
Electronic Notes in Theoretical Computer Science �� ������
URL� http���www�elsevier�nl�locate�entcs�volume���html � pages

Can Actors and ��Agents Live Together�

Ugo Montanari �

Dipartimento di Informatica

University of Pisa� Italy

ugo�di�unipi�it

Carolyn Talcott �

Department of Computer Science

Stanford University

Stanford� CA� USA

clt�sail�stanford�edu

Abstract

The syntax and semantics of actors and ��agents is �rst de�ned separately� using

a uniform� �unbiased� approach� New coordination primitives are then added to

the union of the two calculi which allow actors and ��agents to cooperate�

� Modeling Actors and Agents

The syntax and semantics of actors and ��agents are �rst de�ned separately�

using a uniform� �unbiased� approach� Since we aim at modeling concurrent

distributed systems� and thus we are interested in asynchronous behavior� we

choose for comparison with actors an asynchronous version of the ��calculus�

In the paper� the behavior of both actors and ��agents is de�ned by certain

logic sequents called tiles� A tile is a rewrite rule which describes a possible

� Research supported by O�ce of Naval Research Contracts N���������C����� and

N�������	�C�����
 National Science Foundation Grant CCR��	���	�
 and by the Informa�

tion Technology Promotion Agency
 Japan
 as part of the Industrial Science and Technol�

ogy Frontier Program �New Models for Software Architechture
 sponsored by NEDO �New

Energy and Industrial Technology Development Organization�� Also research supported in

part by U�S� Army contract DABT	���	�C����	 �DARPA�� CNR Integrated ProjectMetodi

e Strumenti per la Progettazione e la Veri�ca di Sistemi Eterogenei Connessi mediante Reti

di Comunicazione� and Esprit Working Groups CONFER� and COORDINA� Research car�

ried on in part while the �rst author was on leave at Computer Science Laboratory
 SRI

International
 Menlo Park
 USA
 and visiting scholar at Stanford University�
� Research was partially supported by ONR grant N���������������
 NSF grant CRR�

�	�����
 and DARPA�Rome Labs grant AF F��	����	�������


c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license. 

http://creativecommons.org/licenses/by-nc-nd/3.0/


Montanari�Talcott

evolution of a part s of the system which is matched by it� In addition� a

tile also describes the evolution of the interfaces of s with the rest of the sys�

tem� Thus two parts s and s
�
sharing an interface can be rewritten only by

tiles which agree on the evolution of the common interface� This restriction

introduces a powerful notion of synchronization
�
among tiles� and also makes

possible to see the synchronization of two tiles as a �larger� tile� Eventually�

all the possible evolutions are obtained by the repeated composition �synchro�

nized� or in sequence� or in parallel� of certain small basic tiles called rewrite

rules�

In the case of actors and ��agents� it is convenient to take a coordina�

tion 	
�� point of view and to distinguish between the behavior of agents in

isolation and the behavior of coordinators� i�e� of system components whose

role is to connect agents and to control their behavior� This approach allows

us to abstract from the behavior in the small of agents� which is presented in

a state transition� syntax�independent form� and to focus on the behavior of

coordinators� which are the most characteristic feature of distributed systems�

Correspondingly� we distinguish between two kinds of rewrite rules
 activity

rules and coordination rules� An activity rule describes an evolution of a single

sequential agent� and may produce some action at its interface with the rest

of the system� A coordination rule describes an evolution of a coordinator�

and may both require certain actions from the agents it controls� and produce

actions for a coordinator operating at a higher level�

For actors and ��agents� the interfaces with the rest of the system contain

the free names of the agent� or� equivalently� the acquaintances �including

self� of the actor� We call both of them names� An important di�erence with

the ordinary semantics of both calculi is that in our approach names have

only a local scope� Thus if in a particular subsystem there are n names� we

can just denote them with x�� x�� � � � � xn� This choice makes the handling of

names much easier� especially in the presence of bound �restricted� names

and of name extrusion steps
 it avoids ��conversion� in�nite branching and in

general the need of making provisions for an in�nite number of possible names

when connecting with the external world�

In addition to names� the interfaces contain also events� Events are the

mechanism we use for establishing concurrency control in a distributed system�

Agents and messages include references to the events which generated them�

and to the previous events which caused these events� For instance in the event

diagram semantics 	�
����� when a message is received� a new event is created�

and pointers to it and its causes are made available to all the components

spawned by the step� The causes of this new event are the events both the

message and the receiving agent pointed to� The causal relation determines

the orderings in which the events can happen
 all the sequential orderings

compatible with the causal relation are possible� and they correspond to the

� Even in an asynchronous system
 synchronization is required to model the reception of

