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Abstract. A new model to investigate environmental effects of genetically distin-
guishable predators is presented. The Holling type II response function, modelling
feeding satiation, leads to persistent system’s oscillations, as in classical population
models. An almost complete classification of the cases arising in the Routh–Hurwitz
stability conditions mathematically characterizes the paper. It is instrumental as a
guideline in the numerical experiments leading to the findings on the limit cycles. This
result extends what found in an earlier parallel investigation containing a standard
bilinear response function.
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1 Introduction

Mathematical models for the interactions of populations are now classical, [2].
Studies of interacting populations among which diseases spread constitute the
object of ecoepidemiology, which dates back to a paper of the late 1980’s, [10],
and progressed through early works in different biological settings, such as
predator-prey models, [5,6,14,15,16,18], oceanic environment, [1,7], competing
and symbiotic interactions [17,19]. The interested reader can consult Chapter 7
of [13] for a fairly recent account on progress of this discipline.

An extension of this situation has recently been proposed, in which the dis-
ease is not a basic fundamental ingredient of the ecosystem, but it is replaced
by the presence of more than one genotype in one of the populations. In a sense,
however, epidemics keep on playing a role in this context, since the genotype it-
self may make the indivuals carrying it more prone to a certain specific disease.
In this respect, these systems are very much related to ecoepidemiology. They
could be referred to as mathematical ecogenetics models, since ecogenetics is
very well established discipline of biology. Indeed, it mainly investigates how

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2014.925518
mailto:clara.viberti@hotmail.it
mailto:ezio.venturino@unito.it


372 C. Viberti and E. Venturino

an inherited genetical variability responds to environmental changes, such as
substances present in it, [4, 8]. Our focus lies instead on the ecosystem behav-
ioral consequences of the presence and interplay of the genetically interesting
population with the other populations.

The case of a genetically differentiated prey population subject to preda-
tion by their natural predators has been presented and analysed in [20]. Models
for natural situations in which more predators feed on the same prey are well
known, [9]. In [21] therefore the study has been extended to the case in which
the predators show genetic differences. Bilinear interaction terms have been
assumed, corresponding to the standard quadratic model in population theory.
No population oscillations have been discovered. Here we continue the inves-
tigation, in the search for possible interesting features in the system behavior.
The model is thus formulated using a Holling type II response function, as the
latter better suited to model feeding, which is subject to satiation when too
large amounts of prey are present, [12]. In view of the large number of param-
eters of the model, a blind search in the parameter space for a configuration
that leads to persistent oscillations is very difficult. However, we do provide an
almost complete classification of all the cases that can arise. This mathematical
effort specifically characterizes this investigation. It is instrumental to provide
guidelines for the parameter choices, and its usefulness is shown by the fact
that on this basis limit cycles are indeed found in the numerical simulations.

The paper is organized as follows. The next Section contains the model.
The equilibria are studied in Section 3. A thorough classification of the Routh–
Hurwitz conditions in terms of the model parameters is carried out in Section 4.
The following Section contains numerical examples that have been worked out
on the experience matured in constructing the previous classification. A brief
final discussion concludes the paper.

2 The Model

Let the predators be genetically diversified, with the two genotypes denoted
by y(τ) and z(τ), let x(τ) be the prey population. We consider the following
model

x′(τ) = R

(
1− x

K̃

)
x− h ξx

x+ µ
y − g ξx

x+ µ
z, (2.1)

y′(τ) = pe(hy + gz)
ξx

x+ µ
−my,

z′(τ) = qe(hy + gz)
ξx

x+ µ
− nz.

Here all the parameters are always assumed to be nonnegative.
In this situation, the key factor is here represented by the term in bracket in

the last two equations. It contains both genotypes, meaning that it is the whole
predator population that reproduces. But furthermore, since both subpopu-
lations appear as reproduction factors in both predators’ equations, this term
states that each genotype can give rise to newborns of both genotypes, where
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p and q denote the fractions of y and z newborn predators, with p+ q = 1. In
other words, the fundamental point of this model, that singles it out from other
standard models in population theory, states that from the subpopulation y,
newborns of genotype z can be generated, and vice versa. The reason for the
appearance of the term hy + gz can however be pointed out more precisely as
follows. For more generality, the two genotypes are assumed to possibly have
different hunting capabilities, here represented by the coefficients h for y and
g for z. Each predator subpopulation thus independently removes prey at its
own rate. We also assume that the predators experience a feeding saturation
effect, which is suitably modeled by a Holling type II response function, where ξ
represents the maximum obtainable resource from each prey per unit time and
µ denotes the half saturation constant. The total benefit from hunting for the
predator population is thus represented by the sum of these separate removing
contributions for the two subpopulations, therefore giving rise to the first term
in the last two equations. Further, newborns are produced by converting the
captured prey into new predator biomass, e < 1 being the conversion factor.

The remaining assumptions are kind of standard in interacting population
models. Namely, the predators dynamics further shows a natural mortality, at
rates m and n respectively for y and z. The prey reproduce logistically with
rate R and carrying capacity K̃ and are subject to hunting by the predators,
as explained above.

The system (2.1) can be nondimensionalized in the following way. Let

x(τ) = αX(t), y(τ) = βY (t), z(τ) = γZ(t) e t = δτ , and choosing α = K̃,
β = γ = e

g , δ = e, we can define the new parameters

r =
R

e
, c =

h

g
, w = pgK̃, s =

m

e
, v = qgK̃, d =

n

e
.

Finally, by letting B = ξK̃−1 and A = µK̃−1, we have the rescaled model

X ′(t) = r(1−X)X − c BX

X +A
Y − BX

X +A
Z, (2.2)

Y ′(t) = w(cY + Z)
BX

X +A
− sY,

Z ′(t) = v(cY + Z)
BX

X +A
− dZ.

