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Abstract

In this paper, an extension of linear Markovian structural causal models is introduced,
called distributed-lag linear structural equation models (DLSEMs), where each factor of
the joint probability distribution is a distributed-lag linear regression with constrained lag
shapes. DLSEMs account for temporal delays in the dependence relationships among the
variables and allow to assess dynamic causal effects. As such, they represent a suitable
methodology to investigate the effect of an external impulse on a multidimensional system
through time. In this paper, we present the dlsem package for R implementing inference
functionalities for DLSEMs. The use of the package is illustrated through an example on
simulated data and a real-world application aiming at assessing the impact of agricultural
research expenditure on multiple dimensions in Europe.

Keywords: constrained lag shapes, directed acyclic graphs, dynamic causal inference, proba-
bilistic graphical models, time series.

1. Introduction

Structural causal models (SCMs, Pearl 2000, Chapter 5) represent one of the prevalent
methodologies for causal inference in contemporary applied sciences. In particular, a Marko-
vian SCM is such that a directed acyclic graph (DAG) encodes causal relationships among
the variables, which also implies a factorization of the joint probability distribution according
to conditional independence relationships. In a linear parametric formulation (linear Marko-
vian SCM), each factor of the joint probability distribution is a linear regression model, and
a causal effect is associated to each edge, directed path or couple of nodes in the DAG to
represent average changes in the value of a variable induced by an intervention provoking a
unit variation in the value of another variable. A linear Markovian SCM can be extended by
letting each factor of the joint probability distribution be a dynamic linear model, in order
to account for temporal variations in the dependence relationships among the variables.
When the objective is forecasting, a large variety of dynamic linear models is available. For
example, linear regression with polynomial lag shapes (Almon 1965) is a common feature of
dynamic predictive models. Mixed-data sampling (MIDAS) regression (Andreou, Ghysels,
and Kourtellos 2007; Ghysels, Sinko, and Valkanov 2007), implemented in the R package
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midasr (Ghysels, Kvedaras, and Zemlys 2016), is a broader class of time series models dealing
with data sampled at different frequencies. The R package dlnm (Gasparrini 2011) contains
functionalities for linear and non-linear regression models with spline lag-shapes. However,
the assessment of causal effects in a dynamic context requires to take into account prior
knowledge on lag shapes, and a predictive model may not be adequate without introducing
appropriate mathematical constraints. For instance, the effect of an intervention has typically
the same sign, or at least is null, at all the possible time lags, but neither the Almon’s nor
a spline lag shape can be directly applied to this purpose, as they cannot avoid regression
coefficients to have different signs.
Constrained lag shapes (Judge, Griffiths, Hill, Lutkepohl, and Lee 1985, Chapters 9-10) over-
come such problem, because regression coefficients are non-zero only outside a pre-specified
interval of time lags, and within that interval they are allowed to rise from value zero to a
maximum before declining again to zero, or to simply decrease from a maximum value to
zero. Also, parameter estimation is straightforward, because, given the interval of time lags,
the maximum value can be estimated using ordinary least squares. Thus, if prior knowledge
on the interval is available, it can be directly exploited, while if the interval is not known
a-priori, it may be determined by model selection across all the possible ones.
In this paper, we introduce an extension of linear Markovian SCMs, called distributed-lag
linear structural equation models (DLSEMs), where each factor of the joint probability dis-
tribution is a distributed-lag linear regression with constrained lag shapes. They were in-
troduced for the first time by Magrini (2018) in the context of lag exposure assessment.
DLSEMs represent a suitable methodology to investigate the effect of an external impulse on
a multidimensional system through time.
The aim of this paper is to illustrate the dlsem package, which implements inference func-
tionalities for DLSEMs in R. The paper is structured as follows. In Section 2, theory on
DLSEMs is presented. In Section 3, instructions for the installation of the dlsem package
are provided. In Section 4, the practical use of the dlsem package is illustrated through an
example on simulated data. In Section 5, the dlsem package is applied to address a real-world
application aiming at assessing the impact of agricultural research expenditure on multiple
dimensions in Europe. Section 6 includes conclusive remarks and considerations on future
development.

2. Theory
In this section, theory on distributed-lag linear regression and on structural causal models is
provided (Subsections 2.1 and 2.2), then distributed-lag linear structural equation models are
presented (Subsection 2.3).

2.1. Distributed-lag linear regression

Lagged instances of one or more covariates may be included in the linear regression model to
account for temporal delays in their influence on the response:

yt = β0 +
J∑
j=1

Lj∑
l=0

βj,l xj,t−l + εt εt ∼ N(0, σ2) (1)

where yt is the value of the response variable at time t and xj,t−l is the value of the j-th
covariate at l time lags before t. The set (βj,0, βj,1, . . . , βj,Lj ) is denoted as the lag shape of the
j-th covariate and represents its regression coefficient (in the remainder, simply ‘coefficient’)
at different time lags.
Parameter estimation is inefficient because lagged instances of the same covariate are typically
highly correlated. The Almon’s polynomial lag shape (Almon 1965) is a well-known solution
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to this problem, where coefficients for lagged instances of a covariate are forced to follow a
polynomial of order Q:

βj,l =
{
φj,0 l = 0∑Q
q=0 φj,ql

q otherwise
(2)

Unfortunately, the Almon’s polynomial lag shape may show multiple modes and coefficients
with different signs, thus entailing problems of interpretation. Constrained lag shapes (Judge
et al. 1985, Chapters 9-10) overcome this deficiency. Some examples are the endpoint-
constrained quadratic lag shape:

βj,l =

θj
[
− 4

(bj−aj+2)2 l
2 + 4(aj+bj)

(bj−aj+2)2 l − 4(aj−1)(bj+1)
(bj−aj+2)2

]
aj ≤ l ≤ bj

0 otherwise
(3)

the quadratic decreasing lag shape:

βj,l =

θj
l2−2(bj+1)l+(bj+1)2

(bj−aj+1)2 aj ≤ l ≤ bj
0 otherwise

(4)

and the gamma lag shape:

βj,l = θj(l + 1)
δ

1−δλlj

( δj
(δj − 1)log(λj)

) δj
1−δj

λ

δj
(δj−1)log(λj)−1
j


−1

0 < δj < 1 0 < λj < 1

(5)

The endpoint-constrained quadratic lag shape is zero for a lag l ≤ aj − 1 or l ≥ bj + 1, and
symmetric with mode equal to θj at lag (aj + bj)/2. The quadratic decreasing lag shape
decreases from value θj at lag aj to value 0 at lag bj + 1 according to a quadratic function.
The gamma lag shape is positively skewed with mode equal to θj at lag δj

(δj−1)log(λj) . Value
aj is denoted as the gestation lag, value bj as the lead lag, and value bj − aj as the lag width.
A static coefficient (no lag shape) is obtained if aj = bj = 0. Since it is not expressed as
a function of aj and bj , the gamma lag shape cannot reduce to a static coefficient, but the
corresponding values of aj and bj may be computed through numerical approximation from
the values of δj and λj .
For these three lag shapes it holds:

βj,l > 0⇐⇒ θj > 0
βj,l < 0⇐⇒ θj < 0

∀ aj ≤ l ≤ bj (6)

and we refer to the lag sign as the sign of parameter θj .
A linear regression model with constrained lag shapes is linear in parameters β0, θ1, . . . , θJ ,
provided that the values of a1, . . . , aJ , b1, . . . , bJ are known. Thus, one may use ordinary
least squares to estimate parameters β0, θ1, . . . , θJ for several models with different values
of a1, . . . , aJ , b1, . . . , bJ , and then select the one with the minimum value of the Bayesian
Information Criterion (BIC, Schwarz 1978)1. A heuristic algorithm is shown below.

0. Let J be the number of covariates and T the greatest time lag under consideration.
Initialize selected as an empty vector. Set candidates = {X1, . . . , XJ}. For j = 1, . . . , J ,
set aj = 0 and bj = 0.

1. Repeat until candidates is not empty:

a) initialize fitting as an empty vector. Set cand.temp = candidates;
1 Alternatively, the Akaike Information Criterion (AIC, Akaike 1974) may be used.
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b) repeat until cand.temp is not empty:
b1) determine j such that the first element in cand.temp is Xj . Initialize fit.temp

as an empty matrix with T + 1 rows and T + 1 columns;
b2) for s1 = 0, . . . , T and for s2 = 0, . . . , T :
b2.1) set aj = s1, bj = s2 and cov.temp = {selected ∪Xj};
b2.2) use ordinary least squares to estimate parameters β0, θ1, . . . , θJ for the

model with covariates cov.temp, gestation lags {ak : Xk ∈ cov.temp} and
lead lags {bk : Xk ∈ cov.temp}. Compute the BIC for this model and
insert it into fit.temp(s1, s2);

b3) determine k1 and k2 such that fit.temp(k1, k2) is the best value in fit.temp.
Insert fit.temp(k1, k2) into fitting. Set aj = k1 and bj = k2. Remove Xj from
cand.temp;

c) determine Xk such that the k-th value in fitting is the minimum one. Insert Xk

into selected and remove Xk from candidates.

