are invari-
ant for translations. In other words, if the AAF A
is stable for translations, the value A(x) does not
depend on the average value of the x coordinates,
but only on their numerical deviations from that av-
erage value. These properties of the anti-self-dual
remainder A suggest that it may give some indica-
tion on the dispersion of the & coordinates.



4. OWA operators

In 1988 Yager [37] introduced OWA operators as
a tool for aggregating numerical values in multi-
criteria decision making. An OWA operator is sim-
ilar to a weighted mean, but with the values of the
variables previously ordered in a decreasing way.
Because of these properties, OWA operators have

been widely used in the literature (see, for instance,
[38] and [39)]).

Definition 9 Given a weighting vector w =
(wi,...,w,) € [0,1]" satisfying > o w; = 1,
the OWA operator associated with w is the AAF
Ay I — I defined as

Aw(:-v) = Zwl xa’(i) )
i=1

where o is a permutation of {1,...,n} such that
To(1) > 2 Lo(n)-

OWA operators are continuous, idempotent
(hence, compensative), symmetric, and stable for
translations. Moreover, an OWA operator A,, is
self-dual if and only if w,41-; = w; for every
ie{l,...,n} (see [16, Proposition 5]).

In general, the self-dual core Ew and the anti-self-
dual remainder A,, of an OWA operator A,, can be
written as

n
Ay(a) =y i,

2 o (1)
=1
~ U\ Wi — Wi
Ay(z) =) % To(i) -
=1

As we know, the self-dual core A\w is an AAF.
Moreover, since Z?:]_(Wi‘i‘wn_i_i_l)/2 =1, the self-
dual core gw is again an OWA operator, that is
Ay = Ax with @w; = (w; + wp—i41)/2 for every
ie{l,...,n}.

On_the other hand, the anti-self-dual remain-
der A, is not an AAF. Notice, in particular, that
Ap(1) =300 (0 — wn—i11)/2 = 0.

The self-dual core and the anti-self-dual remain-
der can be equivalently written as follows

-~ " To(i + Lo n—i+1
Aw(m) = Zwl @) 9 ( )
=1

n
e To(i) — Lo n—i+1
Ay(@) = wy A7
=1

These expressions show clearly that the self-dual
core is a weighted average of pairwise averages of
x coordinates, whereas the anti-self-dual remainder
is a weighted average of pairwise differences of x
coordinates. The anti-self-dual remainder is there-
fore independent of the overall average of the co-
ordinates of x and constitutes a form of disper-
sion measure. Moreover, it is straightforward to
prove that w; > -+ > w, implies A, (x) > 0 and

wy < -+ < w, implies A, (x) <0.

36

5. Generalized Gini welfare functions

We consider a population consisting of n individ-
uals, with n > 2. An income distribution is rep-
resented by a vector & = (z1,...,2,) € [0,00)",
where z; is the income of individual 7.

Definition 10 A welfare function is a non-
constant function W : [0,00)" — R that is con-
tinuous, strictly S-concave and monotonic.

Definition 11 Given a weighting vector w =
(wi,...,wy) €[0,1]™ satisfying wy > -+ > w, >0
and Y., w; = 1, the generalized Gini welfare func-
tion (or rank dependent general welfare function)
associated with w is the AAF W, : [0,00)" — R
defined as
Wa(@) = wi z). (1)
i=1

On this, see [4], [10, 11], [26], [28], [33] and [35,
306].

Notice that generalized Gini welfare functions are
OWA operators:

VVw(a:) = Zw; L (i) s
i=1

where o is a permutation of {1,...,n} such that
To(1) > - 0 > To(n) and wi = Wp_ip1.

Positivity of w; guarantees that W, satisfies the
Pareto Principle, that is, it is increasing in x;. De-
creasingness of the sequence of coefficients is neces-
sary and sufficient for S-concavity of W,,. All the
functions in (1) are both, stable for translations and
scale invariant.

Definition 12 An inequality index ¢s a mnon-
constant function I : [0,00)" — R that is con-
tinuous and strictly S-convex. The inequality index
is relative if I is scale invariant and absolute when-
ever I is invariant for translations.