3 Equilibria

The model (2.2) has only three possible equilibria, the origin F0, corresponding
to the system extinction, the predator-free equilibrium F1 = (1, 0, 0) and the
whole ecosystem coexistence F2 = (X∗, Y ∗, Z∗), the population levels of which
are obtained solving for Z from the first equation, substituting it into the
second one to give Y , with the final substitution into the last equation. This
last step produces a factored quadratic, from which once again the equilibrium
F1 is found, or alternatively by back substitution, the following values for the
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coexisting populations are determined,

X∗ =
Ads

V
, Y ∗ =

wAdrW

V 2
, Z∗ =

vAsrW

V 2

with V = BQ − ds, W = BQ − ds(A + 1), Q = sv + cdw. The feasibility
conditions for F2 are B(sv+cdw) > ds, i.e. V > 0, and ds(A+1) ≤ B(sv+cdw),
i.e. W ≥ 0, which combine to give

B(sv + cdw) ≥ ds(A+ 1) ≡ max
{
ds, ds(A+ 1)

}
. (3.1)

The Jacobian of (2.2) reads

J =



r(1− 2X)− (cY + Z)B

A+X
+

(cY + Z)BX

(A+X)2
− cBX

A+X
− BX

A+X

w(cY + Z)B

A+X
− w(cY + Z)BX

(A+X)2
wcBX

A+X
− s wBX

A+X

v(cY + Z)B

A+X
− v(cY + Z)BX

(A+X)2
vcBX

A+X

vBX

A+X
− d


.

At F0 its eigenvalues are easily found, λ1 = r, λ2 = −s, λ3 = −d. Since
λ1 > 0 the origin is unconditionally unstable. This is a positive result from the
conservation point of view, since the ecosystem will never disappear.

At F1 instead, the characteristic equation factors, to give one explicit eigen-
value λ1 = −r, while the remaining ones are the roots of the quadratic

λ2 +m1λ+m0 = 0 (3.2)

with

m1 =
(s+ d)(A+ 1)−B(wc+ v)

A+ 1
, m0 =

ds(A+ 1)−B(sv + cdw)

A+ 1
≡ −W.

We can use Descarte’s rule of sign to impose m1 > 0 and m0 > 0, so that both
roots have negative real part. We thus find, respectively,

A+ 1 >
B(wc+ v)

s+ d
, A+ 1 >

B(sv + cdw)

ds
.

Remark. The feasibility condition for F2 corresponds to W > 0, so that when
m0 > 0 the only feasible equilibria is F1, given that F0 is always unstable.

In summary, F1 is locally asymptotically stable if

A+ 1 > max

{
B(wc+ v)

s+ d
,
B(sv + cdw)

ds

}
≡ B(sv + cdw)

ds
. (3.3)

Note indeed that

B(sv + cdw)

ds
>
B(wc+ v)

s+ d
,
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which holds since it reduces to s2v+cd2w > 0, which is true since all parameters
are nonnegative.

Note that the equilibrium F1 changes stability when the inequality in (3.3)
becomes an equality. But this coincides with the situation that brings F2 to
become feasible, see (3.1). We have thus discovered that there is a transcrit-
ical bifurcation, the coexistence equilibrium F2 emanates from the boundary
equilibrium F1 when the parameter B attains and crosses the critical value

B† =
ds(A+ 1)

sv + cdw
. (3.4)

It is illustrated in Figure 1, for the fixed parameter values r = 0.6, c = 0.38,
w = 0.47, s = 0.4, v = 0.5, d = 0.2, B = 0.48. The parameter A has then been
assigned three different values, namely A = i

2 0.41432, for i = 1, 2, 3. When
F1 is unstable, i.e. for A = 1

2 0.41432, the system settles at the coexistence
equilibrium (0.5, 0.17625, 0.375).
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Figure 1. Transcritical bifurcation at F1, for the parameter values r = 0.6, c = 0.38,
w = 0.47, s = 0.4, v = 0.5, d = 0.2, B = 0.48, A = i

2
× 0.41432, i = 1, 2, 3. On the left the

coexistence equilibrium, on the right the equilibrium E1.

Table 1. Stability intervals for F1, setting A1 = A+ 1 > 0.

A1 <
B(wc + v)

s + d

B(wc + v)

s + d
< A1 <

B(sv + cdw)

sd
A1 >

B(sv + cdw)

ds

F1 unstable F1 unstable F1 stable

4 Routh–Hurwitz Conditions at Coexistence

To seek for possible interesting behaviors of the system, leading to bifurcations,
[11], we need to investigate the eigenvalues of the Jacobian evaluated at the

Math. Model. Anal., 19(3):371–394, 2014.
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coexistence equilibrium. For F2, the feasibility condition (3.1) can be recast in
the form

0 < A ≤ V/ds. (4.1)

The characteristic equation of the Jacobian evaluated at F2 is a cubic

3∑
i=0

a3−iλ
i = 0 (4.2)

with a0 = 1 and

a1 =
V B(s2v + cd2w) + rds[ABQ−W ]

V BQ
, a3 =

rdsW

BQ
,

a2 =
rds{B(A− 1)(s2v + cd2w) + (A+ 1)ds(s+ d) +B(wc+ v)[W − ds]}

V BQ
.

We apply the Routh–Hurwitz criterion to (4.2), imposing a1 > 0, a3 > 0 and

a1a2 − a3 > 0. (4.3)

We now study in terms of the parameter A each one of the first two conditions
and the sign of the coefficient a2 to find and exclude intervals for the model
parameters arrangements where the third one possibly does not hold. The
remaining intervals are those in which the stability of E2 may be sought by
suitably “playing” with the parameter A.