2. Use ordinary least squares to estimate parameters β0, θ1, . . . , θJ for the model with
covariates in selected, gestation lags a1, . . . , aJ and lead lags b1, . . . , bJ .

Note that neither the response variable nor the covariates must contain unit root in order to
obtain unbiased estimates with ordinary least squares (Granger and Newbold 1974). A rea-
sonable procedure is to sequentially apply differentiation to all variables until the Augmented
Dickey-Fuller test (Dickey and Fuller 1981) rejects the hypothesis of unit root for all of them.

2.2. Structural causal models

Structural causal models (SCMs) were developed by Pearl (2000) in the context of causal
inference. They are rooted to path analysis (Wright 1934) and simultaneous equation mod-
els (Haavelmo 1943; Koopmans, Rubin, and Leipnik 1950). A SCM consists of a tuple
{V ,U ,ΩV ,ΩU ,f ,PU}, where:

- V = {V1, . . . , VJ} is a set of endogenous variables;

- ΩV = ΩV1 × . . .× ΩVJ is the cartesian product of the domains of variables in V ;

- U = {U1, . . . , UK} is a set of unobserved variables;

- ΩU = ΩU1 × . . .× ΩUK is the cartesian product of the domains of variables in U ;

- f : ΩV × ΩU −→ ΩV is a measurable function;

- PU is a probability measure on ΩU .

Markovian SCMs (Pearl 2000, Chapter 3) are a special case where f is acyclic and variables
in U are each other independent. In a Markovian SCM, the following factorization of the
joint probability distribution of variables in V holds:

p(v1, . . . , vJ) =
J∏
j=1

p(vj | Πj = πj) (7)

where Πj is the set of variables in V such that, for j > 1, Vj is independent of variables in
{V1, . . . , Vj−1} \Πj , given variables in Πj . This means that the joint probability distribution
of variables in V can be factored according to conditional independence relationships holding
among them disregarding variables in U . Pearl (2000, pages 12 and following) shows that
these conditional independence relationships are encoded into a directed acyclic graph (DAG)
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Figure 1: An example of directed acyclic graph.

such that Πj is the parent set of Vj , ∀ j = 1, . . . , J . For example, in the Markovian SCM
associated to the DAG in Figure 1, it holds:

p(v1, v2, v3, v4, v5, v6) = p(v1) p(v2) p(v3 | v1) p(v4 | v2, v3) p(v5 | v3) p(v6 | v3, v4, v5) (8)

and, by way of illustration, V6 is independent of V1 and V2 given V3, V4 and V5.
Let do(Vi = vi) denote an intervention setting the value of Vi to vi. Then, in a Markovian
SCM it holds:

p(v1, . . . , vJ | do(Vi = vi)) =
∏
j 6=i

p(vj | πj) |Vi=vi (9)

where |Vi=vi indicates that p(vi | πi) is replaced by value vi. This formula, called truncated
factorization (Pearl 2000, Section 3.2), allows to compute the effect of an intervention from
the (pre-intervention) distribution in Formula 7, that is to predict the effect of an intervention
from non-experimental (observational) data. In a Markovian SCM, the effect of do(Vi = vi)
on Vj , called causal effect of Vi on Vj , is given by the following expression (see Pearl 2000,
page 70 and following):

p(Vj = vj | do(Vi = vi)) =
∑
πi

p(Vj = vj | Vi = vi,Πi = πi)p(Πi = πi) (10)

where Πi is the parent set of Vi.
In a linear parametric formulation (linear Markovian SCMs), each factor p(vj | πj) of the joint
probability distribution in Formula 7 is the linear regression model where Vj is the response
variable and variables in Πj are the covariates. For example, in the linear Markovian SCM
associated to the DAG in Figure 1, p(v4 | v2, v3) is the linear regression model where V4 is
the response variable and V2 and V3 are the covariates.
In a linear Markovian SCM, the computation of causal effects involves the coefficients of the
regression models only, without the need of Formula 10, as shown in the following paragraphs.

Direct causal effects The coefficient of Vi in the regression model of Vj , say βj|i, represents
the expected value of Vj given a unit variation of Vi given constant values of the parents of
Vj besides Vi:

βj|i := E(Vj | ∆Vi = 1,∆Vk: Vk∈{Πj\Vi} = 0)) (11)

Expression 11 is a special case of Expression 10, where the intervention is do(∆Vi = 1) and the
conditioning set is {Πj \Vi} instead of Πi. Since variables in Πi but not in Πj are independent
of Vj conditionally to variables in Πj (see Formula 7), we can conclude that βj|i represents
the average effect of do(∆Vi = 1) on Vj :

βj|i := E(Vj | ∆Vi = 1,∆Vk: Vk∈{Πj\Vi} = 0)) = E(Vj | do(∆Vi = 1);< Vi, Vj >) (12)

which is called direct causal effect of Vi on Vj . The notation E(Vj | do(∆Vi = 1);< Vi, Vj >)
emphasizes that the causal effect in Formula 12 is associated to the edge < Vi, Vj >. For
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example, in the linear Markovian SCM associated to the DAG in Figure 1, β4|3 represents
the expected value of V4 given a unit variation of V3 given constant value of V2, equating the
direct causal effect of V3 on V4.

Indirect causal effects and the overall causal effect Suppose that there exists more
than one directed path connecting variable Vi to variable Vj . In this case, it is straightforward
to show that the intervention do(∆Vi = 1) influences the expected value of Vj independently
through each directed path connecting Vi to Vj , for an overall causal effect equal to the sum
of the causal effects associated to each of these paths:

E(Vj | do(∆Vi = 1)) :=
∑

<Vd0 ,...,Vdm>: d0=i∧dm=j
E(Vj | do(∆Vi = 1);< Vd0 , . . . , Vdm >) (13)

where E(Vj | do(∆Vi = 1);< Vd0 , . . . , Vdm >) is the causal effect of do(∆Vi = 1) on Vj
associated to the directed path < Vd0 , . . . , Vdm > (d0 = i and dm = j) connecting Vi to Vj ,
denoted as the pathwise causal effect of Vi on Vj through < Vd0 , . . . , Vdm >.
A pathwise causal effect associated to an edge (direct causal effect) can be computed using
Formula 12. Instead, a pathwise causal effect associated to a multi-edge directed path, also
referred as indirect causal effect, can be computed through the product of the regression
coefficients associated to each edge in the path (see, for example, Wright 1934):

E(Vj | do(∆Vi = 1);< Vi, . . . , Vj >) :=
∏

k: Vk∈<Vi,...,Vj>∧k 6=i
E(Vk | do(∆Vk−1 = 1);< Vk−1, Vk >) =

=
∏

k: Vk∈<Vi,...,Vj>∧k 6=i
βk|k−1

(14)
Note that Formula 2.2 is a generalization of Formula 12. In this view, it is clear that both
direct and indirect causal effects belong to the class of pathwise causal effects. For example, in
the linear Markovian SCM associated to the DAG in Figure 1, there are three directed paths
connecting V3 to V6: < V3, V6 > with pathwise (direct) causal effect β6|3, < V3, V4, V6 > with
pathwise (indirect) causal effect β4|3 · β6|4, and < V3, V5, V6 > with pathwise (indirect) causal
effect β5|3 · β6|5. Thus, the overall causal effect of V3 on V6, namely E(V6 | do(∆V3 = 1)), is
equal to β6|3 + β4|3 · β6|4 + β5|3 · β6|5.

2.3. Distributed-lag linear structural equation models
Delayed dependence relationships among the variables may be taken into account in a Marko-
vian SCM by specifying each factor of the joint probability distribution in Formula 7 equal
to the distributed-lag linear regression in Formula 1. We refer to this Markovian SCM as
distributed-lag linear structural equation model (DLSEM). The definition of causal effects at
different time lags in a DLSEM is provided in the following paragraphs.

