Electronic Notes in Theoretical Computer Science 10 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumel0.html 8 pages

Can Actors and m-Agents Live Together?

Ugo Montanari !
Dipartimento di Informatica
University of Pisa, Italy
ugo@di.unipi.it

Carolyn Talcott 2

Department of Computer Science
Stanford University
Stanford, CA, USA

clt@sail.stanford.edu

Abstract

The syntax and semantics of actors and w-agents is first defined separately, using
a uniform, “unbiased” approach. New coordination primitives are then added to
the union of the two calculi which allow actors and w-agents to cooperate.

1 Modeling Actors and Agents

The syntax and semantics of actors and m-agents are first defined separately,
using a uniform, “unbiased” approach. Since we aim at modeling concurrent
distributed systems, and thus we are interested in asynchronous behavior, we
choose for comparison with actors an asynchronous version of the m-calculus.

In the paper, the behavior of both actors and 7-agents is defined by certain
logic sequents called tiles. A tile is a rewrite rule which describes a possible

1 Research supported by Office of Naval Research Contracts N00014-95-C-0225 and
N00014-96-C-0114, National Science Foundation Grant CCR-9633363, and by the Informa-
tion Technology Promotion Agency, Japan, as part of the Industrial Science and Technol-
ogy Frontier Program “New Models for Software Architechture” sponsored by NEDO (New
Energy and Industrial Technology Development Organization). Also research supported in
part by U.S. Army contract DABT63-96-C-0096 (DARPA); CNR Integrated Project Metodi
e Strumenti per la Progettazione e la Verifica di Sistemi FEterogenei Connessi mediante Reti
di Comunicazione; and Esprit Working Groups CONFER2 and COORDINA. Research car-
ried on in part while the first author was on leave at Computer Science Laboratory, SRI
International, Menlo Park, USA, and visiting scholar at Stanford University.

2 Research was partially supported by ONR grant N00014-94-1-0857, NSF grant CRR-
9633419, and DARPA /Rome Labs grant AF F30602-96-1-0300,

(©1998 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license


http://creativecommons.org/licenses/by-nc-nd/3.0/

MONTANARI-TALCOTT

evolution of a part s of the system which is matched by it. In addition, a
tile also describes the evolution of the interfaces of s with the rest of the sys-
tem. Thus two parts s and s’ sharing an interface can be rewritten only by
tiles which agree on the evolution of the common interface. This restriction
introduces a powerful notion of synchronization® among tiles, and also makes
possible to see the synchronization of two tiles as a (larger) tile. Eventually,
all the possible evolutions are obtained by the repeated composition (synchro-
nized, or in sequence, or in parallel) of certain small basic tiles called rewrite
rules.

In the case of actors and m-agents, it is convenient to take a coordina-
tion [20] point of view and to distinguish between the behavior of agents in
isolation and the behavior of coordinators, i.e. of system components whose
role is to connect agents and to control their behavior. This approach allows
us to abstract from the behavior in the small of agents, which is presented in
a state transition, syntax-independent form, and to focus on the behavior of
coordinators, which are the most characteristic feature of distributed systems.
Correspondingly, we distinguish between two kinds of rewrite rules: activity
rules and coordination rules. An activity rule describes an evolution of a single
sequential agent, and may produce some action at its interface with the rest
of the system. A coordination rule describes an evolution of a coordinator,
and may both require certain actions from the agents it controls, and produce
actions for a coordinator operating at a higher level.

For actors and m-agents, the interfaces with the rest of the system contain
the free names of the agent, or, equivalently, the acquaintances (including
self) of the actor. We call both of them names. An important difference with
the ordinary semantics of both calculi is that in our approach names have
only a local scope. Thus if in a particular subsystem there are n names, we
can just denote them with x,x,,...,x,. This choice makes the handling of
names much easier, especially in the presence of bound (restricted) names
and of name extrusion steps: it avoids a-conversion, infinite branching and in
general the need of making provisions for an infinite number of possible names
when connecting with the external world.

In addition to names, the interfaces contain also events. Events are the
mechanism we use for establishing concurrency control in a distributed system.
Agents and messages include references to the events which generated them,
and to the previous events which caused these events. For instance in the event
diagram semantics [12,34], when a message is received, a new event is created,
and pointers to it and its causes are made available to all the components
spawned by the step. The causes of this new event are the events both the
message and the receiving agent pointed to. The causal relation determines
the orderings in which the events can happen: all the sequential orderings
compatible with the causal relation are possible, and they correspond to the

3 Even in an asynchronous system, synchronization is required to model the reception of
messages and the extrusion of names.



MONTANARI-TALCOTT

same concurrent computation.