Observe that condition a3 > 0 is always satisfied when F2 is feasible, in
view of the conditions (4.1).

4.1 Study of a1

For a1 we have the following considerations. The denominator is always strictly
positive, in view of (4.1). The numerator is

V B
(
s2v + cd2w

)
+ rds

[
ds(A+ 1) +B(sv + cdw)(A− 1)

]
.

The first two factors are always positive, so that the sign depends only on the
last term. We study it in terms of the parameter A.

If A ≥ 1 we have easily a1 > 0. Also, if the bracket is positive, positivity
of a1 is once more ensured; this occurs when

0 <
V

B(sv + cdw) + ds
≤ A <

V

ds
,

where the inequality on the right is provided by the feasibility condition (4.1).
We need still to study the case

0 < A <
V

B(sv + cdw) + ds
.

In this situation, a1 is positive if

A > K ≡ V

B(sv + cdw) + ds

rds−B(s2v + cd2w)

rds
. (4.4)
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Remark 1. Examining each fraction, we clearly see that K < 1. Further, if
rds > B(s2v + cd2w) we find K > 0. Consequently a1 > 0 holds if (4.4) is
satisfied. Conversely a1 ≤ 0, if 0 < A ≤ K. In case instead rds ≤ B(s2v+cd2w)
we have K ≤ 0 and (4.4) is always true, so that a1 > 0.

Remark 2. Note that the quantity [B(sv + cdw)− ds](ds)−1, positive by feasi-
bility of equilibrium F2, is larger than 1 if and only if B(sv + cdw) > 2ds.

By combining the considerations for the signs of a1, we have the following
four possible situations. In the table, the interval ranges contain the possible
values of the parameter A and in them we explicitly describe the sign of the
coefficient a1, specifying also the intervals in which the equilibrium E2 is not
feasible or does not exist by the symbol F2 @.

(A)
K 0 B(sv+cdw)−ds

B(sv+cdw)+ds
B(sv+cdw)−ds

ds 1

F2 @ F2 @ F2 @ F2 @
a1 > 0 a1 > 0

(B)

K 0 B(sv+cdw)−ds
B(sv+cdw)+ds 1 B(sv+cdw)−ds

ds

F2 @ F2 @ F2 @
a1 > 0 a1 > 0 a1 > 0

(C)

0 K B(sv+cdw)−ds
B(sv+cdw)+ds

B(sv+cdw)−ds
ds 1

F2 @ F2 @ F2 @
a1 < 0 a1 > 0 a1 > 0

From this table, observe that a1 = 0 for A = K.

(D)

0 K B(sv+cdw)−ds
B(sv+cdw)+ds 1 B(sv+cdw)−ds

ds

F2 @ F2 @
a1 < 0 a1 > 0 a1 > 0 a1 > 0

In this case too, a1 = 0 for A = K.

4.2 Study of a2

To prepare the ground for investigating sufficient conditions leading to the
verification of the last Routh–Hurwitz condition, we begin by studying the
sign of a2.

Note that feasibility of F2, V > 0, implies that the denominator of a2 is
positive. For the numerator, we need to analyse the signs of A − 1 and of
W − ds = BQ− 2ds− dsA. Requiring them both positive implies clearly that
a2 > 0. This occurs for

1 ≤ A ≤ BQ− 2ds

ds
(4.5)

which is nonempty if and only if BQ ≥ 3ds. We need to investigate two cases,
corresponding to this last inequality.

Math. Model. Anal., 19(3):371–394, 2014.
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4.2.1 Case 1: BQ ≥ 3ds

As mentioned, if A ∈
[
1, BQ−2ds

ds

]
, then a2 > 0. Otherwise, let

M = B
(
s2v + cd2w

)
+ ds

[
(s+ d)−B(wc+ v)

]
,

H = B
(
s2v + cd2w

)
+B(wc+ v)[2ds−BQ]− (s+ d)ds.

Then, the numerator of a2 becomes AM −H and a2 > 0 holds if

AM > H. (4.6)

Observe that H < M strictly, since this inequality explicitly amounts to

2ds(s+ d) +B(wc+ v)[BQ− 3ds] > 0, (4.7)

and the quantity in the last bracket is positive by assumption of Case 1. Thus,
the situations {M = 0, H = 0}, {M = 0, H > 0}, {M < 0, H > 0},
{M < 0, H = 0} must all be excluded. Now, the inequality of Case 1 implies
BQ−2ds

ds ≥ 1, and furthermore we have

BQ− 2ds

ds
<
BQ− ds

ds
≡ V

ds
, (4.8)

which is consistent, since the right hand side is positive in view of (4.1).
We now analyse the remaining situations.

Remark. When M < 0 we always have

H/M > V/ds, (4.9)

since, expanding, we find Hds < MV , i.e.

B
(
s2v + cd2w

)
[BQ− 2ds] + ds

{
(s+ d)BQ−B(wc+ v)ds

}
> 0.

In fact, BQ− 2ds ≥ 0 since we are in Case 1, namely BQ ≥ 3ds, and the last
brace equals B(s2v+ cd2w > 0. Thus, when M > 0 we must have the opposite
inequality of (4.9), i.e.

H/M < V/ds. (4.10)

(1+)

{
M > 0
H > 0

Let us define the set

Ω =
{
ds
[
B(wc+ v)− (s+ d)

]
, ds(s+ d) +B(wc+ v)[BQ− 2ds]

}
.