Direct causal effects Let b(l)j|i be the coefficient of Vi at lag l in the regression model of Vj .
Such coefficient equates the direct causal effect of Vi on Vj at lag l:

E(l)(Vj | do(∆Vi = 1);< Vi, Vj >) := b
(l)
j|i (15)

Indirect causal effects Let < Vd0 , . . . , Vdm >, d0 = i and dm = j, be a directed path
composed of m edges connecting Vi to Vj , and Q(l)

m be the set of all the possible ordered m-
uples of time lags such that their sum is equal to l. If we compute the m direct causal effects
associated to each edge in < Vd0 , . . . , Vdm > at one of the m-uples in Q(l)

m , say (q1, . . . , qm),
and multiply them each other:

e(q1,...,qm)(< Vd0 , . . . , Vdm >; d0 = i, dm = j) =
m∏
k=1

b
(qk)
dk|dk−1

(16)
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we obtain one of the possible causal effects of Vi on Vj through < Vd0 , . . . , Vdm > at lag l.
Thus, the indirect causal effect of Vi on Vj through < Vd0 , . . . , Vdm > (d0 = i and dm = j) at
lag l is equal to the sum of all the causal effects that can be obtained from Formula 16:

E(l)(Vj | do(∆Vi = 1);< Vd0 , . . . , Vdm >, d0 = i, dm = j) :=
∑

(q1,...,qm)∈Q(l)
m

m∏
k=1

b
(qk)
dk|dk−1

(17)

Overall causal effects The overall causal effect of Vi on Vj at lag l, say E(l)(Vj | do(∆Vi =
1)), is represented by the sum of the pathwise causal effects at lag l associated to each directed
path connecting Vi to Vj .

The cumulative causal effect at a pre-specified time lag, say l, is obtained by summing all the
causal effects at each time lag up to l. A pathwise causal lag shape is the set of causal effects
associated to a path at different time lags. An overall causal lag shape is the set of the overall
causal effects of a variable on another one at different time lags.
The DAG of a DLSEM includes all the possible temporal instances of each variable in V ,
but it may be represented in a static version for more clarity. For example, only a single
temporal instance for each variable is represented, and an edge < Vi, Vj > exists if and only
if there exists at least one time lag where the coefficient of variable Vi in the regression model
of variable Vj is non-zero.
A DLSEM is a special case of dynamic Bayesian network (Murphy 2002), where endoge-
nous variables follow the Gaussian distribution and lag shapes are possibly constrained to
predefined functional forms.

3. Installation
Before installing dlsem, you must have installed R version 2.1.0 or higher, which is freely
available at http://www.r-project.org/.
To install the dlsem package, type the following in the R command prompt:

> install.packages("dlsem")

and R will automatically install the package to your system from CRAN. In order to keep
your copy of dlsem up to date, use the command:

> update.packages("dlsem")

All the results shown in this paper are obtained using R 3.4.3 with the dlsem package ver-
sion 2.3. The official web page of dlsem is: https://cran.r-project.org/web/packages/
dlsem/.

4. Example on simulated data
In this section, the practical use of the dlsem package is illustrated through a simple impact
assessment problem referred as “industrial development problem”. The objective is to test
whether the influence through time of the number of job positions in industry (proxy of
the industrial development, label: Job) on the amount of greenhouse gas emissions (proxy of
pollution, label: Pollution) is direct and/or mediated by the amount of private consumption
(label: Consum). The static representation of the DAG for the industrial development problem
is shown in Figure 2. The analysis will be conducted on the dataset industry, containing
simulated data for 10 imaginary regions in the period 1983-2015.

http://www.r-project.org/
https://cran.r-project.org/web/packages/dlsem/
https://cran.r-project.org/web/packages/dlsem/
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Job

Consum

Pollution

Figure 2: The static representation of the DAG for the industrial development problem.
‘Job’: number of job positions in industry. ‘Consum’: private consumption index. ‘Pollution’:
amount of greenhouse gas emissions.

> data(industry)
> summary(industry)

Region Year Population GDP
1 : 32 Min. :1983 Min. : 4771649 Min. : 97119
2 : 32 1st Qu.:1991 1st Qu.: 8310737 1st Qu.: 186783
3 : 32 Median :1998 Median :25381874 Median : 463942
4 : 32 Mean :1998 Mean :32368547 Mean : 727735
5 : 32 3rd Qu.:2006 3rd Qu.:56273337 3rd Qu.:1307044
6 : 32 Max. :2014 Max. :78308254 Max. :1883702
(Other):128

Job Consum Pollution
Min. : 34.77 Min. : 37.35 Min. : 3161
1st Qu.:105.07 1st Qu.: 87.88 1st Qu.: 7536
Median :137.03 Median :108.47 Median : 25320
Mean :127.61 Mean :108.17 Mean : 32202
3rd Qu.:152.68 3rd Qu.:124.85 3rd Qu.: 47109
Max. :200.83 Max. :211.16 Max. :101441

Since data are grouped into regions, we inspect minimum and maximum values by region:

> by(industry[,-c(1:2)],industry$Region,function(x){apply(x,2,quantile,prob=c(0,1))})

industry$Region: 1
Population GDP Job Consum Pollution

0% 9819005 175519 83.41447 112.1351 6957.444
100% 9973483 190379 200.83461 126.4740 7794.559
--------------------------------------------------------------------------------
industry$Region: 2

Population GDP Job Consum Pollution
0% 77532689 1688751 89.04076 53.35230 49290.65
100% 78308254 1883702 146.64997 88.71258 67572.55
--------------------------------------------------------------------------------
industry$Region: 3

Population GDP Job Consum Pollution
0% 5097638 153685.9 116.4307 108.5695 9689.909
100% 5136994 170871.8 183.5543 154.0917 11167.293
--------------------------------------------------------------------------------
industry$Region: 4

Population GDP Job Consum Pollution
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0% 36713363 545880.2 137.0105 100.5134 37810.26
100% 37391776 597517.1 168.2146 140.6425 54913.93
--------------------------------------------------------------------------------
industry$Region: 5

Population GDP Job Consum Pollution
0% 4771649 97119.23 127.3341 102.2382 5440.151
100% 4791872 112493.15 171.6086 144.7355 6439.347
--------------------------------------------------------------------------------
industry$Region: 6

Population GDP Job Consum Pollution
0% 54035307 1257045 104.8938 104.4684 86609.89
100% 55146391 1356454 171.4953 197.3554 101440.95
--------------------------------------------------------------------------------
industry$Region: 7

Population GDP Job Consum Pollution
0% 56248555 1105558 146.3254 103.1810 33807.57
100% 56666469 1218726 171.5073 211.1634 42752.34
--------------------------------------------------------------------------------
industry$Region: 8

Population GDP Job Consum Pollution
0% 13954409 353391.7 60.57895 37.34921 10317.25
100% 14050385 382004.6 141.52760 86.21321 16831.72
--------------------------------------------------------------------------------
industry$Region: 9

Population GDP Job Consum Pollution
0% 8281398 215630.6 34.77417 81.35061 3160.522
100% 8353897 241041.2 152.80416 93.08245 7895.383
--------------------------------------------------------------------------------
industry$Region: 10

Population GDP Job Consum Pollution
0% 56127386 1222594 85.95371 89.0765 41684.86
100% 56608406 1353481 183.57437 111.8265 48170.81

These summaries highlight a relevant heterogeneity between regions. As shown in the remain-
der, the dlsem package can take into account a grouping factor, thus explaining the variance
due to differences among several groups. Furthermore, it can be noted that regions have the
same number of measurements:

> table(industry$Region)

1 2 3 4 5 6 7 8 9 10
32 32 32 32 32 32 32 32 32 32

This feature is not essential for the application of DLSEMs: in general, the sample size is not
required to be equal for all groups.

4.1. Specification of the model code

The first step to build a DLSEM with the dlsem package is the definition of the model code,
which includes the formal specification of the regression models. The variables for which a
regression model is specified are called endogenous variables. The other variables are referred
as exogenous variables.
The model code must be a list of formulas, one for each regression model. In each formula,
the response and the covariates must be quantitative variables2, and operators quec.lag(·),
qdec.lag(·) and gamma.lag(·) can be employed to specify, respectively, an endpoint-constrained
quadratic, a quadratic decreasing or a gamma lag shape. Operators quec.lag(·) and qdec.lag(·)
have three mandatory arguments:

2 Qualitative variables can be included only as exogenous variables, as described in Subsection 4.3.
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• the name of the covariate to which the lag shape is applied,

• the gestation lag (aj),

• the lead lag (bj).

Operator gamma.lag(·) has three mandatory arguments:

• the name of the covariate to which the lag shape is applied,

• parameter δj ,

• parameter λj .