Following the conventional approach ([22], [2],
[29] or [5], among others) any welfare function in
(1) may be used to derive both relative and abso-
lute inequality indices as follows

W (x)

S—e

Ir(z) =

(2)

Is(z) = p(z) — W (2). (3)
The Gini welfare function appears taking in (1)

Q(nfi)Jrl'

w; = B}

n

With these weights, equation (2) becomes the
Gini index

Glz) = — o (@(n =) +1) (n(@) ~ ()

n*u(x) =



whereas equation (3) is referred to as the absolute
Gini index

Gale) = 5 D (2n =) +1) (ule) ~ 2(0)
i=1

The Gini index [18] is the most commonly used
measure of inequality. This index varies between 0,
which reflects complete equality and 1, which indi-
cates complete inequality. The Gini index is rel-
ative and invariant for replications, which allows
inequality comparisons between societies with dif-
ferent populations.

In contrast with other inequality measures, the
Gini index has a number of desirable properties.
First, it easily accommodates non-positive incomes.
Secondly, inequality as measured by this index de-
pends on the significance of the income gaps in so-
ciety, and finally, the simple relationship with the
Gini absolute index given by Ga(z) = pu(z)G(x).

6. Poverty measures

First, this section briefly summarizes some basic no-
tions about poverty measures. With respect to the
notation and definitions we follow [15].

Since [30], any poverty measure consists of a
method to identify the poor together with an ag-
gregative measure. Thus, the first step to define
a poverty measure is the identification of the poor
people in society. This step requires the specifica-
tion of a poverty line z € (0,00) which represents
the necessary income to maintain a minimum level
of living. For an income distribution , person i
is considered to be poor if z; < z. Otherwise the
person is non-poor or rich.

We denote the set of poor people by

Q(e,z)={ie{l,...,n} | x; < z},

and by g¢(z,z) the number of the poor,
Q(mﬂ Z) = #Q(mv Z)

Once the poor people have been identified, the
second step to determine the extent of poverty in-
volves the aggregation scheme. In what follows, a
poverty measure is a non-constant function P(x, 2)
of the income distribution & and the poverty line z.

ie.,

6.1. Axioms

Some axioms are usually assumed for a poverty
measure.

e Poverty Focus (PF): For all z,y € [0,00)"
and z € (0,00), if Q(z,2) =Q(y,2) =Q and
x; = y; for every i € @, then P(zx,z) =
P(y, 2).

e Poverty Monotonicity (PM): For all z,y €
[0,00)™ and z € (0,00), if Q(x,2) = Q(y,2) =
@ and z = y except for x; > y; with i € Q,
then P(z,z) < P(y, 2).
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Since poverty measurement is concerned with the
deprivations of poor people, these two properties,
postulated by Sen [30], are considered as the ba-
sic axioms for a poverty measure. Thus, axiom
PF requires that a poverty index should not de-
pend on the income of the non-poor people, i.e., the
poverty level should not vary if the rich incomes
change, as long as the set of poor people remains un-
changed. On the other hand, axiom PM demands
that poverty should increase if the income of a poor
person decreases.

The following axiom is concerned with inequal-
ity among the poor. In the inequality field, the
Pigou-Dalton transfer principle establishes that a
progressive transfer, that is a transfer from a richer
person to a poorer one, should decrease inequality.
Accordingly, a progressive transfer among the poor
should decrease inequality among the poor. Sen
[30] introduces the counterpart of this principle in
the poverty field, requiring poverty also to decrease.
This is captured by the following axiom.

o Transfer Sensitivity (TS): For all =,y €
[0,00)™ and z € (0,00), if y is obtained from
x by a progressive transfer among the poor,
then P(y,z) < P(z, z).

A progressive transfer among the poor entails an
increment of income for one poor individual, and
a decrement for another poor person, the richer of
the two. This TS axiom goes beyond PM and de-
mands that greater weight should be placed on the
poorer person and that poverty should decrease if
inequality among the poor decreases.

A normalization condition is also usually assumed
in the poverty measurement. This property requires
that if all the individuals are non-poor, then the
society deprivation level is equal to 0.

e Normalization (N): For all x,y € [0,00)"
and z € (0,00), P(x,z) = 0 if and only
if Q(z,2z) = 0, that is x; > z for every
ie{l,...,n}.