Solving the system of inequalities, we have

B
(
s2v + cd2w

)
> max Ω = ds(s+ d) +B(wc+ v)[BQ− 2ds]

so that

M = B
(
s2v + cd2w

)
−minΩ, H = B

(
s2v + cd2w

)
−maxΩ. (4.11)
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Since both are positive, we find 0 < H
M < 1.

Thus, there is only one possible arrangement of the various quantities. If
A falls in one of the intervals below, the sign of a2 is determined as in
the following Table, since a2 > 0 if and only if A > H

M .

0 H
M 1 B(sv+cdw)−2ds

ds
B(sv+cdw)−ds

ds

F2 @ F2 @
a2 < 0 a2 > 0 a2 > 0 a2 > 0

Note that a2 = 0 for A = H
M .

(2+)

{
M > 0
H = 0

The solution is again the inequality (4.7), which always holds.

Further, H
M = 0 so that in this situation we have

0 = H
M 1 B(sv+cdw)−2ds

ds
B(sv+cdw)−ds

ds

F2 @ F2 @
a2 > 0 a2 > 0 a2 > 0

(3+)

{
M < 0
H < 0

The solution of these inequalities is

B
(
s2v + cd2w

)
<min

{
ds
[
B(wc+ v)− (s+ d)

]
; ds(s+ d)

+B(wc+ v)[BQ− 2ds]
}

= ds
[
B(wc+ v)− (s+ d)

]
;

(4.11) again holds, i.e. H < M , but both terms are here negative, so that
H
M > 1 follows.

In summary a2 > 0 when A < H
M . But this last quantity exceeds the

value for the feasibility of F2. Thus a2 > 0 must always hold, namely

0 1 B(sv+cdw)−2ds
ds

B(sv+cdw)−ds
ds

H
M

F2 @ F2 @ F2 @
a2 > 0 a2 > 0 a2 > 0

(4+)

{
M ≥ 0
H < 0

If M → 0+, H
M = −∞, and if M > 0, then H

M < 0. In both

cases a2 > 0 strictly, since (4.6) is easily seen to hold always.

H
M 0 1 B(sv+cdw)−2ds

ds
B(sv+cdw)−ds

ds

F2 @ F2 @ F2 @
a2 > 0 a2 > 0 a2 > 0

4.2.2 Case 2: BQ < 3ds

In this case (4.5) does not hold. Since also (4.7) does not hold as well, indeed
the last bracket in it is now negative, it is not possible to assess which one
among H and M is the larger. We thus need to examine all seven possible

Math. Model. Anal., 19(3):371–394, 2014.
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configurations for the signs of H and M . Observe further that in this case it
follows

BQ− 2ds

ds
< 1

and more precisely, if BQ− 2ds < 0 we find

BQ− ds
ds

< 1, (4.12)

while for BQ− 2ds ∈ (0, ds) it follows

BQ− ds
ds

> 1. (4.13)

(1−)

{
M > 0
H > 0

We find H
M ∈ (0, 1) if

2ds(s+ d) > B(wc+ v)[3ds−BQ]

and H
M ≥ 1 for

2ds(s+ d) ≤ B(wc+ v)[3ds−BQ].

Here (4.10) still holds, while we can never have

H

M
<
BQ− 2ds

ds
< 0,

but all the other mutual positions of HM−1 and BQ−2ds
ds are possible. In

conclusion, we have the following possibilities.

(a)

B(sv+cdw)−2ds
ds 0 H

M
B(sv+cdw)−ds

ds 1

F2 @ F2 @ F2 @ F2 @
a2 < 0 a2 > 0

For A = H
M we find a2 = 0.

(b)

0 H
M

B(sv+cdw)−2ds
ds 1 B(sv+cdw)−ds

ds

F2 @ F2 @
a2 < 0 a2 > 0 a2 > 0 a2 > 0

For A = H
M it follows a2 = 0.

(c)

0 B(sv+cdw)−2ds
ds

H
M 1 B(sv+cdw)−ds

ds

F2 @ F2 @
a2 < 0 a2 < 0 a2 > 0 a2 > 0

For A = H
M , again a2 = 0.

(d)

0 B(sv+cdw)−2ds
ds 1 H

M
B(sv+cdw)−ds

ds

F2 @ F2 @
a2 < 0 a2 < 0 a2 < 0 a2 > 0

For A = H
M , once more a2 = 0.
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(2−)

{
M > 0
H = 0

Since H
M = 0, a2 > 0 holds always, and we have two different

possibilities.

(a)

0 = H
M

B(sv+cdw)−2ds
ds 1 B(sv+cdw)−ds

ds

F2 @ F2 @
a2 > 0 a2 > 0 a2 > 0

(b)

B(sv+cdw)−2ds
ds 0 = H

M
B(sv+cdw)−ds

ds 1

F2 @ F2 @ F2 @ F2 @
a2 > 0

(3−)

{
M < 0
H < 0

Here (4.9) holds always and we have three possibilites, recalling

(4.12) and (4.13), since a2 < 0 if A <
H

M
.

(a)

B(sv+cdw)−2ds
ds 0 B(sv+cdw)−ds

ds
H
M 1

F2 @ F2 @ F2 @ F2 @ F2 @
a2 > 0

(b)

0 B(sv+cdw)−2ds
ds 1 B(sv+cdw)−ds

ds
H
M

F2 @ F2 @ F2 @
a2 > 0 a2 > 0 a2 > 0

(c)

B(sv+cdw)−2ds
ds 0 B(sv+cdw)−ds

ds 1 H
M

F2 @ F2 @ F2 @ F2 @ F2 @
a2 > 0

(4−)

{
M ≥ 0
H < 0

If M → 0+, clearly H
M = −∞, otherwise this fraction is nega-

tive. Only the quantity B(sv+cdw)−2ds
ds can vary, here, namely we find

(a)

H
M 0 B(sv+cdw)−2ds

ds 1 B(sv+cdw)−ds
ds

F2 @ F2 @ F2 @
a2 > 0 a2 > 0 a2 > 0

(b)

H
M

B(sv+cdw)−2ds
ds 0 B(sv+cdw)−ds

ds 1

F2 @ F2 @ F2 @ F2 @ F2 @
a2 > 0

(5−)

{
M < 0
H = 0

Then H
M = 0. Since a2 > 0 for AM > H, we find here a2 < 0

always. But then by (4.9) all other quantites are negative, so that F2 is
never feasible.

