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Abstract. The magnetopause (MP) reconnection is char-
acterized by a density asymmetry across the current sheet.
The asymmetry is expected to produce characteristic fea-
tures in the reconnection layer. Here we present a compar-
ison between the Cluster MP crossing reported by Retinò
et al. (2006) and virtual observations in two-dimensional
particle-in-cell simulation results. The simulation, which in-
cludes the density asymmetry but has zero guide field in the
initial condition, has reproduced well the observed features
as follows: (1) The prominent density dip region is detected
at the separatrix region (SR) on the magnetospheric (MSP)
side of the MP. (2) The intense electric field normal to the MP
is pointing to the center of the MP at the location where the
density dip is detected. (3) The ion bulk outflow due to the
magnetic reconnection is seen to be biased towards the MSP
side. (4) The out-of-plane magnetic field (the Hall magnetic
field) has bipolar rather than quadrupolar structure, the latter
of which is seen for a density symmetric case. The simula-
tion also showed rich electron dynamics (formation of field-
aligned beams) in the proximity of the separatrices, which
was not fully resolved in the observations. Stepping beyond
the simulation-observation comparison, we have also ana-
lyzed the electron acceleration and the field line structure in
the simulation results. It is found that the bipolar Hall mag-
netic field structure is produced by the substantial drift of the
reconnected field lines at the MSP SR due to the enhanced
normal electric field. The field-aligned electrons at the same
MSP SR are identified as the gun smokes of the electron ac-
celeration in the close proximity of the X-line. We have also
analyzed the X-line structure obtained in the simulation to
find that the density asymmetry leads to a steep density gradi-
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ent in the in-flow region, which may lead to a non-stationary
behavior of the X-line when three-dimensional freedom is
taken into account.
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1 Introduction

Magnetopause (MP) is known as the interface between the
intrinsic terrestrial magnetic field and the interplanetary mag-
netic field (IMF) in the solar wind. Bounded by the magne-
topause, the cold-dense solar wind and the hot-tenuous mag-
netospheric (MSP) plasmas come in contact with each other.
It is well known that energy and momentum of solar wind
plasmas are allowed to enter the MSP by way of magnetic
reconnection at MP (e.g. Paschmann, 1979). This impor-
tance in the global scale context is one of the reasons that
MP reconnection has been studied extensively (e.g. Phan et
al., 2000).

The observations suggest that MP reconnection location
varies according to the IMF condition (e.g. Pinnock et al.,
2003; Fuselier et al., 2005; Trattner et al., 2007). The well-
known fact is that the reconnection site is shifted to poleward
of the cusp under northward IMF. The aurora spot in the cusp
is one of the clearest evidence for the direct injection of the
solar wind ions along the reconnected field lines (Phan et
al., 2003; Frey et al., 2003). Variation of the upstream con-
dition provides various setting to study reconnection physics
using data obtained at MP and this is another reason why MP
reconnection has been studied extensively. Yet another rea-
son for studying reconnection at MP is that the MP crossing

Published by Copernicus Publications on behalf of the European Geosciences Union.



2472 K. G. Tanaka et al.: Effects on magnetic reconnection of a density asymmetry across the current sheet

provides a simpler cut through a reconnection layer than a
magnetotail case because the MP has a sharp density gradi-
ent and/or magnetic field structures. That feature enables us
to embed with more ease the observed smaller-scale struc-
tures in a larger-scale context.

Indeed recent in-situ observations at MP have been show-
ing hint of electron scale physics embedded in large-scale
reconnection dynamics. The observation of the subsolar MP
crossing by the Polar spacecraft under the southward IMF
condition (Mozer et al., 2002) has shown a textbook-like ex-
ample of the MP structure with (1) clear signatures of the
Hall current system in the ion diffusion region, (2) non-zero
normal component of the magnetic field, (3) possible signa-
ture of the electron diffusion region in the decoupling of the
electron flow from theE×B-drift, and (4) the separatrix on
the MSP side showing the low frequency electric field tur-
bulence, the parallel electric field, and the local minima in
the plasma density. Cluster observations (André et al., 2004;
Panov et al., 2005; Stenberg et al., 2005) have shown the
electron scale current layers of a few electron inertial scale
widths associated with currents and strong electric fields on
the magnetospheric side of the MP.

The magnetotail is another important region in the con-
text of magnetic reconnection. In this case, the reconnect-
ing magnetic field consists of a pair of magnetospheric plas-
mas having symmetric density profile along the current sheet
normal direction. Interests for most of simulationists tended
to focus on magnetotail-like configurations (e.g. GEM chal-
lenge – Birn et al., 2005; Newton Challenge – Birn et al.,
2006) probably because the settings are less complicated than
the MP case. This, however, does not mean that MP-like
cases are just complicated and does not contain any interest-
ing plasma physics associated with it.

Because of the contact between the solar wind plasmas
and the magnetospheric plasmas, a large density gradient
is formed at the magnetopause. In addition to the various
magnetic field settings, the density asymmetry should be re-
garded as one of the most characteristic features of MP cur-
rent layer. In such a condition, the lower-hybrid drift insta-
bility (LHDI) may be driven unstable and has been the tar-
get of simulation studies. Gary and Sgro (1990) have firstly
carried out simulation study on the LHDI with MP-like sit-
uation. After Gary and Sgro (1990), Scholer et al. (2003),
Ricci et al. (2004), Daughton et al. (2004), Shinohara and
Fujimoto (2005), Tanaka et al. (2004, 2005, 2006) and Silin
and B̈uchner (2006) have proposed a new view at the possi-
ble role of LHDI at the edges.