The two following invariance axioms are also stan-
dard requirements for a poverty measure:

e Poverty Symmetry (PS): For all = € [0,00)",
z € (0,00), and permutation ¢ on {1,...,n},
it holds that P(x,,z) = P(x, 2).

e Replication Invariance (RI): For all = €
[0,00)™ and z € (0,00), if y is obtained from

x by a replication, that is y = (z,...,x) for
some m € N, then P(y,z) = P(z, z).

PS establishes that no other characteristic apart
from the income deprivation matters in defining a
poverty index. In turn, RI allows us to compare
populations of different sizes.

The first poverty measure introduced in the liter-
ature has been the headcount ratio

H :[0,00)" x (0,00) — [0, 1]



defined as
Hiw, ) - (=, 2) 7
n

which measures the percentage of poor people in
the society. This is a crude index, which is able to
capture the incidence of poverty. However, it is able
to capture neither the intensity nor the inequality
among the poor. In fact it violates both PM and
TS, since it does not change if the income of a poor
decreases, and under progressive transfers among
the poor.

In most cases, measuring poverty involves gaug-
ing the extent of the deprivation felt by each indi-
vidual, once the income poverty line has been deter-
mined. One of the most used procedures to measure
individual i’s shortfall is to consider the normalized
gap of individual 1.

Definition 13 For all * € [0,00)" and z €
(0,00), the normalized gap of individual i is defined

as
2z — T ’ 0} '
z

Notice that g; € [0,1], g; = 0 & z; > z, and

Moreover, the normalized gaps are invariant un-
der proportional income changes. In other words,
the function G : [0, 00)™ x (0, 00) — [0, 1]™ defined
by G(z,z) = (g1,...,9,) is homogeneous of degree
0: G(A\xy, ..., A\xn, Az) = G(xy, ..., Tp, 2), for every
A>0.

On the other hand, a progressive transfer among
the poor people lead to an increment in the richer
individual gap whereas the poorer person gap de-
creases. Since the richer gap is smaller than the
poorer one, then the progressive transfers among
the poor incomes are equivalent to the progressive
transfers among the poor gaps. Then, according
to [25, Ch. 4, Prop. A.1], the TS axiom is to be
fulfilled whenever the function is S-convex either in
incomes or in gaps.

gi = max{

Definition 14 The mean among the poor of the
normalized poverty gaps is given by the function
M :]0,00)™ x (0,00) — [0,1] defined as

1
M(x,2) = p(g,) == > g
q 1€Q
where g, is the vector whose components are the
positive normalized poverty gaps generated by x and
z. M(z, z) is called the aggregate income gap ratio.

This index usually measures the intensity of
poverty and gives the minimum cost of eliminating
poverty but does not reflect the inequality among
the poor.

The generalized Gini welfare functions in equa-
tion (1) can be also used to aggregate the poor
gaps. Given z € [0,00)", consider again g, the
vector whose components are the positive normal-
ized poverty gaps generated by .
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Definition 15 Given a weighting vector w =
(wi,...,wq) €1[0,1]7 satisfying wy > --- > wy >0
and Y1, w; = 1, the function A, : [0,1]7 — [0, 1]
is defined as

q
Auw(g,) =D Wi g (4)
=1

where o is a permutation of {1,...,q} such that

9o(1) 2 " 2 Go(q)-

Notice that

Aw(g,) =1-W, (%) .

Aggregators in equation (4) can be considered as
particular cases of OWA operators. Increasingness
of {x;} guarantees decreasingness of {g;}. And S-
concavity of W,, implies S-convexity of A,,. These
operators are stable for translations and scale in-
variant.

6.2. The Sen poverty index and an
alternative decomposition proposal

We now introduce the Sen poverty index [30]. Al-
though this is not Sen’s original proposal, it is com-
mon to refer to this modified expression as the Sen
index.