(6−)

{
M < 0
H > 0

Again, H
M < 0, and (4.9) implies that all other quantites are

negative, so that F2 is never feasible.

Math. Model. Anal., 19(3):371–394, 2014.
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(7−)

{
M = 0
H > 0

Here H
M = +∞ and a2 < 0 always, because AM > H never

holds. Hence stability can never occur.

There are the following alternatives.

(a)

0 B(sv+cdw)−2ds
ds 1 B(sv+cdw)−ds

ds
H
M

F2 @ F2 @ F2 @
a2 < 0 a2 < 0 a2 < 0

(b)

B(sv+cdw)−2ds
ds 0 B(sv+cdw)−ds

ds 1 H
M

F2 @ F2 @ F2 @ F2 @ F2 @
a2 < 0

Finally, the case H = M = 0, is not considered, since H
M is not well defined.

4.3 Stability of the equilibrium F2

We now combine the previous analyses to assess the situations in which the
third Routh–Hurwitz condition holds, namely when (4.3) is satisfied. Again
several cases will arise that are obtained by suitably merging the previous
results. Note that we can merge the two types of Tables rather easily, since the
knots 1 and (BQ− ds)(ds)−1 appear in both of them. We again study the two
cases BQ ≥ 3ds and BQ < 3ds separately.

4.3.1 Case 1: BQ ≥ 3ds

(1+,2+)

{
M > 0
H ≥ 0

The particular case H = 0 will be discussed below each Table.

In the present situation, we recall that

BQ− 2ds

ds
≥ 1,

BQ− 2ds

ds
<
V

ds
.

In what follows we combine only the Tables relative to a2 with those of
a1 for which the above relations hold, i.e. the second and the fourth ones.
From the second one, in which K < 0, we have that H

M can be larger or

smaller than V
B(sv+cdw)+ds . The former alternative holds if and only if

wc+ v <
2ds[B(s2v + cd2w)− ds(s+ d)]

dsV − [BQ+ ds][2ds−BQ]
.

Note that in the fraction the numerator is positive in view of M > 0, and
the denominator is positive as well, since 2ds−BQ < 0.

Combining (B) with (1+) and (2+) we obtain the following two Tables,
recalling that a3 > 0 always. At first:

K 0 B(sv+cdw)−ds
B(sv+cdw)+ds

H
M

1 B(sv+cdw)−2ds
ds

B(sv+cdw)−ds
ds

F2@ F2 @ F2 @
a1 > 0 a1 > 0 a1 > 0 a1 > 0 a1 > 0
a2 < 0 a2 < 0 a2 > 0 a2 > 0 a2 > 0
a3 > 0 a3 > 0 a3 > 0 a3 > 0 a3 > 0
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Note that for H
M = 0 this alternative does not exist, since we would find

V
B(sv+cdw)+ds < 0, impossible because BQ < ds implies the infeasibility

of F2.

Now, in this Table and in all the ones that we will consider from now on,
we need to find the intervals in which the third Routh–Hurwitz condition
may be satisfied, (4.3). In view of the fact that a3 > 0 always, we
need therefore to identify the intervals in which a1 and a2 have the same
sign. Among those then, one can search whether the condition (4.3) is
satisfied. Evidently, from the above configuration, in this case we find
the interval [ HM , V

ds ]. This is the candidate where to try for parameter
values that will possibly provide a stable F2. The interval is found for
this particular arrangements of the knots, and this information is also
relevant. Therefore, we will use the following representation to denote
the solution interval for the parameter A, within square brackets, in the
corresponding knots arrangements

K < 0 <
V

BQ+ ds
<

[
H

M
< 1 <

BQ− 2ds

ds
<
V

ds

]
.

This notation will be used also in what follows, without rewriting ex-
plicitly the summarizing Table beforehand. This arrangement occurs for
combining the cases for a1 and a2, i.e. (B,1+,2+). But the above as
mentioned is only one of two possible arrangements in the same situa-
tion. The next one is the following one:

K < 0 <

[
H

M
<

V

BQ+ ds
< 1 <

BQ− 2ds

ds
<
V

ds

]
. (4.14)

For H = 0, the table is the same: no matter how A is chosen, all coeffi-
cients are always strictly positive.

As long as A ≤ H/M , the third Routh–Hurwitz condition does not hold,
thus F2 in the first interval is unstable. From the analyses of the Tables,
we infer the possibility of a Hopf bifurcation. Although we do not analyt-
ically find the bifurcation value of the parameter, the numerical experi-
ments verify this conjecture. Next, from (D) and (1+) and (2+) we have
the cases corresponding to (D,1+,2+). Let us recall that K < V

BQ+ds .

Since here H
M ∈ (0, 1) we have the following three possible situations for

K > 0. [
0 <

H

M

]
<

[
K <

V

BQ+ ds
< 1 <

BQ− 2ds

ds
<
V

ds

]
.

Note that for H/M = 0, the first interval simply disappears.

[0 < K] <

[
H

M
<

V

BQ+ ds
< 1 <

BQ− 2ds

ds
<
V

ds

]
.