Nakamura and Scholer (2000) performed hybrid simula-
tions (mass-less electrons) and studied another aspect of the
density asymmetry, that is, its impact on the two-dimensional
reconnection dynamics at MP. They showed that the Hall
magnetic field (BM) has the bipolar structure rather than the
quadrupolar structure seen in a density symmetry case.

Swisdak et al. (2003) studied the effects of the plasma
pressure gradient in the presence of non-zero guide field by

two-dimensional full-particle simulations. In the case stud-
ied, the magnetic pressure had different values on different
sides and the total pressure balance is maintained by differ-
ent plasma pressures on different sides (As will be shown,
the case studied in the present paper has zero-guide field and
equal magnetic/plasma pressure across MP.). In this case the
X-line slides along the current sheet due to diamagnetic drift
of the electrons and, when the X-line sliding speed is larger
the reconnection rate is found to be smaller.

Borovsky and Hesse (2007) have examined the MP-like
reconnection between two plasmas with different mass densi-
ties using two-dimensional resistive magneto-hydro dynam-
ics (MHD) simulations. Their systematic survey has shown
that the reconnection rate is scaled by the hybrid Alfvén
speed. They have found that the plasma outflow from the
reconnection region becomes larger and more stretched on
the low mass density side than on the high mass density
side. Cassak and Shay (2007) have applied a Sweet-Parker
scaling analysis to asymmetric anti-parallel reconnection in
which both the plasma number densities and magnetic field
strengths are different between the MSP and magnetosheath
(MSH). They have found that the location of the X-line de-
couples from the stagnant point. Then, they have also car-
ried out two-dimensional resistive MHD simulation in order
to verify their theoretical prediction and have shown that the
decoupling of the X-line from the stagnant point indeed takes
place.

Recently Retiǹo et al. (2006) have presented detailed
Cluster-II observations of a magnetic reconnection separa-
trix region on the magnetospheric side of the magnetopause
(During ongoing reconnection at that MP, see Retinò et al.,
2005). The observations were obtained poleward of the cusp
under northward IMF and the magnetic field showed an ap-
proximately anti-parallel geometry (zero guide-field) with
strong density asymmetry. In Retinò et al. (2006) three sub
regions within the separatrix region on the MSP side of the
MP were identified. The first subregion is a density dip ad-
jacent to the magnetic separatrix. Inside the dip, a normal
electric field directed to the center of the MP is enhanced.
Both parallel and anti-parallel electron beams were detected.
In the second subregion, plasma density increases gradually
recovers to the MSP level while the electric field decreases.
The electric field fluctuations at/below the electron plasma
frequency were smaller in amplitude compared with the den-
sity dip region while sporadic emissions with narrow peaks
around the electron plasma frequency appeared (suggesting
ongoing electron-scale physics). In the third subregion, a
sharp density gradient brought the density up to the MSH
value and the electric field fluctuations show strong emis-
sions around the lower-hybrid frequency range.

The results of Retiǹo et al. (2006) have motivated us to per-
form the simulation-observations synergy study described in
the present paper. The characteristics of the event that caught
our attention are: (1) The estimated distance from the X-line
is rather small so that the reproduction of the observations by
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Figure 1Fig. 1. Magnetopause crossing event observed by CLUSTER spacecraft (Retinò et al., 2006).(a) The electron number densityNe obtained
from the spacecraft potential,(b) three components of the magnetic fields,(c) the ion outflow bulk velocityViL, and(d) the normal compo-
nent of the electric fieldEN . The blue, red, green, and black lines show the locations of the electron density dip,EN peak,ViL peak, and the
BL reversal, respectively. A deep electron density dip is seen at the MSP side SR, with a strongly enhanced positiveEN peak. Ion outflow
jet in the current sheet is biased toward the MSP side.

a full-particle simulation, whose box size is limited to less
than∼100 ion-inertial length, is possible, (2) It is a large-
scale reconnection event in that ions are fully accelerated,
(3) At the same time clear electron-scale signatures are noted
if not fully resolved. Previous simulation-observation syn-
ergy studies seem to lack comparative investigation on the
electron scale dynamics. On the contrary, the present paper
will discuss the dynamics of the electron distribution func-
tions, as well as the global structure. In this paper we will
show that the reproduction of the key features obtained by
Retiǹo et al. (2006) is fairly successful.

The structure of this paper is as follows: We first review
Retiǹo et al. (2006) and point out the distinct features of the
observed MP reconnection layer. Then the simulation model
is described and the results are shown. In addition to the
observation-simulation comparison, we will make detailed
analyses of the two-dimensional MP structure in order to pre-
dict (1) how and where the electron acceleration takes place,
and (2) the magnetic field structure, which enables us to un-
derstand the data along the spacecraft path (one-dimensional
sampling) from a two-dimensional reconnection dynamics
point of view. We also inspect (3) the density structure at
the X-line, and suggest possible effects in three-dimensional

reconnection. Then, we will briefly discuss the effect of den-
sity profiles (symmetric or asymmetric) on the reconnection
rate and saturation level.