messages and the extrusion of names�






Montanari�Talcott

same concurrent computation�

In the representation of agents� actions and events� the key notion is shar�

ing� In fact� the only role of a name is to specify which agents share it� and

similarly several events may share the same cause� Sharing is a well�studied

notion from a formal point of view� in particular for the subterms shared by

a term� For instance� terms can be broken into the parallel and sequential

composition of term constructors and basic substitutions� modulo certain ax�

ioms� Sharing in its purest form is then represented by the basic substitution

r from one variable to two values


r 
 �� 
 � fy� 
� x�� y� 
� x�g�

However� in the algebra of terms and substitutions� sharing is not a �rst class

component� in the sense that it can be freely removed by copying the shared

subterm� In the representation of agents� instead of terms we use an extended

version of term graphs� Term graphs are more expressive than terms� since

terms graphs with a di�erent amount of sharing among subterms are actually

di�erent� As a consequence� in term graphs� the r operator becomes a basic

constructor�

� Interoperability of Actors and Agents

In the ordinary syntax of actors and ��agents� we have three con�guration

operators
 parallel composition� restriction and renaming� Parallel composi�

tion is very powerful� since references to the same name on both operands are

automatically identi�ed� In our approach� since names are only local� paral�

lel composition considers all names as di�erent and yields the union of the

two subsystems without establishing any connection between them� Names

are actually identi�ed by the � matching operator� which is thus our second

coordinator� The � operator is analogous but opposite to r� since it merges

two names� or two events� into one� rather that creating two instances of the

same variable� It replaces both variable substitution 	 � � and parallel

composition j � which turn out� somewhat surprisingly� to have analogous

meanings�

Renaming� which is of di�cult interpretation in a distributed setting� be�

comes useless and is discarded
�
� Restriction is mantained� essentially with

the same meaning�

The main di�erence between actor calculus and ��calculus resides� in our

setting� in the di�erent typing of names and in the di�erent versions of ��s

and their coordination rules� The free names of a ��agent are all typed c �for

channel� and thus there is only one �� which we call �
c
� Given an actor� its

name is typed a� while its acquaintances are typed r �for reference�� Also� all

� A weak notion of renaming
 permutations
 is used� They correspond exactly to substitu�

tions of the form � � � � � � fy� �� x�� y� �� x�g� However
 they just describe a �wire

twisting

 they have no coordinating role
 and no rewrite rule matches a substitution�

�



Montanari�Talcott

Coordinator �a �r �c �ca �rc

Type ar � a rr� r cc� c ca� � rc� �

Permeability to 


output n y y n n

input y � y n n

synchronization y � y y y

Table �

Permeability of coordinators for name sharing�

the acquaintances of a message� including its addressee� are typed r� There

are only two ��s
 �r accepting two references and yielding a reference� and

�a accepting an actor and a reference and yielding an actor� There is no �

accepting two actors
 this restriction fully enforces the uniqueness of actor
names�

The behaviour of a � is determined by its permeability to input�output

actions and to synchronization� It is easy to see that �c must be permeable

to everything� while �r cannot be presented with any input action� and thus

cannot synchronize either� The most interesting case is �a� which is permeable

to input and synchronization� but impermeable to output� The rationale under

this restriction is that a message cannot exit a system if its addressee is inside
the system� The permeability of the various � coordinators is summarized in

Table ��

Actors and ��agents are connected by coordinators that match channels

and actor names or references and� at the same time� restrict visibility of the

matched pair� Coordinator �ca accepts a channel and an actor name and yields

nothing
 it allows a message to be sent from a ��agent to the named actor� by
sending the message on the matching channel� Symmetrically� �rc accepts an

actor reference and a channel and yields nothing
 it allows a message to be

sent from an actor to a ��agent receiving on the named channel� by sending

the message to the matching actor reference� The hiding aspect of the actor��
coordinators enforces a clean separation between the two worlds� preserving

the local behavior of individual agents and making the interaction invisible

to the outside world� To enforce this separation� names communicated in

messages are required to be newly created and the coordination rule matches

and hides them appropriately� The permeability of the actor�� coordinators
is also summarized in Table ��

Both calculi are equipped with mobility� thus the amount of name sharing

established at con�guration time can be modi�ed� actually only increased� at

run time� In our setting� new ��s are created only by input instantiation� by a

synchronization where the output action is extruding �similar to a Close step

for ��calculus� � or by an activity tile describing the forking of some actor or

�



Montanari�Talcott

some ��agent� In these cases only homogeneous subsystems� either both actors

or both ��agents� are connected� Synchronization via an actor�� coordination

rule creates a new coordinator to match �and hide� the actor and � versions

of the communicated name�

For full composability we have required that agent behavior can not test

for equality of names �no matching construct in process algebra terms�� This

restriction is also made for the actor language studied in 	��� The restriction

was removed in the langauge studied in 	
�� in order to implement synchronous

message passing �remote procedure call� in terms of asynchronous communi�

cation� An alternative might be to allow actors to receive on more than one

port�

We conjecture that the partial order on events that is the observation of

a tile�based computation for actors gives the same semantics to actor com�

ponents as the interaction diagram semantics of 	��� for the case of actor

behaviors without matching� The event�based semantics for the ��calculus

is new� and seems like a natural framework both for comparing calculi for

concurrent�distributed computation and for semantic interoperation of het�

erogeneous systems�

While a presentation of the actual rewrite rules for actors� ��agents and

their interaction would need a more technical presentation of the tile model

and of the data structures we use� we hope that the above discussion gives

some hints about our approach� its motivations and its advantages�

� Related Work

The actor model 	
������
� is one of the �rst and best known models for con�

current distributed systems and consists of independent computational agents

which interact solely via asynchronous message passing� Semantic foundations

for actor computation have been given in 	���
����� An approach to specifying

and implementing mechanisms for coordination of actors based on re�ection

is described in 	���

The ��calculus 	
�� is one of the best studied examples of mobile process

calculi� namely calculi in which the communication topology among processes

can dynamically evolve when computation progresses� The asynchronous ver�

sion of the ��calculus has been introduced in 	��

� and studied in 	���

The tile model� introduced in 	���� is described in general terms in 	�������

Tiles are much like SOS inference rules 	���� but they can be composed hor�

izontally� vertically and in parallel to build larger proof steps� Tile systems

generalize Kim Larsen and Liu Xinxin context systems 	
�� since they allow for

more general rule formats� The tile model also extends rewriting logic 	
��
��

�in the nonconditional case�� since it takes into account rewritings with side

e�ects and rewriting synchronization� Tile systems can be seen as double cat�

egories 	��� and tiles themselves as double cells� They can be equipped with

observational equivalences and congruences�

�



Montanari�Talcott

The combined used of tiles and term graphs 	����� for modeling asyn�

chronous ��calculus and CCS with locations 	�� has been described in 	�������

Also coordination models equipped with �exible synchronization primitives are

presented in 	������� It is also possible 	
����� to translate the tile model into

rewriting logic� in order to take advantage of important features of rewriting

logic� like execution strategies and re�ective logics� and to employ its existing

implementations�

References

��	 G� Agha� Actors� A Model of Concurrent Computation in Distributed Systems�
MIT Press �
���

�
	 G� Agha� Concurent Object Oriented Programming� CACM �� �
�� pp��
������
�

��

��	 G� Agha� Abstracting interaction patterns� A programming paradigm for open
distribute systems� In E� Najm and J�B� Stefani� editors� Formal Methods for

Open Object�based Distributed Systems� pages �������� Chapmn � Hall� �

��

��	 G� Agha� I�A� Mason� S�F� Smith and C�L� Talcott� A Foundation for Actor

Computation� J� of Functional Programming� �� pp����
� �

��

��	 R� Amadio� I� Castellani� D� Sangiorgi� On Bisimulations for the Asynchronous

��calculus� CONCUR�
�� LNCS� �

��

��	 Henry G� Baker and Carl Hewitt� Laws for communicating parallel processes�
In IFIP Congress� pages 
���


� IFIP� August �
���

��	 H�P� Barendregt� M�C�J�D� van Eekelrn� J�R�W� Glauert� J�R� Kennaway� M�J�
Plasmeijer� M�R� Sleep� Term Graph Reduction� Proc� PARLE� Springer LNCS

�
� �������� �
���

��	 G� Boudol� Asynchrony and the ��calculus �note�� Rapport de Recherche �����
INRIA Sophia�Antipolis� May �


�

�
	 G� Boudol� I� Castellani� M� Hennessy and A� Kiehn� Observing Localities�
Theoretical Computer Science� ���� ������ �

��

���	 R� Bruni� J� Meseguer and U� Montanari� Process and Term Tile Logic�
Technical Report� SRI International� to appear�

���	 R� Bruni and U� Montanari� Zero�Safe Nets� or Transition Synchronization

Made Simple� in� Catuscia Palamidessi� Joachim Parrow� Eds� EXPRESS�
��
ENTCS� Vol� �� http���www�elsevier�nl�locate�entcs�volume��html�

��
	 W� D� Clinger� Foundations of Actor Semantics� PhD thesis� MIT� �
��� MIT
Arti�cial Intelligence Laboratory AI�TR�����

���	 A� Corradini� F� Gadducci� A ��Categorical Presentation of Term Graph

Rewriting� Proc� CTCS�
�� Springer LNCS� to appear� �

��

�



Montanari�Talcott

���	 C� Ehresmann� Cat�egories Structur�ees� I and II� Ann� �Ec� Norm� Sup� ��� Paris
��
���� ��
��
�� III� Topo� et G�eo� di�� V� Paris ��
����

���	 G�L� Ferrari and U� Montanari� A Tile�Based Coordination View of Pi�Calculus�
in� Igor Privara� Peter Ruzicka� Eds�� Mathematical Foundations of Computer
Science �

�� Springer LNCS �

�� �

�� pp� �
����

���	 G� Ferrari� U� Montanari� Tiles for Concurrent and Located Calculi� in�
Catuscia Palamidessi� Joachim Parrow� Eds� EXPRESS�
�� ENTCS� Vol� ��
http���www�elsevier�nl�locate�entcs�volume��html�

���	 F� Gadducci� On the Algebraic Approach to Concurrent Term Rewriting� PhD
Thesis� Universit�a di Pisa� Pisa� Technical Report TD�
���
� Department of
Computer Science� University of Pisa� �

��

���	 F� Gadducci� U� Montanari� The Tile Model � in� Gordon Plotkin� Colin
Stirling� and Mads Tofte� Eds�� Proof� Language and Interaction� Essays
in Honour of Robin Milner� MIT Press� to appear� Paper available from
http���www�csl�sri�com� ugo�festschrift�ps�

��
	 F� Gadducci and
U� Montanari� Tiles� Rewriting Rules and CCS� in� J	 Meseguer� Ed	� Procs	

Rewriting Logic and Applications� First International Workshop� ENTCS� Vol�
� ��

��� http���www�elsevier�nl�locate�entcs�volume��html�

�
�	 D� Garlan� D� Le M�etayer� Eds�� Coordination Languages and Models� LNCS
�
�
� �

��

�
�	 C� Hewitt� Viewing Control Structures as Patterns of Passing Messages� J� of
Arti�cial Intelligence� ����� pp��
������ �
���

�

	 K� Honda� M� Tokoro� An Object Calculus for Asynchronous Communication�
In� M� Tokoro� O� Nierstrasz� P� Wegner� Eds�� Object�Based Concurrent
Computing� Springer LNCS ��
� 
����� �


�

�
�	 K�G� Larsen and L� Xinxin� Compositionality Through an Operational

Semantics of Contexts� in Proc� ICALP�
�� LNCS ���� �

�� pp� �
����
�

�
�	 I�A� Mason and C�L�Talcott� A Semantically Sound Actor Translation in Proc�
ICALP�
�� LNCS �
��� �

�� pp� ��
�����

�
�	 J� Meseguer� Conditional Rewriting Logic as a Uni
ed Model of Concurrency�
Theoretical Computer Science ��� �


� pp� �������

�
�	 J� Meseguer� Rewriting Logic as a Semantic Framework for Concurrency�

A Progress Report� in� U� Montanari and V� Sassone� Eds�� CONCUR��
�

Concurrency Theory� Springer LNCS ���
� �

�� ������
�

�
�	 J� Meseguer� Ed�� Procs	 Rewriting Logic and Applications� First International
Workshop� ENTCS� Vol� � ��

��� http���www�elsevier�nl

�locate�entcs�volume��html�

�



Montanari�Talcott

�
�	 J� Meseguer and U� Montanari� Mapping Tile Logic into Rewriting Logic�
in� Francesco Parisi�Presicce� Ed�� Proc� �
th WADT Workshop on Algebraic
Development Techniques� Spinger LNCS ����� �

�� to appear� Available from
http���www� csl�sri�com� ugo�wadt�ps�

�

	 R� Milner� J� Parrow� D� Walker� A Calculus of Mobile Processes �parts I and
II�� Information and Computation� ��������� �


�

���	 U� Montanari� F� Rossi� Graph Rewriting and Constraint Solving for

Modelling Distributed Systems with Synchronization� in� Paolo Ciancarini
and Chris Hankin� Eds�� Coordination Languages and Models� LNCS
����� �

�� pp� �
�
�� Full paper submitted for publication available from
http���www�csl�sri�com� ugo�graphs�ps�

���	 G� Plotkin� A Structural Approach to Operational Semantics� Technical Report
DAIMI FN��
� Computer Science Department� Aarhus University� �
���

��
	 C�L�Talcott� An Actor Rewriting Theory� in� J	 Meseguer� Ed	� Procs	 Rewriting

Logic and Applications� First International Workshop� ENTCS� Vol� � ��

���
http���www�elsevier�nl�locate�entcs�volume��html�

���	 C� L� Talcott� Interaction semantics for components of distributed systems�
In E� Najm and J�B� Stefani� editors� �st IFIP Workshop on Formal Methods

for Open Object�based Distributed Systems� FMOODS��
� �

�� proceedings
published in �

� by Chapman � Hall�

���	 C� L� Talcott� Composable semantic models for actor theories� In T� Ito
M� Abadi� editor� Theoretical Aspects of Computer Science� number �
�� in
Lecture Notes in Computer Science� pages �
������ Springer�Verlag� �

��

�


