abstracts

1931P

Assessment of PD-1/PD-L1 colocalization in hepatocellular carcinoma (HCC) using bright-field double labeling and quantitative digital image analysis

<u>T. Mrowiec</u>¹, F. Wilm¹, E. Frick-Krieger¹, M. Silva¹, L. Terracciano², I. Dussault³, C. Ihling¹ ¹Clinical Biomarkers & CDx Department, Merck KGaA, Darmstadt, Germany, ²Department of Pathology, University of Basel, Basel, Switzerland, ³Clinical Biomarkers, Immuno-Oncology, EMD Serono, Billerica, MA, USA

Background: Tumors may suppress host defenses by activating immune checkpoints (eg, the programed cell death [PD-1/PD-L1] pathway). Colocalization (CL) is a requirement for PD-1/PD-L1 interaction. PD-1/PD-L1 CL in tissue sections, as determined by immunohistochemistry (IHC), may be an indicator of PD-L1/PD-1 pathway activity.

Methods: We assessed CL of PD-L1 and PD-1 in situ by applying a novel duplex bright-field IHC technique on 49 formalin-fixed, paraffin-embedded HCC samples using digital image analysis (DIA; Definiens Tissue Studio[®]) to determine the percentage of single PD-1⁺ and PD-L1⁺ cells, PD-L1/PD-1 double-labeled cells, and PD-1⁺ cells adjacent to ≥ 1 PD-L1⁺ cells.

Results: All cases showed typical HCC morphology (low- to high-grade trabecular [4/49], pseudoglandular [1/49], solid [40/49], clear cell [2/49], or desmoplastic [2/49]). PD-L1 was largely observed in immune cell infiltrates. On average, 2.6% \pm 3.6% (median, 1.5%) of the cells (immune + tumor) within the tumor area were PD-1⁺, and 4.3% \pm 5.5% (median, 1.9%) were PD-L1⁺. There was considerable variation among samples in the number of PD-1⁺ (range, 0.05%-21.2%) and PD-L1⁺ (range, 0.2%-30.3%) cells. In 18/49 cases (37%), the number of PD-1⁺ cells exceeded the number of PD-1⁺ cells, in 31/49 cases (63%), the number of PD-L1⁺ cells exceeded the number of PD-1⁺ cells. PD-1/PD-L1 double-stained cells were present in 31/49 cases (63%), and 1.6% \pm 4.1% (median, 0.13%) of the cells were double labeled, with considerable intersample variation (range, 0.5%-22.9%). Finally, 10.5% \pm 8.03% (median, 9.4%) of PD-1⁺ cells were in the immediate vicinity of a PD-L1⁺ cell (range, 1.1%-43.3%).

Conclusions: By combining a novel duplex bright-field IHC technique with DIA, we quantitated the number/distribution of PD-1⁺ and PD-L1⁺ cells in HCC. Variation in the numbers of PD-1⁺ and PD-L1⁺ cells, and PD-1⁺ cells with \geq 1 PD-L1⁺ adjacent cells, in HCC was seen. Future studies can use these techniques to explore the predictive potential of PD-L1/PD-1 expression in patients who are being considered for immuno-therapy. Our proof of concept results suggest that the methods may also be applied for other tumors.

Editorial acknowledgement: Medical writing support was provided by ClinicalThinking, and was funded by Merck KGaA, Darmstadt, Germany.

Legal entity responsible for the study: Merck KGaA, Darmstadt, Germany.

Funding: Merck KGaA, Darmstadt, Germany.

Disclosure: T. Mrowiec, F. Wilm, E. Frick-Krieger, C. Ihling: Employment: Merck KGaA. M. Silva: Employment: Merck KGaA; Equity ownership: Merck KGaA. L. Terracciano: Consultancy: Merck KGaA. I. Dussault: Employment: EMD Serono.