2 Key features in the observations

2.1 Overview of key features

Figure 1 shows the MP crossing event around 10:58:00 UT
on 3 December 2001 reported in Retinò et al. (2006). Shown
in this figure are: (a) the electron number densityne obtained
from the spacecraft potential, (b) three components of the
magnetic fields, (c) the ion outflow bulk velocityViL, and
(d) the normal component of the electric fieldEN . Here the
vector quantities are in the LMN coordinates, with L pointing
to the magnetospheric field direction,N to the MP normal
direction (from MSP to MSH) andM completing the right-
handed coordinates.

The key features in the observations that are used to set the
initial conditions of the simulation are (1) the reconnecting
magnetic field is approximately anti-parallel and the magni-
tudes on both sides are almost the same. (2) The profile of
plasma density is asymmetric, that is, the plasma density on
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Figure 2Fig. 2. Electron energy distribution function obtained at the den-
sity dip on the magnetospheric side of the magnetopause from
10:57:51.78 to 51.89 UT by the PEACE instrument. Two compo-
nents of accelerated electrons are detected. One is the hot beam
(red) in the parallel direction (away from the X-line) of a few hun-
dreds eV. The electron beam energy corresponds roughly to the
local electron Alfv́en velocity. The other is the colder population
(blue) in the anti-parallel (into the X-line) direction.

the MSP side is∼0.1 of that on the MSH side. (3) The ion
outflow in the magnetopause results from the reconnection
jet. This information led us to design the initial setting to be
described in detail later.

The features in the observations that are used to qualify
the comparison with the simulation are as follows: (1) The
plasma density dip is located at the separatrix on the MSP
side. (2) The normal component of the electric fieldEN

shows a localized positive peak at the density dip. (3) The
reconnected ion flow is biased towards the MSP side. (4) The
out-of-plane magnetic fieldBM (the Hall magnetic field) is
positive, which is positive on the MSH side and negative on
the MSP side for a symmetric reconnection.

2.2 The structure of the density dip on the
magnetospheric side

At 10:57:52 UT, the plasma density depletes down to
∼0.02 cm−3, which is 0.2 times of the MSP value and 0.01
times of the MSH value. The location is adjacent to the sep-
aratrix of the magnetic field. In association with the dip,EN

increases up to∼40 mV/m in the positive direction. From
10:57:51.78 to 51.89 UT, that is, just around the density dip,
two components of the accelerated electrons are detected by
the Plasma Electron And Current Experiment (PEACE) in-
strument, which is shown in Fig. 2. One is a hot beam (red)
in the parallel direction (away from the X-line) of a few hun-
dreds eV. The electron beam corresponds roughly to the lo-
cal electron Alfv́en velocity. The other is a cold population
(blue) in the anti-parallel (into the X-line) direction.

2.3 The structure of the ion jet

At 10:58:18 UT, the reconnecting magnetic fieldBL is re-
versed, meanwhile the peak of the ion jet is observed at
10:58:06 UT withViL∼500 km/s. That is, the ion jet is bi-
ased toward the MSP side.

2.4 The out-of-plane magnetic field component

At 10:58:26 UT, when the spacecraft is on the MSH side, the
magnetic fieldBM is enhanced up to 50 nT. MeanwhileBM

at 10:58:04 UT in the MP is slightly increases up to 20 nT.
That is, the out-of-plane fieldBM is only positive and is
stronger on the MSH side.

3 Simulation setup

We use 2 1/2-dimensional (two spatial dimensions (xN , xL)

and three velocity components (vL, vM , vN )) electromag-
netic full particle simulation (Hoshino, 1987; Tanaka et al.,
2004). In our simulations, plasmas consist of two popula-
tions. The Harris-type current sheet is used to ensure that the
initial condition is not far from a Vlasov equilibrium. Full
details are given below.

Two plasma populations are set in the initial con-
dition. One population constructs the Harris current
sheet (Harris, 1962). The Harris current sheet is ex-
pressed asnCS=n0/cosh2(xN/D) for the plasma, and as
BL=−B0tanh(xN/D) for the magnetic field, whereD is
the half-thickness of the current sheet. The plasma in-
side the current sheet has the ion-to-electron tempera-
ture ratio Ti,cs=8Te,cs . The other plasma population is
the background plasmas having the number density of
nBG1=n1{1−1/cosh2(xN/D)} at xN>0 (MSH side) and
nBG2=n2{1−1/cosh2(xN/D)} at xN<0 (MSP side). It is
distributed outside the current sheet. In the present pa-
per, the background plasma density is set ton1=n0, and
n2=0.1n0, respectively. The background temperatures are
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Table 1. Comparison of ion and electron temperatures, the observed
case versus the simulation.

MSP MSH

Observation
Te 20–30 eV 50 eV
Ti 200 eV 50–200 eV

Simulation
Te 1 1
Ti 19 1

set to beTi,BG1=Te,BG1=Te,BG2=Te,CS . Then,Ti,BG2 is de-
termined to conserve the pressure balance. After some easy
calculation, the MSP side ion temperature is found to be
Ti,BG2=19T e,CS . Using the MSH values, the initial plasma
beta is found to be 0.29.