If none of these two operators is applied to a covariate, it is assumed that its coefficient
is equal to 0 for time lags greater than 0 (no lag shape). The group factor and exogenous
variables must not appear in the model code (see Subsection 4.3 for the way to include them).
The following code specifies all lag shapes as endpoint-constrained quadratic lag shapes be-
tween 0 and 15 time lags:

> indus.code <- list(
+ Job ~ 1,
+ Consum ~ quec.lag(Job,0,15),
+ Pollution ~ quec.lag(Job,0,15)+quec.lag(Consum,0,15)
+ )

The formula of regression models with no endogenous covariates may be omitted from the
model code. For example, the following code (where the formula specifying the regression
model for variable Job is omitted) is equivalent to the previous one:

> indus.code <- list(
+ Consum ~ quec.lag(Job,0,15),
+ Pollution ~ quec.lag(Job,0,15)+quec.lag(Consum,0,15)
+ )

4.2. Specification of control options

The second step to build a DLSEM with the dlsem package is the specification of con-
trol options, which are distinguished into global (applied to all regression models) and local
(model-specific) options.
Global control options must be a named list with one or more of the following components:

• adapt: a logical value indicating if adaptation of lag shapes must be performed, that is
parameters of lag shapes must be chosen on the basis of fit to data. Default is FALSE,
meaning no adaptation;

• max.gestation: the maximum gestation lag for all lag shapes. If not provided, it is
taken as equal to max.lead (see below);

• max.lead: the maximum lead lag for all lag shapes. If not provided, it is computed
accordingly to the sample size;

• min.width: the minimum lag width for all lag shapes. It cannot be greater than
max.lead. If not provided, it is taken as 0;

• sign: the lag sign for all lag shapes, that can be either ’+’ for positive or ’-’ for
negative. If not provided, adaptation will disregard the lag sign;
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• selection: the criterion to be used for the adaptation of lag shapes, that can be one
among ’bic’ (the default) and ’aic’ to minimise BIC or AIC, respectively.

Local control options must be a named list containing one or more among the following
components:

• adapt: a named vector of logical values, where each component must have the name of
one endogenous variable and indicate if adaptation of lag shapes must be performed for
the regression model of that variable;

• max.gestation: a named list. Each component of the list must have the name of one
endogenous variable and be a named vector. Each component of the named vector must
have the name of one covariate in the regression model of the endogenous variable above
and include the maximum gestation lag for its lag shape;

• max.lead: the same as max.gestation, with the exception that the named vector must
include the maximum lead lag;

• min.width: the same as max.gestation, with the exception that the named vector
must include the minimum lag width;

• sign: the same as max.gestation, with the exception that the named vector must
include the lag sign (either ’+’ for positive or ’-’ for negative).

Local control options have no default values, and global ones are applied in their absence. If
some local control options conflict with global ones, only the former are applied.
Suppose that one wants to perform adaptation with the following constraints for all lag shapes:
(i) maximum gestation lag of 3 years, (ii) maximum lead lag of 15 years, (iii) minimum lag
width of 5 years, (iv) positive lag sign. Control options for these constraints can be expressed
in several ways. The most simple solution is to specify only global control options, as the
constraints hold for all regression models:

> indus.global <- list(adapt=T,max.gestation=3,max.lead=15,min.width=5,sign="+")
> indus.local <- list()

Alternatively, one may specify only local control options by repeating them for each regression
model:

> indus.global <- list()
> indus.local <- list(
+ adapt=c(Consum=T,Pollution=T),
+ max.gestation=list(Consum=c(Job=3),Pollution=c(Job=3,Consum=3)),
+ max.lead=list(Consum=c(Job=15),Pollution=c(Job=15,Consum=15)),
+ min.width=list(Consum=c(Job=5),Pollution=c(Job=5,Consum=5)),
+ sign=list(Consum=c(Job="+"),Pollution=c(Job="+",Consum="+"))
+ )

or both local and global control options:

> indus.global <- list(adapt=T,min.width=5)
> indus.local <- list(
+ max.gestation=list(Consum=c(Job=3),Pollution=c(Job=3,Consum=3)),
+ max.lead=list(Consum=c(Job=15),Pollution=c(Job=15,Consum=15)),
+ sign=list(Consum=c(Job="+"),Pollution=c(Job="+",Consum="+"))
+ )

4.3. Parameter estimation
Once the model code and control options are specified, parameter estimation can be performed
using the command dlsem(·). The main arguments of the command include:
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• model.code, the first argument of the command, requiring the model code in the format
defined in Subsection 4.1;

• group, accepting the name of a single group factor (optional). By indicating the group
factor, one intercept for each level of the group factor will be estimated in each regression
model.

• exogenous, accepting the name of exogenous variables (optional). Exogenous variables
can be either qualitative or quantitative, and will be included in each regression model
with no lag shape;

• log, a logical value indicating whether logarithmic transformation must be applied to
all strictly positive quantitative variables (default is FALSE). If log is set to TRUE, the co-
efficient of each strictly positive quantitative covariate is (approximatively) interpreted
as an elasticity, that is as an expected percentage increase in the value of the response
variable for 1% increase in the value of the covariate3;

• data, requiring an object of class data.frame containing data;

• global.control and local.control, accepting global and local options, respectively,
in the format defined in Subsection 4.2 (optional).

Before parameter estimation, differentiation is performed until the hypothesis of unit root
is rejected by the Augmented Dickey-Fuller test for all quantitative variables. If the group
factor is specified, the panel version of the Augmented Dickey-Fuller test proposed by Levin,
Lin, and Chub (2002) is used instead. Also, missing values, if present, are imputed with
their conditional mean using the Expectation-Maximization algorithm (Dempster, Laird, and
Rubin 1977)4. For further arguments controlling differentiation and imputation options, see
the documentation of command dlsem(·) by typing ?dlsem.
In the following code, the region is indicated as the group factor, population and gross domes-
tic product are indicated as exogenous variables, the logarithmic transformation is requested,
and both global and local control options specified in Subsection 4.2 are provided:

> indus.mod <- dlsem(indus.code,group="Region",exogenous=c("Population","GDP"),
+ data=industry,global.control=indus.global,local.control=indus.local,log=T)

Checking stationarity...
Order 1 differentiation performed

Starting estimation...
Estimating regression model 1/3 (Job)
Estimating regression model 2/3 (Consum)
Estimating regression model 3/3 (Pollution)

Estimation completed

Messages inform that differentiation was applied one time in order to achieve stationarity of
all time series. No mention to imputation was made, meaning that data are complete. The
results of command dlsem(·) is an object of class dlsem. Among the components of dlsem
objects, we highlight:

• estimate: a list of objects of class lm, one for each endogenous variable;
3 The true expected growth rate for the response variable due to 1% increase in the value of a covariate

with coefficient κ is equal to 1.01κ, which corresponds to a percentage increase equal to (1.01κ − 1) · 100. The
approximation (1.01κ − 1) · 100 ≈ κ here proposed is reasonable for |κ| < 10.

4 Imputation of missing values is performed after eventual logarithmic transformation and differentiation
by assuming group-specific means and time-invariant covariance matrix. Qualitative variables cannot contain
missing values. Each quantitative variable must have at least 3 observed values if the group factor is not
specified, otherwise it must have at least 3 observed values per group.
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• model.code: the model code after eventual adaptation;

• data.used: data after eventual logarithmic transformation and differentiation.

The summary method for class dlsem returns the summary of the estimation:

> summary(indus.mod)

ENDOGENOUS PART

Response: Job
-

Response: Consum
Estimate Std. Error t value Pr(>|t|)

quec.lag(Job, 0, 5, Region) 0.1006394 0.01783725 5.642089 4.589874e-08 ***

Response: Pollution
Estimate Std. Error t value Pr(>|t|)

quec.lag(Job, 1, 8, Region) 0.1048006 0.03008457 3.483532 5.989626e-04 ***
quec.lag(Consum, 1, 6, Region) 0.2320105 0.03660783 6.337729 1.339514e-09 ***

EXOGENOUS PART

Response: Job
Estimate Std. Error t value Pr(>|t|)

Population -2.015755 0.36919466 -5.45987 1.004944e-07 ***
GDP -1.274005 0.03253314 -39.16023 1.591909e-119 ***

Response: Consum
Estimate Std. Error t value Pr(>|t|)

Population 0.8397265 0.30729012 2.732683 6.735972e-03 **
GDP -0.8165645 0.02710312 -30.128064 1.096637e-84 ***

Response: Pollution
Estimate Std. Error t value Pr(>|t|)

Population -0.5335639 0.32247211 -1.654605 9.945701e-02 .
GDP 0.1342472 0.02965881 4.526384 9.908715e-06 ***

INTERCEPTS

Response: Job
Estimate Std. Error t value Pr(>|t|)

