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Abstract

The syntax and semantics of actors and ��agents is �rst de�ned separately� using

a uniform� �unbiased� approach� New coordination primitives are then added to

the union of the two calculi which allow actors and ��agents to cooperate�

� Modeling Actors and Agents

The syntax and semantics of actors and ��agents are �rst de�ned separately�

using a uniform� �unbiased� approach� Since we aim at modeling concurrent

distributed systems� and thus we are interested in asynchronous behavior� we

choose for comparison with actors an asynchronous version of the ��calculus�

In the paper� the behavior of both actors and ��agents is de�ned by certain

logic sequents called tiles� A tile is a rewrite rule which describes a possible
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evolution of a part s of the system which is matched by it� In addition� a

tile also describes the evolution of the interfaces of s with the rest of the sys�

tem� Thus two parts s and s
�
sharing an interface can be rewritten only by

tiles which agree on the evolution of the common interface� This restriction

introduces a powerful notion of synchronization
�
among tiles� and also makes

possible to see the synchronization of two tiles as a �larger� tile� Eventually�

all the possible evolutions are obtained by the repeated composition �synchro�

nized� or in sequence� or in parallel� of certain small basic tiles called rewrite

rules�

In the case of actors and ��agents� it is convenient to take a coordina�

tion 	
�� point of view and to distinguish between the behavior of agents in

isolation and the behavior of coordinators� i�e� of system components whose

role is to connect agents and to control their behavior� This approach allows

us to abstract from the behavior in the small of agents� which is presented in

a state transition� syntax�independent form� and to focus on the behavior of

coordinators� which are the most characteristic feature of distributed systems�

Correspondingly� we distinguish between two kinds of rewrite rules
 activity

rules and coordination rules� An activity rule describes an evolution of a single

sequential agent� and may produce some action at its interface with the rest

of the system� A coordination rule describes an evolution of a coordinator�

and may both require certain actions from the agents it controls� and produce

actions for a coordinator operating at a higher level�

For actors and ��agents� the interfaces with the rest of the system contain

the free names of the agent� or� equivalently� the acquaintances �including

self� of the actor� We call both of them names� An important di�erence with

the ordinary semantics of both calculi is that in our approach names have

only a local scope� Thus if in a particular subsystem there are n names� we

can just denote them with x�� x�� � � � � xn� This choice makes the handling of

names much easier� especially in the presence of bound �restricted� names

and of name extrusion steps
 it avoids ��conversion� in�nite branching and in

general the need of making provisions for an in�nite number of possible names

when connecting with the external world�

In addition to names� the interfaces contain also events� Events are the

mechanism we use for establishing concurrency control in a distributed system�

Agents and messages include references to the events which generated them�

and to the previous events which caused these events� For instance in the event

diagram semantics 	�
����� when a message is received� a new event is created�

and pointers to it and its causes are made available to all the components

spawned by the step� The causes of this new event are the events both the

message and the receiving agent pointed to� The causal relation determines

the orderings in which the events can happen
 all the sequential orderings

compatible with the causal relation are possible� and they correspond to the

� Even in an asynchronous system
 synchronization is required to model the reception of

messages and the extrusion of names�
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same concurrent computation�

In the representation of agents� actions and events� the key notion is shar�

ing� In fact� the only role of a name is to specify which agents share it� and

similarly several events may share the same cause� Sharing is a well�studied

notion from a formal point of view� in particular for the subterms shared by

a term� For instance� terms can be broken into the parallel and sequential

composition of term constructors and basic substitutions� modulo certain ax�

ioms� Sharing in its purest form is then represented by the basic substitution

r from one variable to two values


r 
 �� 
 � fy� 
� x�� y� 
� x�g�

However� in the algebra of terms and substitutions� sharing is not a �rst class

component� in the sense that it can be freely removed by copying the shared

subterm� In the representation of agents� instead of terms we use an extended

version of term graphs� Term graphs are more expressive than terms� since

terms graphs with a di�erent amount of sharing among subterms are actually

di�erent� As a consequence� in term graphs� the r operator becomes a basic

constructor�

� Interoperability of Actors and Agents

In the ordinary syntax of actors and ��agents� we have three con�guration

operators
 parallel composition� restriction and renaming� Parallel composi�

tion is very powerful� since references to the same name on both operands are

automatically identi�ed� In our approach� since names are only local� paral�

lel composition considers all names as di�erent and yields the union of the

two subsystems without establishing any connection between them� Names

are actually identi�ed by the � matching operator� which is thus our second

coordinator� The � operator is analogous but opposite to r� since it merges

two names� or two events� into one� rather that creating two instances of the

same variable� It replaces both variable substitution 	 � � and parallel

composition j � which turn out� somewhat surprisingly� to have analogous

meanings�

Renaming� which is of di�cult interpretation in a distributed setting� be�

comes useless and is discarded
�
� Restriction is mantained� essentially with

the same meaning�

The main di�erence between actor calculus and ��calculus resides� in our

setting� in the di�erent typing of names and in the di�erent versions of ��s

and their coordination rules� The free names of a ��agent are all typed c �for

channel� and thus there is only one �� which we call �
c
� Given an actor� its

name is typed a� while its acquaintances are typed r �for reference�� Also� all

� A weak notion of renaming
 permutations
 is used� They correspond exactly to substitu�

tions of the form � � � � � � fy� �� x�� y� �� x�g� However
 they just describe a �wire

twisting

 they have no coordinating role
 and no rewrite rule matches a substitution�

�
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Coordinator �a �r �c �ca �rc

Type ar � a rr� r cc� c ca� � rc� �

Permeability to 


output n y y n n

input y � y n n

synchronization y � y y y

Table �

Permeability of coordinators for name sharing�

the acquaintances of a message� including its addressee� are typed r� There

are only two ��s
 �r accepting two references and yielding a reference� and

�a accepting an actor and a reference and yielding an actor� There is no �

accepting two actors
 this restriction fully enforces the uniqueness of actor
names�

The behaviour of a � is determined by its permeability to input�output

actions and to synchronization� It is easy to see that �c must be permeable

to everything� while �r cannot be presented with any input action� and thus

cannot synchronize either� The most interesting case is �a� which is permeable

to input and synchronization� but impermeable to output� The rationale under

this restriction is that a message cannot exit a system if its addressee is inside
the system� The permeability of the various � coordinators is summarized in

Table ��

Actors and ��agents are connected by coordinators that match channels

and actor names or references and� at the same time� restrict visibility of the

matched pair� Coordinator �ca accepts a channel and an actor name and yields

nothing
 it allows a message to be sent from a ��agent to the named actor� by
sending the message on the matching channel� Symmetrically� �rc accepts an

actor reference and a channel and yields nothing
 it allows a message to be

sent from an actor to a ��agent receiving on the named channel� by sending

the message to the matching actor reference� The hiding aspect of the actor��
coordinators enforces a clean separation between the two worlds� preserving

the local behavior of individual agents and making the interaction invisible

to the outside world� To enforce this separation� names communicated in

messages are required to be newly created and the coordination rule matches

and hides them appropriately� The permeability of the actor�� coordinators
is also summarized in Table ��

Both calculi are equipped with mobility� thus the amount of name sharing

established at con�guration time can be modi�ed� actually only increased� at

run time� In our setting� new ��s are created only by input instantiation� by a

synchronization where the output action is extruding �similar to a Close step

for ��calculus� � or by an activity tile describing the forking of some actor or

�
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some ��agent� In these cases only homogeneous subsystems� either both actors

or both ��agents� are connected� Synchronization via an actor�� coordination

rule creates a new coordinator to match �and hide� the actor and � versions

of the communicated name�

For full composability we have required that agent behavior can not test

for equality of names �no matching construct in process algebra terms�� This

restriction is also made for the actor language studied in 	��� The restriction

was removed in the langauge studied in 	
�� in order to implement synchronous

message passing �remote procedure call� in terms of asynchronous communi�

cation� An alternative might be to allow actors to receive on more than one

port�

We conjecture that the partial order on events that is the observation of

a tile�based computation for actors gives the same semantics to actor com�

ponents as the interaction diagram semantics of 	��� for the case of actor

behaviors without matching� The event�based semantics for the ��calculus

is new� and seems like a natural framework both for comparing calculi for

concurrent�distributed computation and for semantic interoperation of het�

erogeneous systems�

While a presentation of the actual rewrite rules for actors� ��agents and

their interaction would need a more technical presentation of the tile model

and of the data structures we use� we hope that the above discussion gives

some hints about our approach� its motivations and its advantages�

� Related Work

The actor model 	
������
� is one of the �rst and best known models for con�

current distributed systems and consists of independent computational agents

which interact solely via asynchronous message passing� Semantic foundations

for actor computation have been given in 	���
����� An approach to specifying

and implementing mechanisms for coordination of actors based on re�ection

is described in 	���

The ��calculus 	
�� is one of the best studied examples of mobile process

calculi� namely calculi in which the communication topology among processes

can dynamically evolve when computation progresses� The asynchronous ver�

sion of the ��calculus has been introduced in 	��

� and studied in 	���

The tile model� introduced in 	���� is described in general terms in 	�������

Tiles are much like SOS inference rules 	���� but they can be composed hor�

izontally� vertically and in parallel to build larger proof steps� Tile systems

generalize Kim Larsen and Liu Xinxin context systems 	
�� since they allow for

more general rule formats� The tile model also extends rewriting logic 	
��
��

�in the nonconditional case�� since it takes into account rewritings with side

e�ects and rewriting synchronization� Tile systems can be seen as double cat�

egories 	��� and tiles themselves as double cells� They can be equipped with

observational equivalences and congruences�

�
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The combined used of tiles and term graphs 	����� for modeling asyn�

chronous ��calculus and CCS with locations 	�� has been described in 	�������

Also coordination models equipped with �exible synchronization primitives are

presented in 	������� It is also possible 	
����� to translate the tile model into

rewriting logic� in order to take advantage of important features of rewriting

logic� like execution strategies and re�ective logics� and to employ its existing

implementations�
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