In the representation of agents, actions and events, the key notion is shar-
ing. In fact, the only role of a name is to specify which agents share it, and
similarly several events may share the same cause. Sharing is a well-studied
notion from a formal point of view, in particular for the subterms shared by
a term. For instance, terms can be broken into the parallel and sequential
composition of term constructors and basic substitutions, modulo certain ax-
ioms. Sharing in its purest form is then represented by the basic substitution
V from one variable to two values:

Vil —=2={y =21,y := 21}

However, in the algebra of terms and substitutions, sharing is not a first class
component, in the sense that it can be freely removed by copying the shared
subterm. In the representation of agents, instead of terms we use an extended
version of term graphs. Term graphs are more expressive than terms, since
terms graphs with a different amount of sharing among subterms are actually
different. As a consequence, in term graphs, the V operator becomes a basic
constructor.

2 Interoperability of Actors and Agents

In the ordinary syntax of actors and 7m-agents, we have three configuration
operators: parallel composition, restriction and renaming. Parallel composi-
tion is very powerful, since references to the same name on both operands are
automatically identified. In our approach, since names are only local, paral-
lel composition considers all names as different and yields the union of the
two subsystems without establishing any connection between them. Names
are actually identified by the A matching operator, which is thus our second
coordinator. The A operator is analogous but opposite to V, since it merges
two names, or two events, into one, rather that creating two instances of the

same variable. It replaces both variable substitution _ [. / _] and parallel
composition _ | -, which turn out, somewhat surprisingly, to have analogous
meanings.

Renaming, which is of difficult interpretation in a distributed setting, be-
comes useless and is discarded*. Restriction is mantained, essentially with
the same meaning.

The main difference between actor calculus and m-calculus resides, in our
setting, in the different typing of names and in the different versions of A’s
and their coordination rules. The free names of a m-agent are all typed ¢ (for
channel) and thus there is only one A, which we call A¢. Given an actor, its
name is typed a, while its acquaintances are typed r (for reference). Also, all

4 A weak notion of renaming, permutations, is used. They correspond exactly to substitu-
tions of the form p : 2 = 2 = {y; := z2,y> := z1}. However, they just describe a “wire
twisting”, they have no coordinating role, and no rewrite rule matches a substitution.

3



MONTANARI-TALCOTT

Coordinator A¢ A" AN pee e
Type ar = a Tr—r c—Cc ca—>€ rc—e€

Permeability to :

output n Yy (] n n

nput Y — Y n n

synchronization y — Y Yy Yy
Table 1

Permeability of coordinators for name sharing.

the acquaintances of a message, including its addressee, are typed r. There
are only two A’s: A" accepting two references and yielding a reference, and
A® accepting an actor and a reference and yielding an actor. There is no A
accepting two actors: this restriction fully enforces the uniqueness of actor
names.

The behaviour of a A is determined by its permeability to input/output
actions and to synchronization. It is easy to see that A° must be permeable
to everything, while A" cannot be presented with any input action, and thus
cannot synchronize either. The most interesting case is A%, which is permeable
to input and synchronization, but impermeable to output. The rationale under
this restriction is that a message cannot exit a system if its addressee is inside
the system. The permeability of the various A coordinators is summarized in
Table 1.

Actors and m-agents are connected by coordinators that match channels
and actor names or references and, at the same time, restrict visibility of the
matched pair. Coordinator v°* accepts a channel and an actor name and yields
nothing: it allows a message to be sent from a m-agent to the named actor, by
sending the message on the matching channel. Symmetrically, 2" accepts an
actor reference and a channel and yields nothing: it allows a message to be
sent from an actor to a m-agent receiving on the named channel, by sending
the message to the matching actor reference. The hiding aspect of the actor-7
coordinators enforces a clean separation between the two worlds, preserving
the local behavior of individual agents and making the interaction invisible
to the outside world. To enforce this separation, names communicated in
messages are required to be newly created and the coordination rule matches
and hides them appropriately. The permeability of the actor-m coordinators
is also summarized in Table 1.

Both calculi are equipped with mobility, thus the amount of name sharing
established at configuration time can be modified, actually only increased, at
run time. In our setting, new A’s are created only by input instantiation, by a
synchronization where the output action is extruding (similar to a Close step
for m-calculus) , or by an activity tile describing the forking of some actor or

4



MONTANARI-TALCOTT

some m-agent. In these cases only homogeneous subsystems, either both actors
or both m-agents, are connected. Synchronization via an actor-m coordination
rule creates a new coordinator to match (and hide) the actor and 7 versions
of the communicated name.

For full composability we have required that agent behavior can not test
for equality of names (no matching construct in process algebra terms). This
restriction is also made for the actor language studied in [4]. The restriction
was removed in the langauge studied in [24] in order to implement synchronous
message passing (remote procedure call) in terms of asynchronous communi-
cation. An alternative might be to allow actors to receive on more than one
port.

We conjecture that the partial order on events that is the observation of
a tile-based computation for actors gives the same semantics to actor com-
ponents as the interaction diagram semantics of [34] for the case of actor
behaviors without matching. The event-based semantics for the m-calculus
is new, and seems like a natural framework both for comparing calculi for
concurrent/distributed computation and for semantic interoperation of het-
erogeneous systems.

While a presentation of the actual rewrite rules for actors, m-agents and
their interaction would need a more technical presentation of the tile model
and of the data structures we use, we hope that the above discussion gives
some hints about our approach, its motivations and its advantages.

3 Related Work

The actor model [21,6,1,2] is one of the first and best known models for con-
current distributed systems and consists of independent computational agents
which interact solely via asynchronous message passing. Semantic foundations
for actor computation have been given in [4,32-34]. An approach to specifying
and implementing mechanisms for coordination of actors based on reflection
is described in [3].

The m-calculus [29] is one of the best studied examples of mobile process
calculi, namely calculi in which the communication topology among processes
can dynamically evolve when computation progresses. The asynchronous ver-
sion of the m-calculus has been introduced in [8,22] and studied in [5].

The tile model, introduced in [17], is described in general terms in [18,19].
Tiles are much like SOS inference rules [31], but they can be composed hor-
izontally, vertically and in parallel to build larger proof steps. Tile systems
generalize Kim Larsen and Liu Xinxin context systems [23] since they allow for
more general rule formats. The tile model also extends rewriting logic [25-27]
(in the nonconditional case), since it takes into account rewritings with side
effects and rewriting synchronization. Tile systems can be seen as double cat-
egories [14] and tiles themselves as double cells. They can be equipped with
observational equivalences and congruences.

5



MONTANARI-TALCOTT

The combined used of tiles and term graphs [7,13] for modeling asyn-
chronous m-calculus and CCS with locations [9] has been described in [15,16].
Also coordination models equipped with flexible synchronization primitives are
presented in [30,11]. It is also possible [28,10] to translate the tile model into
rewriting logic, in order to take advantage of important features of rewriting
logic, like execution strategies and reflective logics, and to employ its existing
implementations.

References

[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press 1986.

[2] G. Agha, Concurent Object Oriented Programming, CACM 33 (9), pp.125-141,
1990.

[3] G. Agha. Abstracting interaction patterns: A programming paradigm for open
distribute systems. In E. Najm and J-B. Stefani, editors, Formal Methods for
Open Object-based Distributed Systems, pages 135-153. Chapmn & Hall, 1997.

[4] G. Agha, I.A. Mason, S.F. Smith and C.L. Talcott, A Foundation for Actor
Computation, J. of Functional Programming, 7, pp.1-72, 1997.

[5] R. Amadio, I. Castellani, D. Sangiorgi, On Bisimulations for the Asynchronous
mw-calculus, CONCUR’96, LNCS, 1996.

[6] Henry G. Baker and Carl Hewitt. Laws for communicating parallel processes.
In IFIP Congress, pages 987-992. TFIP, August 1977.

[7] H.P. Barendregt, M.C.J.D. van Eekelrn, J.R.W. Glauert, J.R. Kennaway, M.J.
Plasmeijer, M.R. Sleep, Term Graph Reduction, Proc. PARLE, Springer LNCS
259, 141-158, 1987.

[8] G. Boudol, Asynchrony and the m-calculus (note), Rapport de Recherche 1702,
INRTIA Sophia-Antipolis, May 1992.

[9] G. Boudol, I. Castellani, M. Hennessy and A. Kiehn, Observing Localities,
Theoretical Computer Science, 114: 31-61, 1993.

[10] R. Bruni, J. Meseguer and U. Montanari, Process and Term Tile Logic,
Technical Report, SRI International, to appear.

[11] R. Bruni and U. Montanari, Zero-Safe Nets, or Transition Synchronization
Made Simple, in: Catuscia Palamidessi, Joachim Parrow, Eds, EXPRESS'97,
ENTCS, Vol. 7, http://www.elsevier.nl/locate/entcs/volume7.html.

[12] W. D. Clinger. Foundations of Actor Semantics. PhD thesis, MIT, 1981. MIT
Artificial Intelligence Laboratory AI-TR-633.

[13] A. Corradini, F. Gadducci, A 2-Categorical Presentation of Term Graph
Rewriting, Proc. CTCS’97, Springer LNCS, to appear, 1997.

6



MONTANARI-TALCOTT

[14] C. Ehresmann, Catégories Structurées: I and II, Ann. Ec. Norm. Sup. 80, Paris
(1963), 349-426; 111, Topo. et Géo. diff. V, Paris (1963).