Region1 -0.027108664 0.002403134 -11.280545 8.189303e-25 ***
Region2 -0.014868387 0.002401561 -6.191135 1.975106e-09 ***
Region3 -0.014228172 0.002401629 -5.924383 8.639991e-09 ***
Region4 -0.005320298 0.002403060 -2.213968 2.758788e-02 *
Region5 -0.008833821 0.002401537 -3.678402 2.784066e-04 ***
Region6 -0.015622725 0.002401342 -6.505831 3.260886e-10 ***
Region7 -0.005154175 0.002401605 -2.146138 3.266936e-02 *
Region8 -0.027052095 0.002401793 -11.263293 9.395308e-25 ***
Region9 -0.046951445 0.002402163 -19.545484 2.514703e-55 ***
Region10 -0.023440072 0.002402647 -9.755938 1.077582e-19 ***

Response: Consum
Estimate Std. Error t value Pr(>|t|)

Region1 0.013228135 0.003105034 4.260222 2.905842e-05 ***
Region2 -0.009181367 0.002452433 -3.743779 2.255585e-04 ***
Region3 0.014910423 0.002369592 6.292400 1.413274e-09 ***
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Region4 0.012261936 0.002143643 5.720139 3.065699e-08 ***
Region5 0.012591239 0.002189363 5.751097 2.609354e-08 ***
Region6 0.027006345 0.002425256 11.135464 1.319250e-23 ***
Region7 0.023946916 0.002133839 11.222454 6.881615e-24 ***
Region8 -0.014297098 0.003061892 -4.669367 4.962066e-06 ***
Region9 0.019452657 0.004455213 4.366268 1.860065e-05 ***
Region10 0.003490765 0.002834166 1.231673 2.192426e-01

Response: Pollution
Estimate Std. Error t value Pr(>|t|)

Region1 0.0181034164 0.005671781 3.1918397 1.624344e-03 **
Region2 0.0166945282 0.002993763 5.5764369 7.290975e-08 ***
Region3 0.0008710423 0.004745009 0.1835702 8.545228e-01
Region4 0.0038743955 0.003341414 1.1595078 2.475294e-01
Region5 -0.0047651007 0.003653564 -1.3042336 1.935420e-01
Region6 -0.0138551604 0.006254540 -2.2152164 2.778958e-02 *
Region7 -0.0133904268 0.004809974 -2.7838873 5.847590e-03 **
Region8 0.0294218841 0.004102569 7.1715751 1.164801e-11 ***
Region9 0.0029735558 0.008691559 0.3421200 7.325933e-01
Region10 0.0171095625 0.004253094 4.0228508 7.951079e-05 ***

ERRORS
sigma df

Job 0.01337002 298
Consum 0.01076881 247
Pollution 0.01112485 216

GOODNESS OF FIT

R-squared: 0.8609
AIC: -4786.373
BIC: -4636.377

We see that the number of job positions in industry (Job) significantly influences, on one
hand, the amount of private consumption (Consum) from 0 to 5 years and, on the other hand,
the amount of greenhouse gas emissions (Pollution) from 1 to 8 years, while the amount of
private consumption (Consum) significantly influences the amount of greenhouse gas emissions
(Pollution) from 1 to 6 years. This result provides evidence that the influence of industrial
development on pollution is both direct and mediated by private consumption.
The plot method for class dlsem displays the DAG of the model in the static representation,
where each edge is coloured with respect to the sign of the estimated causal effect (green:
positive, red: negative, light gray: not statistically significant):

> plot(indus.mod)

Note that the DAG includes only the endogenous variables. Argument conf in the plot
method controls the confidence level, which is equal to 0.95 by default. Here, a statistically
significant and positive causal effect is associated to each edge, thus all of them are shown in
green (Figure 3). Colours can be suppressed by setting option style to 1 in the plot method
(default is style=2). Instead, by setting option style to 0, all edges are shown in black
disregarding statistical significance of causal effects (see Figure 2).

4.4. Assessment of causal effects

After parameter estimation is performed by means of command dlsem(·), the command
causalEff(·) can be used on the resulting object of class dlsem to compute all the path-
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Job

Consum

Pollution

Figure 3: The static representation of the DAG for the industrial development problem, where
each edge is coloured with respect to the sign of the estimated causal effect. Green: positive
causal effect. Red: negative causal effect. Light grey: not statistically significant causal effect
(no such edges here).

wise causal lag shapes and the overall one connecting two variables. The main arguments of
command causalEff(·) include:

• x, the first argument, requiring an object of class dlsem;

• from, requiring the name of one or more starting variables, that is the variables gener-
ating the causal effect;

• to, requiring the name of the ending variable, that is the variable receiving the causal
effect;

• lag, accepting specific time lags at which the causal effect must be computed. If no
values are provided, all the relevant time lags are considered.

• cumul, a logical value indicating whether the cumulative causal effect must be returned.
Default is FALSE.

Only exogenous variables can be indicated as starting or ending variables. Note that, due to
the properties of the multiple linear regression model, causal effects are net of the influence
of the group factor and exogenous variables.
The following code returns the cumulative causal effect (by path and the overall one) of the
number of job positions on the amount of greenhouse gas emissions:

> causalEff(indus.mod,from="Job",to="Pollution",cumul=T)

$`Job*Consum*Pollution`
estimate std. err. lower 95% upper 95%

0 0.000000000 0.000000000 0.000000000 0.000000000
1 0.005601519 0.001338424 0.002978257 0.008224781
2 0.024273250 0.003426876 0.017556697 0.030989803
3 0.062239103 0.006316396 0.049859194 0.074619011
4 0.121988641 0.009697230 0.102982419 0.140994863
5 0.200409911 0.013132357 0.174670963 0.226148858
6 0.287544654 0.016155815 0.255879838 0.319209470
7 0.365965924 0.018423705 0.329856126 0.402075722
8 0.425715462 0.019838657 0.386832409 0.464598516
9 0.463681315 0.020535961 0.423431571 0.503931059
10 0.482353046 0.020776857 0.441631154 0.523074937
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11 0.487954565 0.020819922 0.447148267 0.528760863
12 0.487954565 0.020819922 0.447148267 0.528760863

$`Job*Pollution`
estimate std. err. lower 95% upper 95%

0 0.0000000 0.00000000 0.00000000 0.00000000
1 0.0414027 0.01188526 0.01810801 0.06469739
2 0.1138574 0.02395552 0.06690547 0.16080937
3 0.2070135 0.03590255 0.13664579 0.27738119
4 0.3105202 0.04660327 0.21917950 0.40186096
5 0.4140270 0.05526967 0.30570041 0.52235354
6 0.5071830 0.06139921 0.38684280 0.62752328
7 0.5796378 0.06482646 0.45258023 0.70669529
8 0.6210405 0.06590698 0.49186516 0.75021576
9 0.6210405 0.06590698 0.49186516 0.75021576
10 0.6210405 0.06590698 0.49186516 0.75021576
11 0.6210405 0.06590698 0.49186516 0.75021576
12 0.6210405 0.06590698 0.49186516 0.75021576

$overall
estimate std. err. lower 95% upper 95%

0 0.00000000 0.00000000 0.00000000 0.00000000
1 0.04700422 0.01322369 0.02108627 0.07292217
2 0.13813067 0.02736157 0.08450297 0.19175836
3 0.26925259 0.04213927 0.18666113 0.35184405
4 0.43250887 0.05612473 0.32250642 0.54251132
5 0.61443689 0.06809948 0.48096437 0.74790940
6 0.79472770 0.07710063 0.64361323 0.94584216
7 0.94560369 0.08260701 0.78369692 1.10751046
8 1.04675592 0.08481875 0.88051424 1.21299761
9 1.08472178 0.08498455 0.91815513 1.25128843
10 1.10339351 0.08504308 0.93671214 1.27007488
11 1.10899503 0.08505361 0.94229301 1.27569704
12 1.10899503 0.08505361 0.94229301 1.27569704

The output of command causalEff(·) is a list of matrices including point estimates, standard
errors5 and asymptotic confidence intervals for all the pathwise causal lag shapes and the
overall one connecting the starting variables to the ending variable.
Since the logarithmic transformation was applied to all quantitative variables, the resulting
causal effects are interpreted as elasticities, that is, for a 1% of job positions more, greenhouse
gas emissions are expected to grow by 0.61% after 5 years and by 1.11% after 10 years. The
influence ends after 11 years, as the cumulative causal effects at lags 11 and 12 are equal.
A pathwise or an overall causal lag shape can be displayed using the command lagPlot(·).
For instance, one may display the causal lag shape associated to each path connecting the
number of job positions to the amount of greenhouse gas emissions (asterisks separate the
name of variables in a path):

> lagPlot(indus.mod,path="Job*Pollution")
> lagPlot(indus.mod,path="Job*Consum*Pollution")

while the following code displays the the overall causal lag shape of the number of job positions
on the amount of greenhouse gas emissions:

5 A pathwise causal effect composed by the direct causal effects κ1, . . . , κm is equal to
∏m

i=1 κi, and the
estimates of κ1, . . . , κm, say κ̂1, . . . , κ̂m, are each other independent as they refer to different regression models.
Thus, it holds:

Var
̂[ m∏
i=1

κi

]
=

m∏
i=1

(
κ̂2
i + Var[κ̂i]

)
−

m∏
i=1

κ̂2
i
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Figure 4: The pathwise causal lag shapes (upper panels) and the overall one (lower panel)
connecting Job and Pollution. 95% asymptotic confidence intervals are shown in grey.