Note that as was stated in Introduction, the initial pressure
balance configuration is different from those of Swisdak et
al. (2003). While the initial pressure balance of Swisdak et
al. (2003) was done by varying magnetic field strength, that
of the present case is done by varying the ion background
temperature.

In Table 1, comparison of the ion and electron tempera-
ture between the observation and simulation is made. In this
table, the MSP and MSH values are listed. the temperature
units are electron volt (eV) in the observation and (Te,CS) in
the simulation, respectively. In the observation, a reference
interval for the MSP domain is 10:55–10:56 UT, and for the
MSH domain is 10:59–11:00 UT (not shown in Fig. 1). One
should note thatTi,BG2=19 in the simulation seems to be un-
realistic. A brief discussion of the temperature difference
between the observation and simulation will be made in the
Discussion section.

In addition to the Harris magnetic field, a Gaussian-type
perturbation vector potentialAM0=ϕ0exp[−(x2

N+x2
L)/2w2]

is introduced to set an X-line at the center of the box. By
setting ϕ0=e1/2δBNw, δBN is the amplitude of the ini-
tial perturbation of the reconnected magnetic field. Here
δBN=0.05B0. Note that the initial guide field component is
setBM=0 in this study.

Hereinafter, magnetic field and density will be normalized
by B0 andn0, respectively. The ion inertial lengthλi=c/ωpi

based onn0 and the inverse ion gyro frequency�−1
i based on

B0 are the units for spatial and time scales, respectively, and
velocities will be measured in the MSH ion Alfvén speed unit
VAi=B0/(4πmin0)

1/2 (mi : the ion mass). The electric field
is normalized byB0×(VAi/c), wherec is the light speed.
In this normalization, the MSH electron inertial length is
λe=M−1/2 (M: ion-to-electron mass ratiomi /me). M=100
and thusc/VAI =10 in our study.

We set the electron plasma frequency to electron gyro fre-
quency ratio to beτ=ωpe=/�e=1 to reduce the computa-
tional cost, whereas the realistic value is∼40 in the magne-
topause, and∼5 in the magnetotail. In the present study, we
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Fig. 3. Temporal developments of the reconnected magnetic flux9,
(dashed gray line with right vertical axis), and the maximum|VeL|

(solid black line with left vertical axis) of the present simulation.
At t=17, the reconnected is still growing and the electron jet has
already reached maximum level.

do not expectτ to play a major role in our two-dimensional
reconnection studies, as recently suggested by Haijima et
al. (2008). In this paper, the dependence of reconnection
rate and saturation level onτ has been surveyed using two-
dimensional full-particle simulation of density symmetric
current sheet. Varyingτ=1, 2, and 4, they have shown that
the saturation phase of the tearing mode is independent from
τ .

Periodic boundary conditions are imposed in thexL direc-
tion while conducting walls are set at thexN boundaries. The
simulation box is [0,LL]×[−LN /2,LN /2] in the normalized
unit, with LL=24 andLN=16. The boundary conditions do
not have any effects on the results shown in this paper. The
half-thickness of the current layerD is set 0.5 and the half
width of the initial magnetic field perturbationw is set 1,
respectively. The spatial grid of1x=0.9λDe (λDe: Debye
length) and the time step of1t=0.15625�−1

e (�e: the elec-
tron gyro frequency) are adopted, respectively. 1024 parti-
cles per grid represent the unit density.

4 Comparison between simulation and observation

4.1 Overview of simulational results

Based on the key features stated in the previous section, we
search for the time and location that are best compared with
the observations. Figure 3 shows the temporal developments
of the reconnected flux (solid black) and the maximum|VeL|

(dashed black). Att=17 we found a situation which shows a
fairly good agreement with the observation. It is found from
Fig. 3 that att=17, (1) reconnection is still going on, and (2) a
largely enhanced electron outflow jet is stably maintained.
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Fig. 4. 2-D color contours of the simulation results att=17. (a) The electron number densityne, (b) the ion outflow bulk velocityViL,
(c) the electron outflow bulk velocityVeL, (d) the out-of-plane magnetic fieldBM , and(e) the normal component of the electric fieldEN .
The bands at the bottom of each panel show the MSP and MSH domain in the simulation box. The horizontal black line shows the virtual
spacecraft observation path, along which detailed analysis is made in Fig. 5.

Figure 4 shows the two-dimensional (2-D) color contours
of the simulation results att=17. In this figure, (a) the elec-
tron number densityne, (b) the ion outflow bulk velocity
ViL, (c) the electron outflow bulk velocityVeL, (d) the out-
of-plane magnetic fieldBM , and (e) the normal component
of the electric fieldEN are shown. A horizontal black line
depicts the locationxL=17.625 (the X-line is atxL=12), at
which the detailed one-dimensional profiles will be inspected
later. In this figure, black and light gray bands at the bottom
of each panel along N-direction represent the lengths of the
MSP, and MSH proper, respectively. The virtual spacecraft
is moving from left (MSP) to right (MSH) in the panels. The
magnetic field lines are superimposed as black curves on the
color contours.