[15] G.L. Ferrari and U. Montanari, A Tile-Based Coordination View of Pi-Calculus,
in: Igor Privara, Peter Ruzicka, Eds., Mathematical Foundations of Computer
Science 1997, Springer LNCS 1295, 1997, pp. 52-70.

[16] G. Ferrari, U. Montanari, Tiles for Concurrent and Located Calculi, in:
Catuscia Palamidessi, Joachim Parrow, Eds, EXPRESS’97, ENTCS, Vol. 7,
http://www.elsevier.nl/locate/entcs/volume7 .html.

[17] F. Gadducci, On the Algebraic Approach to Concurrent Term Rewriting, PhD
Thesis, Universita di Pisa, Pisa. Technical Report TD-96-02, Department of
Computer Science, University of Pisa, 1996.

[18] F. Gadducci, U. Montanari, The Tile Model, in: Gordon Plotkin, Colin
Stirling, and Mads Tofte, Eds., Proof, Language and Interaction: Essays
in Honour of Robin Milner, MIT Press, to appear. Paper available from
http://www.csl.sri.com/ ugo/festschrift.ps.

[19] F. Gadducci and
U. Montanari, Tiles, Rewriting Rules and CCS, in: J. Meseguer, Ed., Procs.
Rewriting Logic and Applications, First International Workshop, ENTCS, Vol.
4 (1996), http://www.elsevier.nl/locate/entcs/volume4.html.

[20] D. Garlan, D. Le Métayer, Eds., Coordination Languages and Models, LNCS
1282, 1997.

[21] C. Hewitt, Viewing Control Structures as Patterns of Passing Messages, J. of
Artificial Intelligence, 8(3), pp.323-364, 1977.

[22] K. Honda, M. Tokoro, An Object Calculus for Asynchronous Communication,
In: M. Tokoro, O. Nierstrasz, P. Wegner, Eds., Object-Based Concurrent
Computing, Springer LNCS 612, 21-51, 1992.

[23] K.G. Larsen and L. Xinxin, Compositionality Through an Operational
Semantics of Contexts, in Proc. ICALP’90, LNCS 443, 1990, pp. 526-539.

[24] I.A. Mason and C.L.Talcott, A Semantically Sound Actor Translation in Proc.
ICALP’97, LNCS 1256, 1997, pp. 369-378.

[25] J. Meseguer, Conditional Rewriting Logic as a Unified Model of Concurrency,
Theoretical Computer Science 96, 1992, pp. 73-155.

[26] J. Meseguer, Rewriting Logic as a Semantic Framework for Concurrency:
A Progress Report, in: U. Montanari and V. Sassone, Eds., CONCUR’96:
Concurrency Theory, Springer LNCS 1119, 1996, 331-372.

[27] J. Meseguer, Ed., Procs. Rewriting Logic and Applications, First International
Workshop, ENTCS, Vol. 4 (1996), http://www.elsevier.nl
/locate/entcs/volume4.html.



MONTANARI-TALCOTT

[28] J. Meseguer and U. Montanari, Mapping Tile Logic into Rewriting Logic,
in: Francesco Parisi-Presicce, Ed., Proc. 12th WADT Workshop on Algebraic
Development Techniques, Spinger LNCS 1376, 1998, to appear. Available from
http://www. csl.sri.com/ ugo/wadt.ps.

[29] R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Processes (parts I and
IT), Information and Computation, 100:1-77, 1992.

[30] U. Montanari, F. Rossi, Graph Rewriting and Constraint Solving for
Modelling Distributed Systems with Synchronization, in: Paolo Ciancarini
and Chris Hankin, Eds., Coordination Languages and Models, LNCS
1061, 1996, pp. 12-27. Full paper submitted for publication available from
http://www.csl.sri.com/ ugo/graphs.ps.

[31] G. Plotkin, A Structural Approach to Operational Semantics, Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

[32] C.L.Talcott, An Actor Rewriting Theory, in: J. Meseguer, Ed., Procs. Rewriting
Logic and Applications, First International Workshop, ENTCS, Vol. 4 (1996),
http://www.elsevier.nl/locate/entcs/volume4.html.

[33] C. L. Talcott. Interaction semantics for components of distributed systems.
In E. Najm and J-B. Stefani, editors, 1st IFIP Workshop on Formal Methods
for Open Object-based Distributed Systems, FMOODS’96, 1996. proceedings
published in 1997 by Chapman & Hall.

[34] C. L. Talcott. Composable semantic models for actor theories. In T. Ito
M. Abadi, editor, Theoretical Aspects of Computer Science, number 1281 in
Lecture Notes in Computer Science, pages 321-364. Springer-Verlag, 1997.