> lagPlot(indus.mod,from="Job",to="Pollution")

The resulting graphics are shown in Figure 4. Note that a multi-edge pathwise causal lag
shape is a mixture of different lag shapes, thus it may show an irregular aspect, like it is the
case of the overall causal lag shape displayed in the lower panel of Figure ??.

4.5. Model comparison

We now fit two alternative models for the industrial development problem, such that all lag
shapes are quadratic decreasing and gamma lag shapes, respectively:

> # model 2: quadratic decreasing lag shapes
> indus.code_2 <- list(
> Job ~ 1,
> Consum~qdec.lag(Job,0,15),
> Pollution~qdec.lag(Job,0,15)+qdec.lag(Consum,0,15)
> )
> indus.mod_2 <- dlsem(indus.code_2,group="Region",exogenous=c("Population","GDP"),
> data=industry,global.control=indus.global,local.control=indus.local,log=T)
> summary(indus.mod_2)
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A distributed-lag linear structural equation model
Group factor: Region (10 groups)
Exogenous variables: Population, GDP

Response: Job
-

Response: Consum
a b theta se(theta) t value Pr(>|t|)

Job 0 5 0.1057272 0.02883474 3.666659 0.0003008825 ***

Response: Pollution
a b theta se(theta) t value Pr(>|t|)

Job 2 15 0.22363345 0.03182028 7.028016 7.426072e-11 ***
Consum 0 5 0.07433732 0.05778413 1.286466 2.003167e-01

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-squared: 0.8547, AIC: -4278.3, BIC: -4133.748

> # model 3: gamma lag shapes
> indus.code_3 <- list(
> Job ~ 1,
> Consum~gamma.lag(Job,0.5,0.5),
> Pollution~gamma.lag(Job,0.5,0.5)+gamma.lag(Consum,0.5,0.5)
> )
> indus.mod_3 <- dlsem(indus.code_3,group="Region",exogenous=c("Population","GDP"),
> data=industry,global.control=indus.global,local.control=indus.local,log=T)
> summary(indus.mod_3)

A distributed-lag linear structural equation model
Group factor: Region (10 groups)
Exogenous variables: Population, GDP

Response: Job
-

Response: Consum
a b theta se(theta) t value Pr(>|t|)

Job 0 5 0.213074 0.0620565 3.433548 0.0006942689 ***

Response: Pollution
a b theta se(theta) t value Pr(>|t|)

Job 2 12 0.3322248 0.02637051 12.598346 1.030076e-26 ***
Consum 0 5 0.0931422 0.03770555 2.470251 1.440266e-02 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-squared: 0.8563, AIC: -4620.154, BIC: -4471.726

We see that the three models provide different results. The BIC method for class dlsem can
be used to compare them according to the BIC:

> lapply(list(QUEC=indus.mod,QDEC=indus.mod_2,GAMMA=indus.mod_3),BIC)

$QUEC
Job Consum Pollution (overall)

-1733.060 -1553.811 -1349.505 -4636.377

$QDEC
Job Consum Pollution (overall)
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-1733.060 -1536.0729 -864.6145 -4133.7476

$GAMMA
Job Consum Pollution (overall)

-1733.060 -1605.498 -1133.168 -4471.726

The model with endpoint-constrained quadratic lag shapes has the best fit according to the
BIC. Note that the fit for variable Job is constant in each model because it has no endogenous
covariates.

5. A real-world application
In this section, we illustrate the use of the dlsem package to address a real-world application
aiming at assessing the impact of agricultural research expenditure on multiple dimensions
in Europe. We refer to this problem as “agricultural research problem”. The dataset agres
is used in the illustration, which contains official data for EU 15 countries in the period
1980-2014:

> data(agres)
> names(agres)

[1] "COUNTRY" "YEAR" "GDP" "EMPL_AGR"
[5] "UAA" "PATENT_OTHER" "GBAORD_AGR" "BERD_AGR"
[9] "RD_EDU_AGR" "EU_PRO_AGR" "PATENT_AGR" "TFPC"

[13] "EPC" "GVA_AGR" "PPI_AGR" "ENTR_INCOME_AGR"
[17] "ENERGY_RENEW" "INCOME_RURAL" "UNEMPL_RURAL" "HEALTH_RURAL"

Dataset agres includes the code of the country (COUNTRY), the year (YEAR) and several other
variables. We consider a subset of them in order to cover four interrelated causal levels:

• context level, including factors determining differences among countries and directly
influencing the other levels;

• investment level, including factors contributing to fund agricultural research;

• research level, including indicators of the agricultural research activity;

• impact level: including variables affecting economic conditions of producers and con-
sumers.

The considered variables for each level are:

• context level: gross domestic product (international dollars, label: GDP), persons em-
ployed in Agriculture (count, label: EMPL_AGR), utilized agricultural area (hectares,
label: UAA), mechanical, chemical and environment-related patent applications (count,
label: PATENT_OTHER);

• investment level: government research expenditure (million euro PPS, label: GBAORD_AGR),
business enterprise research expenditure (million euro PPS, label: BERD_AGR);

• research level: agricultural researchers with tertiary education (count, label: RD_EDU_AGR),
agricultural patent applications (count, label: PATENT_AGR);

• impact level: net entrepreneurial income of Agriculture (index 2005=100, label: ENTR_INCOME_AGR),
producer price of agricultural output (index 2005=100, label: PPI_AGR).
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For further details, see the documentation of the agres dataset by typing ?agres.
In order to highlight the opportunity to include qualitative exogenous variables, we consider
an additional variable in the context level, that is a dummy indicating whether the Decoupling
policy implemented in 2005 is in vigour or not. Such variable can be defined with the following
code:

> agres$POLICY <- factor(1*(agres$YEAR>=2005))
> levels(agres$POLICY) <- c("no","yes")

It is important to indicate qualitative variables with numerical labels as factors, otherwise
they will be interpreted as quantitative variables. With the following code we define the four
causal levels and request the summary of the considered data:

> context.var <- c("GDP","EMPL_AGR","UAA","PATENT_OTHER","POLICY")
> investment.var <- c("GBAORD_AGR","BERD_AGR")
> research.var <- c("RD_EDU_AGR","PATENT_AGR")
> impact.var <- c("ENTR_INCOME_AGR","PPI_AGR")
> all.var <- c(context.var,investment.var,research.var,impact.var)
> summary(agres[,c("COUNTRY",all.var)])

COUNTRY GDP EMPL_AGR UAA
AT : 25 Min. : 83844 Min. : 53000 Min. : 1300000
BL : 25 1st Qu.: 217173 1st Qu.: 126375 1st Qu.: 2675000
DE : 25 Median : 356676 Median : 317250 Median : 4076000
DK : 25 Mean : 877300 Mean : 480384 Mean : 9996738
EL : 25 3rd Qu.:1656223 3rd Qu.: 788050 3rd Qu.:16958000
ES : 25 Max. :3161940 Max. :1903150 Max. :30593000
(Other):200 NA's :14 NA's :14
PATENT_OTHER POLICY GBAORD_AGR BERD_AGR RD_EDU_AGR

Min. : 1.5 no :210 Min. : 13.77 Min. : 0.257 Min. : 2367
1st Qu.: 128.1 yes:140 1st Qu.: 39.91 1st Qu.: 1.692 1st Qu.: 5797
Median : 370.9 Median : 81.97 Median : 12.243 Median : 12621
Mean : 908.9 Mean :162.26 Mean : 28.209 Mean : 24137
3rd Qu.: 975.0 3rd Qu.:274.44 3rd Qu.: 57.947 3rd Qu.: 32686
Max. :7692.9 Max. :792.50 Max. :160.057 Max. :140091
NA's :14 NA's :12 NA's :200 NA's :111

PATENT_AGR ENTR_INCOME_AGR PPI_AGR
Min. : 0.3333 Min. : 43.00 Min. : 60.36
1st Qu.: 8.7641 1st Qu.: 91.05 1st Qu.: 97.78
Median : 28.7500 Median :113.35 Median :102.77
Mean : 59.4942 Mean :119.06 Mean :107.44
3rd Qu.: 73.5277 3rd Qu.:139.11 3rd Qu.:113.93
Max. :549.9620 Max. :272.00 Max. :191.60
NA's :21 NA's :4 NA's :23