It would be useful to preview with these panels some of
the features that will be studied in detail. (1) The density
dip on the MSP side will be discussed. In Fig. 4a, while
the dip itself is not seen clearly, one can note the density
gradient layer to be developed along the separatrix on the
MSP side. In contrast, the density dip on the MSH side is
clearly seen along the separatrix (This is not clearly seen in
the observations). In Fig. 4c, one notes that the separatrix on
the MSP side is accompanied by intense electron flow away
from the X-line (VeL>0). (2) In Fig. 4e, a strongly positive
EN along the separatrix on the MSP side is found. In contrast
EN along the separatrix on the MSH side is rather weak and
is negative. (3) In Fig. 4b, the ion flows out from the X-line
is shown. At the location of the slice, the ion flow is biased
towards the MSP sidexN<0. This feature has been seen in
a hybrid simulation result of Nakamura and Scholer (2000).
That is, the size of the present full particle simulation is large
enough that such an ion-scale feature can be observed.

While the above three items are used to identify the loca-
tion xL=17.625 att=17 as the best matching virtual space-

craft trajectory, the other feature that will be discussed is the
out-of-plane magnetic fieldBM shown in Fig. 4d. If the den-
sity is symmetric,BM would show so-called Hall quadrupo-
lar magnetic field. In Fig. 4dBM is positive atxL>0 and
negative forxL<0. The electron flow sustaining the corre-
sponding in-plane electric current component flows from the
MSH side to the MSP side along the contour of theBM com-
ponent. This bipolar feature has been seen in a hybrid sim-
ulation result of Nakamura and Scholer (2000). An observa-
tional study by Øieroset et al. (2004) notes that the same is
seen in the distant tail reconnection where north-south den-
sity asymmetry is expected.

Figure 5 shows one-dimensional cuts of the simulation re-
sults alongxL=17.625, 5∼6 ion inertial length away from the
X-line. In Fig. 5, (a) the electron number density, (b) three
components of the magnetic fieldsBL (blue), BM (green),
andBN (red), (c) the ion outflow bulk velocityViL. (d) the
electron outflow bulk velocityVeL, and (e) the normal com-
ponent of the electric fieldEN are shown. In this figure, the
blue, red, green, and black vertical lines represent the loca-
tion of density dip,EN peak,ViL peak, andBL reversal, re-
spectively. Those lines are drawn to compare with what was
seen in Fig. 1.

Figure 6 shows electron velocity distribution functions at
t=17 and atxL=17.625. Figure 6a∼c, and 6d∼f is the elec-
tron distribution function around the density dip on the MSH
and MSP sides, respectively. Those electrons are sampled
at (a) xN=1.53 (the negative peak ofVeL), (b) xN=1.25
(the ne dip), (c) xN=1.44 (the positive peak ofVeL), and
(d) xN=−1.5 (the positive peak ofVeL), (e) xN=−1.67 (the
ne dip), (f) xN=−1.75 (the negative peak ofVeL), respec-
tively. The horizontal and vertical axes are theveN andveL.
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4.2 The structure of the density dip on the
magnetospheric side

In Fig. 5a, the electron density isne=0.1 at the outermost
side of MSPxN=−4. A density dip withne=0.04 is formed
aroundxN=−1.5, which is depicted by a blue vertical line.
The density depletion rate is∼0.5 of the outermost MSP
level. A large density gradient is observed aroundxN=−1.3.
In Fig. 5d, just around the density dip, a negative-to-positive
bipolar VeL is seen. ThereVeL drops down to−0.7 at
xN=−1.7 and increases up toVeL=2.7 atxN=−1.5, which
is depicted by a red vertical line. In association with the pos-
itive VeL peak,EN increases up to 0.12 atxN=−1.5.

At the location of the positive peak ofVeL, most of the
electrons are strongly accelerated parallel to the magnetic
field, as shown in Fig. 6d. That is, those electrons are flow-
ing away from the X-line. On the contrary, the electrons
both at the density dip (Fig. 6e) and negative peak ofVeL

(Fig. 6f) are weakly accelerated anti-parallel to the magnetic
field (into the X-line). The distance between the positiveVeL

peak (red vertical line) and thene dip (blue vertical line) is
estimated to∼0.2, which is∼2c/ωpe. Comparison between
Fig. 6d and e implies that the electron acceleration can be
drastically changed within the electron inertial scale in the
separatrix region on the MSP side.

The structure of the density dip on the MSP side shows
fairly good agreement between simulation and observation.
The density at the dip in the simulation is 0.5 times of the
MSP level, while in the observation is 0.2 times of the MSP
level. At the density dip, both the simulation and observation
show the positiveEN enhancement. The peak value ofEN

is about 1.2, which is in fair agreement with the dimension-
less value of 2.3 (based on 40 mV/m) observed in the Cluster
data. While there is no data ofVeL in the observation, the
simulation shows the flow reversal of the electron just around
the density dip. The mixture of the two populations of accel-
erated electrons seen in observations at the density dip (see
Fig. 2) is suggested to result from low-time resolution sam-
pling.

4.3 The structure of the ion jet

In Fig. 5c, the steep lift-off ofViL atxN=−1.5 from 0 to the
peak value ofViL=0.6 atxN=−1.2 (depicted by the green
vertical line) is seen. Since the center of the magnetic field
reversal is located atxN=0.04 (the black line), the ion jet is
biased toward the MSP side. This structure of the ion jet
biased towards the MSP side is seen also in the observation
(see the green and black lines in Fig. 1).

4.4 The structure of the density dip on the
magnetosheath side

In Fig. 5a, a density dip structure is observed atxN=1.5 with
ne=0.6. The density dip on this MSH side is found to be not
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Fig. 5. One-dimensional cuts of the simulation results alongxN

at t=17 atxL=17.625. (a) The electron number density,(b) three
components of the magnetic fieldsBL (blue),BM (green), andBN

(red),(c) the ion outflow bulk velocityViL. (d) the electron outflow
bulk velocity VeL, and (e) the normal component of the electric
field EN . The blue, red, green, and black vertical lines represent
the location of the electron density dip,EN peak,ViL peak, and the
BL reversal, respectively. These lines correspond to those in Fig. 1.

as deep as that on the MSP side. In Fig. 5d, a well-developed
negative electron outflow appears withVeL=−1.8 atxN=1.5
in association with the density dip. There is a small positive
peak ofVeL on the MSP side of it.
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At the location of the negative peak ofVeL (Fig. 6a), the
electron are accelerated toward theveN<0 andveL<0 direc-
tion with their averaged velocity beingveL∼−1.6. At the
location of the positive peak ofVeL (Fig. 6c), two popula-
tions of electron beams coexist in it. One electron beam has
a composition ofveN<0 andveL<0. This beam seems to be
the same electron population as that of Fig. 6a and b. The
other electron beam has the velocity ofveN>0 andveL>0,
and is flowing away from the X-line.

While observation does not detect any clear density dip
on the MSH side except for an enhancement ofEN<0, sim-
ulation shows a small density dip in association withVeL

flow into the X-line and with the slightEN enhancement on
the MSH side. However, the density dip on the MSH side
is much smaller than the one on the MSP side, such that
it would be quite possible that magnetosheath fluctuations
mask its presence.

4.5 The out-of-plane magnetic field component

As for the magnetic field structure in Fig. 5b, a small in-
crease ofBM=0.1 is observed aroundxN=−1.2 on the MSP
side. Then a larger increase ofBM=0.4 is observed atxN=1.5
on the MSH side. The asymmetricBM>0 signature can quite
well reproduce the observation in Fig. 1b. This asymmetric is
different from the quadrupolar pattern expected during sym-
metric reconnection (e.g. Pritchett, 2001; Shay et al., 2001).
Nakamura and Scholer (2000) have already shown theBM

asymmetry. They have explained that the much strongerBM

on the MSH side results from the much higher plasma den-
sity on the MSH side. We will show an alternative interpre-
tation later. Comparison between simulation and observation
shows thatBM peak at the MSH side is 4 times larger than
that at the MSP side in the simulation. Meanwhile, in the ob-
servation,BM peak at the MSH side is 2.5 times larger than
that at the MSP side.

5 Electron acceleration and the magnetic field structure

In the previous section, comparison between simulation and
observation has been made with respect to the key features.
While the comparison along a one-dimensional cut, which
showed rather good agreement, is a good validation of the
simulation, a deeper analysis in the two-dimensional simu-
lation results would give us a clearer view of what physical
processes lead to the observed features. In this section, we
will first inspect the spatial structure of the magnetic field.
Then we will realize that the enhancedEN at the MSP SR,
which was independently picked-up as a key feature in the
observations, is the origin of the bipolar HallBM . Further-
more we will see that the electron beam away from the X-line
detected at the MSP SR is related to the bipolarBM . That is,
the key features identified in the observations are found to
be strongly related with each other. These findings clearly
show how the simulation results can complement spacecraft
observations by providing extra information not available via
observations.
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Fig. 7. Three-dimensional structure of the magnetic field lines.
Color on the field lines representsBM . Color of red, green, and
blue in the field lines areBM>0, ∼0, and<0, respectively. Focus-
ing on a newly reconnected magnetic field, this reconnected field
line is strongly lifted up in the positivexM -direction around the X-
line on the MSH side whereBM>0 is strongly enhanced. Then, it
lies on thexL-xN plane along the MSP SR (BM∼0). This defor-
mation of the field line takes place as the portion of the reconnected
field lines along the MSP SR quickly drifts in the +M direction upon
crossing the SR.

5.1 The origin of the bipolar Hall magnetic field

The mono-signedBM pattern in Fig. 4d implies that the mag-
netic field lines within the jet are slanted towards the +xM di-
rection in the M-N plane. Noting thatBN is negative on this
side of the X-line, this bending of the field lines can be made
if the part of the reconnected field line situated at the MSP
side edge is pulled to the +M direction. To show that this
is the case, the three-dimensional structure of the magnetic
field lines is shown in Fig. 7.

Color on the field lines representsBM at each location.
Red, green, and blue areBM>0, ∼0, and<0, respectively.
Field lines with substantialBM appear to be bent toward the
xM -direction. On the contrary, field lines withBM∼0 stay on
thexL−xN plane. Let us focus on a newly reconnected mag-
netic field atxL>12. This reconnected field line is strongly
lifted up in the positivexM -direction around the X-line on the
MSH side whereBM>0 is strongly enhanced. Then, it lies
on thexL−xN plane along the MSP SR. This deformation
of the field line takes place as the portion of the reconnected
field lines along the MSP SR quickly drifts in the +M direc-
tion upon crossing the SR.

In Fig. 8, comparison betweenBM and the M-component
of the E×B-drift VE×B,M is shown. Along the MSP SR,
the enhancedEN , which was discussed before (Fig. 4e), pro-
duces an enhancement inVE×B,M>0. This means that the
reconnected field are shifted in the +M direction upon cross-
ing the SR and this happens only on the MSP side. A consid-
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Fig. 8. Comparison between(a) BM and (b) VE×B,M . Along
the MSP SR, the enhancedEN makes enhancedVE×B,M>0 to
be present. This means that the reconnected field are shifted in the
+M direction upon crossing the SR and this happens only on the
MSP side.

eration of how the field lines behave in the M-N plane makes
us understand why only positiveBM is seen within the jet on
this side of the X-line, and negativeBM on the other side.

5.2 Electron beam at the magnetospheric side separatrix

It is interesting to see from our simulation results how the
electron beam away from the X-line at the MSP SR is pro-
duced during magnetic reconnection. In Fig. 9, we inspected
the electron velocity distribution functions along a recon-
nected magnetic field line. Figure 9a is the 2-D contour of
VeM at t=17. The enhanced electron flow in the +M direc-
tion is seen at the reconnection region and extends along the
MSP SR. Figure 9b∼e is the electron distribution function
at the several locations marked in Fig. 9a by the blue aster-
isks. Red lines in Fig. 9c∼e show the directions of the local
magnetic field at each location. Each red line in Fig. 9c∼e
is given byvM=(BM /BL)×(vL – VE×B,L)+VE×B,M , where
BM , BL, VE×B,L, andVE×B,M are the values at each sam-
pling location. The slope of the red line is the direction of
magnetic field in L-M plane at each location. In Fig. 9b,
we do not draw a red line since|B| at that location is too
small. The point (vL, vM)=(VE×B,L, VE×B,M) is the origin
to the observer who is moving with theE×B-drifting field
line. Figure 9b and c shows that significant electron acceler-
ation in the +M direction in the close proximity of the X-line
has substantial component along the field line becauseBM is
non-zero (and positive) even at the center of the jet. The field
aligned electrons simply stream along the field line. With
increasing distance from the X-line, the magnetic field ro-
tates towards the L-axis (Fig. 9d and e). Together with this,
the electron distribution function shape also rotates but this
only reflects the fact that field-aligned component stays field
aligned as they stream away from the X-line.

www.ann-geophys.net/26/2471/2008/ Ann. Geophys., 26, 2471–2483, 2008



2480 K. G. Tanaka et al.: Effects on magnetic reconnection of a density asymmetry across the current sheet

6 7 8 9

 10

 11

 12

 13

 14

 15

 16

 17

 18-4
-3

-2
-1

0
1

2
3

4

XL

-4.0 4.0

(a) VeM t = 17

XN

-10

0

 10

-10 0  10

v e
M

veL

-10

0

 10

-10 0  10

v e
M

veL

-10

0

 10

-10 0  10

v e
M

veL

-10

0

 10

-10 0  10

v e
M

veL

(b) (c)
(d)

(e)

(b) (c)

(d) (e)

Figure 9Fig. 9. The origin of the electron beam along the separatrix on
the magnetosphere side.(a) 2-D contour ofVeM . (b) ∼ (e) Elec-
tron distribution functions on thevN =0 plane. The sampling loca-
tions are (xN , xL)=(−0.13, 13), (−0.1, 13.75), (−0.9, 15.6), and
(−1.5, 17.6). The red lines in Fig. 9c∼e is the direction of the
local magnetic field at each location. Each red line in Fig. 9c∼e
is given byvM=(BM /BL)×(vL−VE×B,L)+VE×B,M , whereBM ,
BL, VE×B,L, andVE×B,M are the values at each sampling loca-
tion. The slope of the red line is the direction of magnetic field in L-
M plane at each location. The point (vL, vM )=(VE×B,L, VE×B,M )

is the origin for an observer that is co-moving with the field line.

The origin of the MSP SR electron beam would be sum-
marized as follows: In the center of the current sheet, strong
electron acceleration toward the +M-direction is attained as
in any reconnection geometry. The density asymmetry, how-
ever, makesBM not zero at the center of the current sheet
and accelerated electrons are field aligned. They simply re-
main field aligned until they are detected at the SR. It is clear

that the bipolar Hall field (and thus, as describe above, the
enhancedEN at the MSP SR) is the crucial factor for the
formation of the beam at the MSP SR.

6 Discussion

In the present paper, we have carried out a comparative study
between the magnetopause crossing observations by Clus-
ter and a two-dimensional particle-in-cell simulation. The
MP crossing event had a substantial density jump across the
boundary but was without guide field and thus is a good
chance to study the effects of the density asymmetry across
a current sheet on magnetic reconnection.

Regarding observation-simulation comparison, fairly
good agreement is achieved. (1) The structure of the den-
sity dip on the magnetospheric side is fairly in good agree-
ment between simulation and observation. Both the simu-
lation and observation show the positiveEN enhancement.
While the observation shows a mixture of two populations
of the accelerated electrons at the density dip, the simulation
suggests that the mixture may result from low-time resolu-
tion of the measurements. (2) The peak location of the ion
jet velocity is biased toward the MSP side in both the simula-
tion and the observation. (3) The out-of-plane magnetic field
component shows good correspondence between our simula-
tion and the observation. The out-of-plane magnetic field on
the MSH side is larger than that on the MSP side.