Math. Model. Anal., 19(3):371–394, 2014.
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Here the particular case H
M = 0 cannot hold, since it implies 0 < K <

H
M = 0.

[0 < K] <
V

BQ+ ds
<

[
H

M
< 1 <

BQ− 2ds

ds
<
V

ds

]
.

For H/M = 0 the above situation is impossible.

(3+)

{
M < 0
H < 0

Recall that (4.9) implies that only K influences the dispositions

of these points. We thus find the Tables (B) and (D) for a1, to which we
add H

M . For (3+,B) we have

K <

[
0 <

V

BQ+ ds
< 1 <

BQ− 2ds

ds
<
V

ds

]
<
H

M
,

while for (3+,D) instead we find

0 <

[
K <

V

BQ+ ds
< 1 <

BQ− 2ds

ds
<
V

ds

]
<
H

M
. (4.15)

Thus, as long as A ≤ K, the third Routh–Hurwitz condition clearly does
not hold.

(4+)

{
M ≥ 0
H < 0

There here only two situations, corresponding to K being pos-

itive or negative, i.e. respectively to case (D) and (B). For (4+,B) we
have

H

M
< K <

[
0 <

V

BQ+ ds
< 1 <

BQ− 2ds

ds
<
V

ds

]
.

For (4+,D) we find instead

H

M
< 0 <

[
K <

V

BQ+ ds
< 1 <

BQ− 2ds

ds
<
V

ds

]
. (4.16)

Also for the second situation, as long as A ≤ K, the third Routh–Hurwitz
condition does not hold.

4.3.2 Case 1: B(sv + cdw) < 3ds

In this case there are many more possibilities. Let us recall that K < V
BQ+ds

and that

V

BQ+ ds
<
BQ− ds

ds

always holds, while for the two quantities V
BQ+ds , BQ−2ds

ds one can be larger or
smaller than the other one. In all the following cases, the following situations
are always true:
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a3 > 0 always; a2 > 0 if (*) A >
H

M
, with M > 0; a1 > 0 if (*) A > K,

with rds > s2v + cd2w, or (**) always, with rds < s2v + cd2w.

The possible cases are the following ones.

(1−)

{
M > 0
H > 0

We now insert the quantities V
BQ+ds and K in the Tables of the

section relative to BQ < 3ds; in each situation several subcases will arise,
corresponding to different arrangements of the knots. For the case (a) we
have one of the following alternatives when combined with (A), (1-,a,A)

V
BQ+ds ∈ (0; H

M ), or V
BQ+ds ∈ ( H

M , V
ds ), while K < V

BQ+ds . For the case

(a) we have one of the following seven alternatives when combined with
(A) or (C).

For the case (a) we have four subcases when combined with (A), namely
(1-,a,A)

K <
BQ− 2ds

ds
< 0 <

V

BQ+ ds
<

[
H

M
<
V

ds

]
< 1,

BQ− 2ds

ds
< K < 0 <

V

BQ+ ds
<

[
H

M
<
V

ds

]
< 1,

K <
BQ− 2ds

ds
< 0 <

[
H

M
<

V

BQ+ ds
<
V

ds

]
< 1,

BQ− 2ds

ds
< K < 0 <

[
H

M
<

V

BQ+ ds
<
V

ds

]
< 1,

while for (1-,a,C) we find three alternatives

BQ− 2ds

ds
< [0 < K] <

V

BQ+ ds
<

[
H

M
<
V

ds

]
< 1,

BQ− 2ds

ds
< [0 < K] <

[
H

M
<

V

BQ+ ds
<
V

ds

]
< 1,

BQ− 2ds

ds
<

[
0 <

H

M

]
<

[
K <

V

BQ+ ds
<
V

ds

]
< 1.

For the Table (b), the alternatives are V
BQ+ds ∈

(
0; H

M

)
, or V

BQ+ds ∈
(
H
M ,

BQ−2ds
ds

)
or V

BQ+ds ∈
(

BQ−2ds
ds , 1

)
, giving nine alternatives, three with

(B) and the remaining ones with (D). For (1-,b,B) we have

K < 0 <
V

BQ+ ds
<

[
H

M
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

K < 0 <

[
H

M
<

V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

K < 0 <

[
H

M
<
BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds

]
,

Math. Model. Anal., 19(3):371–394, 2014.
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while for (1-,7,b,D) we find

[0 < K] <
V

BQ+ ds
<

[
H

M
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

[0 < K] <

[
H

M
<

V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

[
0 <

H

M

]
<

[
K <

V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

[0 < K] <

[
H

M
<
BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds

]
,[

0 <
H

M

]
<

[
K <

BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds

]
,[

0 <
H

M

]
<
BQ− 2ds

ds
<

[
K <

V

BQ+ ds
< 1 <

V

ds

]
.

With the Table (c), the alternatives are V
BQ+ds ∈

(
0; BQ−2ds

ds

)
, or V

BQ+ds ∈(
BQ−2ds

ds , H
M

)
, or V

BQ+ds ∈
(
H
M , 1

)
, giving again nine different cases.