In order to verify the presence of heterogeneity between groups (here, countries), we inspect
the summary of government research expenditure, gross domestic product and utilized agri-
cultural area for some countries:

> cou.ind <- which(agres[,"COUNTRY"] %in% c("AT","DK","FR","IT"))
> by(agres[cou.ind,c("GBAORD_AGR","GDP","UAA")],factor(agres[cou.ind,"COUNTRY"]),summary)

agres[cou.ind, "COUNTRY"]: AT
GBAORD_AGR GDP UAA

Min. :27.77 Min. :223054 Min. :3154000
1st Qu.:32.28 1st Qu.:253438 1st Qu.:3226000
Median :34.36 Median :295257 Median :3368500
Mean :34.26 Mean :291552 Mean :3333208
3rd Qu.:35.81 3rd Qu.:330722 3rd Qu.:3427500
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Max. :41.37 Max. :349515 Max. :3519000
NA's :1 NA's :1

------------------------------------------------------------
agres[cou.ind, "COUNTRY"]: DK

GBAORD_AGR GDP UAA
Min. : 39.80 Min. :190030 Min. :2609000
1st Qu.: 50.71 1st Qu.:217949 1st Qu.:2646750
Median : 58.96 Median :250066 Median :2674000
Mean : 61.79 Mean :241123 Mean :2683875
3rd Qu.: 67.96 3rd Qu.:265359 3rd Qu.:2711500
Max. :113.86 Max. :276868 Max. :2788000

NA's :1 NA's :1
------------------------------------------------------------
agres[cou.ind, "COUNTRY"]: FR

GBAORD_AGR GDP UAA
Min. :198.9 Min. :1650030 Min. :28774000
1st Qu.:277.5 1st Qu.:1777188 1st Qu.:29227000
Median :316.7 Median :2081240 Median :29736000
Mean :341.9 Mean :2031360 Mean :29684292
3rd Qu.:406.3 3rd Qu.:2264428 3rd Qu.:30109500
Max. :541.9 Max. :2351940 Max. :30593000
NA's :1 NA's :1 NA's :1

------------------------------------------------------------
agres[cou.ind, "COUNTRY"]: IT

GBAORD_AGR GDP UAA
Min. :119.9 Min. :1501700 Min. :13630000
1st Qu.:155.9 1st Qu.:1617625 1st Qu.:14296750
Median :223.8 Median :1781445 Median :15303000
Mean :241.4 Mean :1728950 Mean :15044833
3rd Qu.:312.4 3rd Qu.:1827698 3rd Qu.:15653250
Max. :436.4 Max. :1918530 Max. :16840000
NA's :3 NA's :1 NA's :1

From these summaries it seems that propensity to research investments is heterogeneous
across countries: those with higher gross domestic product and utilized agricultural area tend
to expend more for agricultural research.

GBAORD_AGRBERD_AGR

RD_EDU_AGR PATENT_AGR

ENTR_INCOME_PPI_AGR

Figure 5: The static representation of the DAG for the agricultural research problem.
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We hypothesize the DAG for the agricultural research problem on the basis of the assumption
of conditional independence within the same level, and on the following causal order: invest-
ment level, research level, impact level (Figure 5). Also, we consider the variables in the
context level as exogenous variables, and assume endpoint-constrained quadratic lag shapes
for all covariates. On these grounds, the model code can be defined as follows:

> auxcode <- c(
+ paste(investment.var,"~1",sep=""),
+ paste(research.var,"~",paste("quec.lag(",investment.var,",0,20)",
+ collapse="+",sep=""),sep=""),
+ paste(impact.var,"~",paste("quec.lag(",c(investment.var,research.var),",0,20)",
+ collapse="+",sep=""),sep="")
+ )
> agres.code <- list()
> for(i in 1:length(auxcode)) {
+ agres.code[[i]] <- formula(auxcode[i])
+ }

Constraints for the adaptation of lag shapes are the following: (i) 3 years of maximum gesta-
tion lag for all lag shapes; (ii) 5 years of minimum lag width for all lag shapes; (iii) 15 years of
maximum lag lead for the lag shapes in the regression model of variables in the research level;
(iv) 20 years of maximum lag lead for the lag shapes in the regression model of variables in
the impact level; (v) negative lag sign for the lag shapes in the regression model of producer
price of agricultural output (PPI_AGR), and positive lag sign for all other lag shapes. The last
constraint is motivated by the fact that lower values of producer price typically indicate an
improvement of economic conditions. The following code defines these constraints efficiently:

> agres.global <- list(adapt=T,max.gestation=3,min.width=5,max.lead=20,sign="+")
> auxcon1 <- rep(15,length(investment.var))
> names(auxcon1) <- investment.var
> auxcon2 <- rep("-",length(investment.var)+length(research.var))
> names(auxcon2) <- c(investment.var,research.var)
> agres.local <- list(max.lead=list(RD_EDU_AGR=auxcon1,PATENT_AGR=auxcon1),
+ sign=list(PPI_AGR=auxcon2))

Finally, we request the logarithmic transformation for all quantitative variables in order to
interpret coefficients as elasticities. The code performing parameter estimation is the follow-
ing:

> agres.mod <- dlsem(agres.code,group="COUNTRY",exogenous=context.var,data=agres,
+ global.control=agres.global,local.control=agres.local,log=T)

Logarithm not applied to variables: POLICY
Checking stationarity...
Order 1 differentiation performed

EM converged after 32 iterations. Log-likelihood: 2372.762
Estimating regression model 1/6 (GBAORD_AGR)
Estimating regression model 2/6 (BERD_AGR)
Estimating regression model 3/6 (RD_EDU_AGR)
Estimating regression model 4/6 (PATENT_AGR)
Estimating regression model 5/6 (ENTR_INCOME_AGR)
Estimating regression model 6/6 (PPI_AGR)
Estimation completed

Parameter estimation takes a couple of minutes. Messages inform that logarithmic transfor-
mation was not applied to POLICY as it is a qualitative variable, and that differentiation was
applied one time in order to achieve stationarity of all time series. Also, the Expectation-
Maximization algorithm was run, as data contain missing values.
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The summary of parameter estimation can be obtained using the summary method. Here, we
display the summary for the endogenous part only by accessing to the component endogenous:

> summary(agres.mod)$endogenous

Response: GBAORD_AGR
-

Response: BERD_AGR
-

Response: RD_EDU_AGR
a b theta se(theta) t value Pr(>|t|)

GBAORD_AGR 3 15 0.1462298 0.15397605 0.9496919 0.344429088
BERD_AGR 0 6 0.1402433 0.05310359 2.6409389 0.009517316 **

Response: PATENT_AGR
a b theta se(theta) t value Pr(>|t|)

GBAORD_AGR 0 15 0.2409959 0.1997313 1.2066005 0.230272
BERD_AGR 3 15 -0.0810642 0.1198558 -0.6763478 0.500293

Response: ENTR_INCOME_AGR
a b theta se(theta) t value Pr(>|t|)

GBAORD_AGR 0 5 0.02623935 0.2183972 0.1201451 0.905075394
BERD_AGR 1 7 0.02470520 0.1197374 0.2063281 0.837765194
RD_EDU_AGR 2 20 0.83906765 0.5254023 1.5970003 0.119519563
PATENT_AGR 0 12 1.27776437 0.4259429 2.9998491 0.005027301 **

Response: PPI_AGR
a b theta se(theta) t value Pr(>|t|)

GBAORD_AGR 1 12 -0.06422218 0.05124818 -1.253160 0.2186972630
BERD_AGR 3 20 -0.14556419 0.03645437 -3.993052 0.0003303346 ***
RD_EDU_AGR 0 5 -0.05753030 0.01772700 -3.245349 0.0026353764 **
PATENT_AGR 1 6 -0.09521903 0.04245053 -2.243058 0.0315197334 *

Instead, goodness of fit statistics can be displayed by accessing to component gof:

> summary(agres.mod)$gof

Rsq AIC BIC
0.205822 28.395596 445.977607

The static representation of the DAG with coloured edges is shown in Figure 6:

> plot(agres.mod)

Results show that business enterprise research expenditure (BERD_AGR) influences producer
price (PPI_AGR) both directly from 3 to 20 years, and indirectly through the number of
researchers with tertiary education (RD_EDU_AGR) from 0 to 5 years. Producer price (PPI_AGR)
is also influenced by the number of patent applications (PATENT_AGR) from 1 to 6 years,
independently of business enterprise research expenditure (BERD_AGR), which also influences
entrepreneurial income (ENTR_INCOME_AGR) from 0 to 12 years.
The pathwise causal lag shapes and the overall one connecting BERD_AGR and PPI_AGR can
be displayed by means of the following code (results shown in Figure 7):

> lagPlot(agres.mod,path="BERD_AGR*PPI_AGR")
> lagPlot(agres.mod,path="BERD_AGR*RD_EDU_AGR*PPI_AGR")
> lagPlot(agres.mod,from="BERD_AGR",to="PPI_AGR")
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GBAORD_AGRBERD_AGR

RD_EDU_AGR PATENT_AGR

ENTR_INCOME_PPI_AGR

Figure 6: The static representation of the DAG for the agricultural research problem
(endpoint-constrained lag shapes) where each edge is coloured with respect to the sign of
the estimated causal effect. Green, red and light grey indicate positive, negative and not
statistically significant causal effects, respectively.

We see that the path connecting BERD_AGR to PPI_AGR passing through RD_EDU_AGR is com-
posed by two edges with causal effects of different signs. However, the absolute value of the
negative one is greater, thus the causal effect associated to the path results negative (upper
right panel of Figure 7). As a consequence, the cumulative overall causal effect is monotoni-
cally negative (lower panel of Figure 7). We can conclude that for a 1% of business enterprise
research expenditure more, producer price is expected to increase by 2.03% after 20 years:

> causalEff(agres.mod,from="BERD_AGR",to="PPI_AGR",lag=20,cumul=T)$overall

estimate lower 95% upper 95%
20 -2.032343 -2.277942 -1.786745

As a further step, we fit a second model using gamma lag shapes instead of endpoint-
constrained quadratic ones:

> auxcode_2 <- c(paste(investment.var,"~1",sep=""),
+ paste(research.var,"~",paste("gamma.lag(",investment.var,",0.5,0.5)",
+ collapse="+",sep=""),sep=""),
+ paste(impact.var,"~",paste("gamma.lag(",c(investment.var,research.var),",0.5,0.5)",
+ collapse="+",sep=""),sep=""))
> agres.code_2 <- list()
> for(i in 1:length(auxcode_2)) {
+ agres.code_2[[i]] <- formula(auxcode_2[i])
+ }
> agres.mod_2 <- dlsem(agres.code_2,group="COUNTRY",exogenous=context.var,data=agres,
+ global.control=agres.global,local.control=agres.local,log=T)

Logarithm not applied to variables: POLICY
Checking stationarity...
Order 1 differentiation performed

EM converged after 32 iterations. Log-likelihood: 2372.762
Estimating regression model 1/6 (GBAORD_AGR)
Estimating regression model 2/6 (BERD_AGR)
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Figure 7: The pathwise causal lag shapes (upper panels) and the overall one (lower panel)
connecting BERD_AGR to PPI_AGR. 95% asymptotic confidence intervals are shown in grey.

Estimating regression model 3/6 (RD_EDU_AGR)
Estimating regression model 4/6 (PATENT_AGR)
Estimating regression model 5/6 (ENTR_INCOME_AGR)
Estimating regression model 6/6 (PPI_AGR)
Estimation completed

Parameter estimation with gamma lag shapes is longer and in this case takes a dozen of
minutes. Imputation and differentiation is obviously unchanged. Results with gamma lag
shapes are quite different from those with endpoint-constrained quadratic ones:

> summary(agres.mod_2)$endogenous

Response: GBAORD_AGR
-

Response: BERD_AGR
-

Response: RD_EDU_AGR
a b theta se(theta) t value Pr(>|t|)
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GBAORD_AGR 0 5 0.03513002 0.1543571 0.2275892 8.201452e-01
BERD_AGR 0 5 0.78183701 0.1185141 6.5969981 2.350165e-10 ***

Response: PATENT_AGR
a b theta se(theta) t value Pr(>|t|)

GBAORD_AGR 0 15 0.31217999 0.1802083 1.7323291 0.08578436 .
BERD_AGR 1 6 0.02856498 0.1018026 0.2805917 0.77950677

Response: ENTR_INCOME_AGR
a b theta se(theta) t value Pr(>|t|)

GBAORD_AGR 0 5 0.09161682 0.3597409 0.2546745 0.80006248
BERD_AGR 0 18 -0.33275458 0.1326417 -2.5086732 0.01554989 *
RD_EDU_AGR 2 15 0.53828995 0.2395878 2.2467339 0.02929268 *
PATENT_AGR 0 20 0.36390869 0.1558521 2.3349617 0.02377460 *

Response: PPI_AGR
a b theta se(theta) t value Pr(>|t|)

GBAORD_AGR 0 12 -0.049777487 0.02186578 -2.2765021 0.02461862 *
BERD_AGR 0 5 0.061170793 0.03929708 1.5566243 0.12223777
RD_EDU_AGR 0 15 -0.066418855 0.02109762 -3.1481683 0.00208097 **
PATENT_AGR 1 6 -0.006869514 0.02424436 -0.2833448 0.77740903

The static representation of the DAG with coloured edges is shown in Figure 8:

> plot(agres.mod)

GBAORD_AGRBERD_AGR

RD_EDU_AGR PATENT_AGR

ENTR_INCOME_PPI_AGR

Figure 8: The static representation of the DAG for the agricultural research problem (gamma
lag shapes) where each edge is coloured with respect to the sign of the estimated causal effect.
Green, red and light grey indicate positive, negative and not statistically significant causal
effects, respectively.

According to the BIC, the model with gamma lag shapes should be preferred:

> lapply(list(QUEC=agres.mod,GAMMA=agres.mod_2),BIC)

$QUEC
GBAORD_AGR BERD_AGR RD_EDU_AGR PATENT_AGR ENTR_INCOME_AGR

27.98495 178.69873 185.28630 248.85848 70.89533
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PPI_AGR (overall)
-135.99300 575.73078

$GAMMA
GBAORD_AGR BERD_AGR RD_EDU_AGR PATENT_AGR ENTR_INCOME_AGR

27.98495 178.69873 160.36565 285.71881 84.81348
PPI_AGR (overall)

-270.89223 466.68938

6. Conclusions and future development
Distributed-lag linear structural equation models (DLSEMs) allow to study the dynamic
causal path generated by an external impulse into a multi-dimensional system, thanks to a
variety of lag shapes characterized by flexibility and simplicity of estimation. In the real-world
application illustrated in this paper, DLSEMs are applied to an impact assessment problem
in the field of agricultural economics, but they appear as a suitable solution in several other
scientific domains where the effect of an external impulse is studied through time. For in-
stance, epidemiologic problems may be addressed, like the analysis of the dynamic effect of
pollutants on human health (Martins, Pereira, Lin, Santos, Prioli, do Carmo Luiz, Saldiva,
and Ferreira Braga 2006; Steinvil, Fireman, Kordova-Biezuner, Cohen, Shapira, Berliner, and
Rogowski 2009). Also, viticultural-oenological domains can be dynamically characterized by
focusing, for example, on grape maturation (Magrini, Di Blasi, and Stefanini 2017) and vini-
fication (Stefanini and Pantani 2013; Magrini, Pantani, Bartolini, and Stefanini 2016). Lag
shapes included in the package may represent a large number of real-world lag structures:
unimodal symmetric (with the endpoint-constrained quadratic lag shape), unimodal asym-
metric (with the gamma lag shape) and skewned ones (with the quadratic decreasing lag
shape). Nevertheless, additional lag shapes with further specific features may be added in
future.
Parameter estimation in DLSEM cannot be performed in a single step unless gestation and
lead lags are all known. Since the number of possible models rises exponentially as the
number of covariates and time lags increases, complete search is infeasible for most real-world
applications, thus a heuristic search was implemented. Further development of the package
may be directed towards the improvement of the search strategy.
The main limitation of DLSEMs relies in the sample size to achieve efficient estimates. Like-
wise all lag models proposed in the literature, DLSEMs require to drop away a number of
statistical units in order to estimate as many regression coefficients at different time lags.
Thus, long time series are typically required to efficiently estimate wide lag structures. An
extensive simulation study to assess the potential of the method as a function of the sample
size is a natural continuation of the research on this topic.
DLSEMs are a special case of dynamic Bayesian networks (Murphy 2002), where endogenous
variables follow the Gaussian distribution and lag shapes are possibly constrained to prede-
fined functional forms. An important functionality of DLSEMs implemented in the dlsem
package is the opportunity to condition on exogenous variables of any type, either categorical
or continuous.
The current implementation of the package deals with grouped data through fixed effects
estimation. Feature releases may include random effects estimation to enhance inference
whenever the considered groups are a subset of the possible ones, or covariates with values
constant within groups (second-level covariates) are involved.
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