Meanwhile, on the MSH side, the structure of the density
dip is different. In the simulation, the MSH side SR forms
an evidently visible density dip with weak but certainVeL

andEN signatures like the MSP case. In contrast, observa-
tion do not show a clear density dip at the MSH side. The
explanation for the discrepancy could be that the structure
may be too weak to stand out against the fluctuations in the
magnetosheath.

We have stepped beyond a simple observation-simulation
comparison and studied the simulation results to find that the
key features of the asymmetric reconnection that we identi-
fied in the observations are indeed related to each other. The
out-of-planeE×B-drift due to the enhancedEN (the key
feature #1) at MSP SR bends the field lines such the bipolar
BM (key feature #2) appears in the reconnection jet. Then
thisBM makes the electrons accelerated at the X-line to have
substantial field-aligned component. These electrons simply
stream along the MSP SR to be detected as the electron beam
there (key feature #3).

The best matching with the observations in the simula-
tion box was obtained at 5∼6 ion inertial length from the
X-line. This is much smaller than the∼50 inertial lengths
found by Retiǹo et al. (2006) by comparing with another nu-
merical simulation by Bavassano Cattaneo et al. (2006). The
thickness of the reconnection layer at this location is about
3 ion inertial lengths. Meanwhile, Cluster observed theBL

rotation from 10:57:54 to 10:58:20 UT. Assuming that 1 s
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Fig. 10.The vertical structure of the X-line (xL=12) under the den-
sity asymmetry. The format is the same as Fig. 5.

corresponds to 20 km∼0.5 ion inertial length (Retiǹo et al.,
2006) the current sheet thickness is∼13 ion inertial length.
The difference by a factor of∼4 may be taken to be within
the range of the error bar associated with the ambiguity in
the observations. It is also noted that temporal features such
as the passage of magnetic islands, which are not included in
the simulation but are observed by Retinò et al. (2006) can
account for this discrepancy. On the other hand, the observa-
tion location might be further from the X-line by a factor of
∼4, which is∼20 ion inertial lengths away from the X-line.
While the simulation in such a larger box for an extended
time is not available now, fairly good agreement obtained
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Fig. 11.Comparison between the present case (solid black), and the
symmetricn1/n2=0.1/0.1 case (dashed black). Reconnected mag-
netic flux9 as a function of time is shown.9 of then1/n2=0.1/0.1
case shows faster reconnection rate and larger saturation level.

here suggest that the spatial structure studied here will ex-
pand self-similarly to show the essentially the same features
at the new location more distant from the X-line.

As indicated in Table 1, the observed ion and electron tem-
peratures in the MSP and in the MSH are similar. This is
typical of high-latitude lobe reconnection (i.e. reconnection
between MSH and MSP lobe field lines tailward of the mag-
netospheric cusp) and differs from low-latitude reconnection
occurring between cold MSH and hot plasma sheet plasma.
In both cases, however, there is usually a large density asym-
metry between MSH and MSP. In this paper, we have focused
on the effects of the density gradient during MP reconnec-
tion rather than on the temperature gradient. However in the
simulation,Ti in the MSP is 19 times larger than in the MSH
suggesting that temperature gradients are also included in the
present results. The role of temperature asymmetry requires
further analysis and will be investigated in another study.

Another relevant issue that is not included here is the
velocity shear between MSP and MSH. While our simu-
lation has no velocity shear across the MP, the observa-
tions show that the outermost magnetosheath flow velocity
is Vsh∼150 km/s (at 11:00:00 UT in Fig. 1 of Retinò et al.,
2006). With the MSH ion Alfv́en speed atVA,sh,i∼240 km/s,
the Alfvén Mach number of the sheath flow is∼0.63. In-
spection of our very recent MP reconnection simulation run
which includes the sheath flow ofVsh=0.5VA,sh,i indicates
that the key features studied in this paper are only slightly
modified by this moderate Mach number flow. Details will
be given in a future publication.

In the simulation runs, we are able to sample the recon-
nection layers at locations which a spacecraft seldom could
cross. In Fig. 10, the one-dimensional structure at the X-line
is shown. The format is the same as Fig. 5. In this figure,
a steep density gradient is detected atxN=−0.3. While it is
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stable in the present 2-D run, in the three-dimensional (3-D)
situation it may be unstable to the lower-hybrid drift instabil-
ity (LHDI) (Davidson et al., 1977). This may bring another
feature to appear in magnetic reconnection under a density
asymmetry and it will be investigated in the future.

As was described in the Introduction, our study con-
centrates on the electron dynamics embedded in a recon-
necting layer with density asymmetry. An important is-
sue is how the density asymmetry modifies the reconnection
rate. In Fig. 11, a comparison between different density ra-
tios n1/n2=1/0.1 (solid black),n1/n2=0.1/0.1 (dashed black)
cases is made. In this figure, the temporal development of re-
connected magnetic flux is shown. Evidently, the case with
n1/n2=0.1/0.1 has both faster growth rate and the larger satu-
ration level. It is interesting to see how the reconnection rate
is controlled or scaled byn1/n2, and this will be discussed in
a future work.
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A., André, M., Khotyaintsev, Y., Phan, T., Pallocchia, G., Rème,
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