With (1-,c,B) we find

K < 0 <
V

BQ+ ds
<
BQ− 2ds

ds
<

[
H

M
< 1 <

V

ds

]
,

K <

[
0 <

BQ− 2ds

ds

]
<

V

BQ+ ds
<

[
H

M
< 1 <

V

ds

]
,

K < 0 <
BQ− 2ds

ds
<

[
H

M
<

V

BQ+ ds
< 1 <

V

ds

]
,[

0 <
BQ− 2ds

ds
< K

]
<

[
H

M
<

V

BQ+ ds
< 1 <

V

ds

]
,[

0 <
BQ− 2ds

ds
<
H

M

]
<

[
K <

V

BQ+ ds
< 1 <

V

ds

]
,

while for (1-,c,D) we have

[0 < K] <
V

BQ+ ds
<
BQ− 2ds

ds
<

[
H

M
< 1 <

V

ds

]
,

[0 < K] <
BQ− 2ds

ds
<

V

BQ+ ds
<

[
H

M
< 1 <

V

ds

]
,[

0 <
BQ− 2ds

ds
< K

]
<

V

BQ+ ds
<

[
H

M
< 1 <

V

ds

]
,

[0 < K] <
BQ− 2ds

ds
<

[
H

M
<

V

BQ+ ds
< 1 <

V

ds

]
.

Finally, the Table (d) gives five arrangements, in view of the following

alternatives V
BQ+ds ∈

(
0; BQ−2ds

ds

)
, or V

BQ+ds ∈
(

BQ−2ds
ds , 1

)
.
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With (1-,d,B) we have

K < 0 <
V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

[
H

M
<
V

ds

]
,

K < 0 <
BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

[
H

M
<
V

ds

]
,

while for (1-,d,D) we find

[0 < K] <
V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

[
H

M
<
V

ds

]
,

[0 < K] <
BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

[
H

M
<
V

ds

]
,[

0 <
BQ− 2ds

ds
< K

]
<

V

BQ+ ds
< 1 <

[
H

M
<
V

ds

]
.

Note that with M = 0 and H > 0 give H
M = +∞, so that in all arrange-

ments we have a2 < 0 always, case (7−). Thus, as already remarked,
stability is impossible.

(2−)

{
M > 0
H = 0

For the Table (a), we have V
BQ+ds ∈

(
0; BQ−2ds

ds

)
, or V

BQ+ds ∈(
BQ−2ds

ds , 1
)
, giving five arrangements including K. Note that H

M = 0.

For (2-,a,B) we find

K <

[
0 <

V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

K <

[
0 <

BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds

]
.

For (2-,a,D) we have

0 <

[
K <

V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

0 <

[
K <

BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds

]
,

0 <
BQ− 2ds

ds
<

[
K <

V

BQ+ ds
< 1 <

V

ds

]
.

For the Table (b), there is only one option, V
BQ+ds ∈

(
0; V

ds

)
giving three

possibilities for K. For (2-,b,A) we find

K <
BQ− 2ds

ds
<

[
0 <

V

BQ+ ds
<
V

ds

]
< 1,

BQ− 2ds

ds
< K <

[
0 <

V

BQ+ ds
<
V

ds

]
< 1,

Math. Model. Anal., 19(3):371–394, 2014.
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while for (2-,b,C) we have

BQ− 2ds

ds
< 0 <

[
K <

V

BQ+ ds
<
V

ds

]
< 1.

(4−)

{
M ≥ 0
H < 0

For the Table (a), here, V
BQ+ds ∈

(
0; BQ−2ds

ds

)
, or V

BQ+ds ∈(
BQ−2ds

ds , 1
)
, and inserting K we have seven cases. For (4-,a,B) we find

K <
H

M
<

[
0 <

V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

H

M
< K <

[
0 <

V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

K <
H

M
<

[
0 <

BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds

]
,

H

M
< K <

[
0 <

BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds

]
,

while for (4-,a,D) we find

H

M
< 0 <

[
K <

V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds

]
,

H

M
< 0 <

[
K <

BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds

]
,

H

M
< 0 <

BQ− 2ds

ds
<

[
K <

V

BQ+ ds
< 1 <

V

ds

]
.

For the Table (b), simply V
BQ+ds ∈

(
0; V

ds

)
, thus originating four alterna-

tives for K.

For (4-,b,A) we have

K <
H

M
<
BQ− 2ds

ds
<

[
0 <

V

BQ+ ds
<
V

ds

]
< 1,

H

M
< K <

BQ− 2ds

ds
<

[
0 <

V

BQ+ ds
<
V

ds

]
< 1,

H

M
<
BQ− 2ds

ds
< K <

[
0 <

V

BQ+ ds
<
V

ds

]
< 1.

For (4-,b,C) we have instead

H

M
<
BQ− 2ds

ds
< 0 <

[
K <

V

BQ+ ds
<
V

ds

]
< 1.

(3−)

{
M < 0
H ≤ 0

Here we find H
M > V

ds . For the Tables (a) and (c), we have

V
BQ+ds ∈

(
0; V

ds

)
, giving three arrangements for each Table, including
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K. Here at times we find no solutions, but we include the cases for
completeness sake. The case (3-,a,A) gives

K <
BQ− 2ds

ds
< 0 <

V

BQ+ ds

V

ds
<
H

M
< 1,

BQ− 2ds

ds
< K < 0 <

V

BQ+ ds
<
V

ds
<
H

M
< 1.

For (3-,a,C) we find

BQ− 2ds

ds
< [0 < K] <

V

BQ+ ds
<
V

ds
< 1 <

H

M
.

The case (3-,c,A) gives no solutions. In fact we find:

K <
BQ− 2ds

ds
< 0 <

V

BQ+ ds
<
V

ds
< 1 <

H

M
,

BQ− 2ds

ds
< [K < 0] <

V

BQ+ ds
<
V

ds
<
H

M
< 1.

For (3-,c,C) we find

BQ− 2ds

ds
< [0 < K] <

V

BQ+ ds
<
V

ds
< 1 <

H

M
.

For the Table (b) instead, V
BQ+ds ∈

(
0; BQ−2ds

ds

)
, or V

BQ+ds ∈
(

BQ−2ds
ds , 1

)
,

so that we have five arrangements including K.