Definition 16 The Sen poverty index is the func-
tion S :[0,00)" x (0,00) — [0,1] defined as

S(x,2) = 2 Z(z —(;))(q+ 0.5 — ).

e 5)

The summation structure of the S index essen-
tially combines the normalized gaps of the poor with
q positive coefficients which are larger for persons
with larger income gaps: apart from the overall fac-
tor 2/gn, the largest gap has coefficient ¢— 0.5 and
the smallest gap has coefficient 0.5, with decreas-
ing unit step differences from one coeflicient to the
next. Actually, as we will see below, the S index
amounts to a convex combination of the normalized
gaps, multiplied by the headcount ratio g/n. More-
over, the S index satisfies PF, PM, TS, PS and
RI

Two alternative decompositions have been pro-
posed of this index. On the one hand, Sen [30] shows
that the index satisfies

(6)

where G(z,) is the Gini index of the poor income.

Xu and Osberg [34] propose the following alter-
native decomposition

S(:I:, Z) = H(:I), Z) (M(:Z:, Z) + M(IB, Z)G(gp))v (7)

where G(g,,) is the Gini index of the poor gaps.



However, as already mentioned, the choice be-
tween the Gini index of the poor income and the
poor gaps is not innocuous. To illustrate this,
let us consider two income distributions !
(4,5,25,35) and x*> = (3,4,22,32). Let us as-
sume that the poverty line is z = 36. Then, the

corresponding poverty gap distributions are g' =

(2,8 5) and g7 = (2,2 3 1) The Gini
index of the income distributions concludes that
the inequality among the poor is higher in the lat-
ter than in the former, G(z') = 0.409 < 0.430 =
G(x?). Nevertheless, this conclusion is reversed if
the Gini index of the gap distributions is computed
since G(g') = 0.377 > 0.316 = G(g?).

In what follows we propose an alternative decom-
position of the Sen index that overcome this draw-
back.

The S index can be rewritten as

S(w,2) = Hm,2) 3 24—+

2 (i)
=1 q

where o is a permutation of {1,...,n} such that
9o(1) = 2 Go(n)-

That is, an OWA operator Ag : [0,1]9 — [0, 1]
applied to the poverty gaps, defined as

Aclg,) = Z Mg

2 o(i)
=1 q

is involved in the definition.

Proposition 6 Ag satisfies continuity, idempo-
tency, symmetry, strict monotonicity, stability for
translations, invariance for replications and S-
convexity.

A straightforward application of the previous sec-
tion allows us to compute the self-dual core and
the anti-self-dual remainder of Ag. By Proposi-
tions 2 and 6, the core Ag is idempotent, symmet-
ric, strictly monotonic, and stable for translations.
The strictly monotonicity axiom implies that is in-
creasing in the gap of a poor person. The stability
for translations means that equal absolute changes
in all poor gaps lead to the same absolute change
in Ag. These properties can be regarded as basic
properties of a poverty intensity index. In the par-
ticular case of the Sen index, Proposition 7 below
shows that the core Ag coincides with the aggre-
gate income gap ratio, the archetypical measure of
the poverty intensity.

Proposition 7 f/l\g(gp) = M(x, z).

As regards the remainder, ;1?; is symmetric, ful-
fills that Ag(g,) = 0 if and only if g; = --- = g,
and Propositions 4 and 6 ensure that it is S-convex,
and consequently the Pigou-Dalton transfer princi-
ple is satisfied. Hence, we can obtain a direct inter-
pretation of A as a measure of inequality among

39

the poor individuals. What is more interesting in
our discussion, is that A¢g is anti-self-dual, that is,
inequality among the poor does not change if we
focus on poverty gaps, or on achievements as mea-
sured by @,/z. This component is also invariant if
the units in which income is measured change.

In addition, Ag is invariant for translations
(Proposition 5), thus it measures inequality from
an absolute point of view and remains invariant if
the gaps of all the poor are increased by the same
amount. Proposition 8 below shows that the anti-
self-dual core computed for the Sen index becomes
the absolute Gini index of the poverty gaps, and
equivalently, of the achievements normalized by the
poverty line.

Proposition 8 Zlvg(gp) =G4 (ﬁ)
z

The next proposition provides a decomposition
of the Sen index in three components: incidence,
intensity and inequality. The interest of this result
is that the inequality component measures equally
the achievements and the gaps of the poor.

Proposition 9 The Sen index satisfies the follow-
ing decomposition

S(x,z) = H(m, z) (M(x, 2) + Galg,)) =

H(z,2) (M(ac, 2)+Ga (7)) .

z
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