No solutions in some cases as well are found, in particular for (3-,b,B):

K < 0 <
V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds
<
H

M
,

K < 0 <
BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds
<
H

M
.

For (3-,b,D) the same also occurs, but an admissible interval exists:

[0 < K] <
V

BQ+ ds
<
BQ− 2ds

ds
< 1 <

V

ds
<
H

M
,

[0 < K] <
BQ− 2ds

ds
<

V

BQ+ ds
< 1 <

V

ds
<
H

M
,[

0 <
BQ− 2ds

ds
< K

]
<

V

BQ+ ds
< 1 <

V

ds
<
H

M
.

In this case, if H = 0 and M < 0, all other quantities would be negative.

Math. Model. Anal., 19(3):371–394, 2014.
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Figure 2. Parameter values: r = 0.6, c = 0.74, w = 0.38, s = 0.48, v = 0.05, d = 0.008,
B = 0.85: left A = 0.2; right A = 0.6.

5 Simulations

To illustrate the usefulness of the above analysis, for assessing both the stability
of the coexistence as well as for providing a guideline to find possible Hopf
bifurcations, [22], we provide the results of some numerical simulations.

Example 1. We show at first for instance the results obtained for the situation
(4.14). Figure 2 reports the system behavior for the parameter values r = 0.6,
c = 0.74, w = 0.38, s = 0.48, v = 0.05, d = 0.008, B = 0.85. With this choice,
it follows K ' −2.3,

H

M
' 0.36,

B(sv + cdw)− ds
B(sv + cdw) + ds

=
V

B(sv + cdw) + ds
' 0.71,

B(sv + cdw)− 2ds

ds
' 3.81,

B(sv + cdw)− ds
ds

=
V

ds
' 4.81.

As claimed, we are thus in the situation of (4.14). If we take for A a larger
value than the critical value A = 0.4331191029, here A = 0.6, the coexistence
equilibrium is stable, as illustrated in the right plot of Figure 2. Taking instead
A in the first interval of (4.14), say A = 0.2 we see that limit cycles appear,
left plot.

Example 2. We illustrate now the case of (4.15). Taking the following param-
eter values r = 0.95, c = 0.066, w = 0.083, s = 0.075, v = 0.8, d = 0.15,
B = 0.84, we find that K ' 0.41,

H

M
' 15.03,

B(sv + cdw)− ds
B(sv + cdw) + ds

=
V

B(sv + cdw) + ds
' 0.64,

B(sv + cdw)− 2ds

ds
' 2.54,

B(sv + cdw)− ds
ds

=
V

ds
' 3.54.

As long as A ≤ K, here we took A = 0.25, left plot of Figure 3, we find limit
cycles. Past the critical value A = .6376318460, the coexistence equilibrium is
stable. This is shown on the right plot for A = 0.85.
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Figure 3. Parameter values: r = 0.95, c = 0.066, w = 0.083, s = 0.075, v = 0.8, d = 0.15,
B = 0.84: left A = 0.25; right A = 0.85.

Example 3. One more instance is shown for the case (4.16). We take r = 0.56,
c = 0.44, w = 0.3, s = 0.01, v = 0.7, d = 0.08, B = 0.23. This choice gives
K ' 0.24,

H

M
' −2.54,

B(sv + cdw)− ds
B(sv + cdw) + ds

=
V

B(sv + cdw) + ds
' 0.67,

B(sv + cdw)− 2ds

ds
' 3.05,

B(sv + cdw)− ds
ds

=
V

ds
' 4.05.

Now for values of A below the threshold A = 0.4964791610, here we take the
half of that value, sustained oscillations arise, while for larger values, we take
one and a half that critical value, the coexistence equilibrium is stable. These
results are shown in Figure 4.
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Figure 4. Parameter values: r = 0.56, c = 0.44, w = 0.3, s = 0.01, v = 0.7, d = 0.08,
B = 0.23: left A = 1
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× 0.4964791610; right A = 3
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6 Conclusions

From the conservationist point of view, a nice feature of the ecosystem pre-
sented here is that it can never disappear, as the origin is always unstable.
Furthermore, when the prey-only equilibrium is unstable, the system is perma-
nent, [3].

In this system with a response function that models the feeding satiation,
oscillations have been shown to arise, through an in depth investigation of
the possible signs of the coefficients in the characteristic equation related to
the coexistence equilibrium. Clearly, the full ecosystem can thrive also at a
stable steady state. The result on limit cycles parallels the one found for
the corresponding situation in which rather it is the prey that are genetically
distinct, [20]. The model in which genetic differences in predators combine with
a standard quadratic response function instead does not show this feature, [21].
The models with different genotypes in the predators further show that the
coexistence equilibrium emanates from the prey-only equilibrium under specific
system’s features, (3.4), due to the presence of a transcritical bifurcation.

Another interesting feature common to these models, is that it is not pos-
sible to have equilibrium with just one genotype. At first this result is quite
surprising, but its more careful analysis shows that it is inherent in the model
assumptions. In fact, new genotypes can arise from an original genotype. This
fact is modeled in the reproduction terms of the system, compare the last two
equations of (2.1). In fact both y and z populations have offsprings also be-
longing to the other population. Even if one of them gets extinguished at some
instant in time, it will be eventually replenished by the mutations occurring in
the other one. The critical value of the parameter B in condition (2.1) acts
also as an indicator of the predators invasion of the system. This result is in
line with similar ones that hold for the two models presented in [20,21].

The conclusion of [21] that genetical diversity of the population may affect in
a different way the ecosystem, depending on which trophic level it lies, appears
here however more tied to the way the response function that is assumed to
hold in the system.
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