
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Semantics-Aware Autoencoder
VITO BELLINI1, TOMMASO DI NOIA2, EUGENIO DI SCIASCIO3 ANGELO SCHIAVONE.4
1Polytechnic University of Bari, Italy (e-mail: vito.bellini@poliba.it)
2Polytechnic University of Bari, Italy (e-mail: tommaso.dinoia@poliba.it)
3Polytechnic University of Bari, Italy (e-mail: eugenio.disciascio@poliba.it)
4Polytechnic University of Bari, Italy (e-mail: angelo.schiavone@poliba.it)

ABSTRACT Recommender Systems are widely adopted in nowadays services such as e-commerce
websites, multimedia streaming platforms, and many others. They help users to find what they are looking
for by suggesting relevant items leveraging their past preferences. Deep Learning models are very effective
in solving the recommendation problem; as a matter of fact, many deep learning architectures have
been proposed over the years. Even if deep learning models outperform many state-of-the-art algorithms,
the worst disadvantage is about their interpretability: explaining the reason a specific item has been
recommended to a user is quite a difficult task since the model is not interpretable. Accuracy in the
recommendation is no more enough since users are also expecting a useful explanation for the suggested
items. Users, on the other hand, want to know why. In this paper, we present SemAuto, a novel approach
based on an Autoencoder Neural Network that makes it possible to semantically label neurons in hidden
layers, thus paving the way to the model’s interpretability and consequently to the explanation of a
recommendation. We tested our semantics-aware approach with respect to other state-of-the-art algorithms
to prove the recommendation’s accuracy. Furthermore, we performed an extensive A/B test with real users
to evaluate the explanation we generate.

INDEX TERMS Autoencoder Neural Network, Cold start problem, Deep Learning, Explanation, Knowl-
edge Graph, Recommender System.

I. INTRODUCTION
Recommender Systems (RSs) have become pervasive tools
we experience in our everyday life. While browsing a catalog
of items, RSs exploit users’ past preferences to suggest new
items they might be interested in. In a digital world where
we, as users, are overwhelmed by multiple possibilities and
choices, they result in a valid tool to help us finding informa-
tion that fits our needs, tastes, and preferences. Many online
services heavily rely on the usage of recommender systems
to suggest new movies to watch, new books to read, or new
songs to listen to.

Over the years, different strategies have been proposed to
tackle the recommendation problem; among them, collabora-
tive filtering (CF) has shown to be very effective in predicting
the relevance of unrated items, especially if much data about
users-items interactions are available. CF approaches use
item ratings1 provided by the users in a system to suggest, in
a personalized way, new and unknown items to interact with.
Differently from CF RS, content-based (CB) approaches
exploit descriptive metadata to find items that are similar

1Here, with ratings we refer to whatever user interaction, both implicit
and explicit, from which we can infer a like or dislike behavior.

to those already available in a user profile and recommend
them accordingly. CF approaches suffer from the cold start
problem: when a new item is added to the catalog, it has no
ratings; therefore, the recommendation engine would not be
able to recommend it even if it might be of interest to some
users. This problem could be mitigated by combining both
CF and CB approaches into a single one, this results in a
Hybrid Recommender System.

A rich and useful (free) source of content description
for items is given by Knowledge Graphs, which have been
recently adopted to represent items, compute their similarity
and relatedness [1] as well as to feed CB and hybrid recom-
mendation engines [2]. The publication and spread of freely
available Knowledge Graphs in the form of Linked Open
Data datasets, such as DBpedia [3], has paved the way to the
development of knowledge-aware recommendation engines
in many application domains and, still, gives the possibility
to easily switch from a domain to another one by just feeding
the system with a different subset of the original graph.

Over the last years, we have seen at the rising of Deep
Learning models in many fields such as Computer Vision,
Speech Recognition, Natural Language Processing, and more

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

recently, few attempts have also been made to solve the
recommendation problem [4]. Deep Learning techniques
have proven their strength, thus gaining the attention of both
researchers and companies, and they are widely deployed in
nowadays recommender systems. While research has mainly
focused on improving accuracy metrics in recommenders,
under the hood, their algorithms are becoming more and
more complex, thus making it extremely hard to understand
the reasons behind model predictions for a particular input.
Lack of interpretability recently led both researchers and
companies to pay more attention to explainable models. In-
deed, it has been proven that showing to users an explanation
for the provided recommendation leads to better interaction
with the system [5], [6]. Moreover, when users understand
how the system works, they can refine their preferences to get
a better recommendation according to their tastes. However,
in many popular recommenders such as Amazon or Netflix,
the explanation provided is still feeble, as it is mainly based
on a popularity basis: it just tells that users with similar tastes
have enjoyed the suggested items. It turns out that this kind
of explanation is not perceived as a valid justification of
the reason why the system is recommending certain items,
and it hardly improves users’ loyalty in the system. On the
other hand, a content-based explanation proves to be more
engaging from the users’ point of view because it makes users
aware of the item’s attributes that might be relevant to them.

In this paper, we present SemAuto, and we show how
autoencoders technology can benefit from the existence of
a Knowledge Graph to create a representation of a user
profile that can be eventually exploited to predict ratings
for unknown items. The rationale behind the approach is
that both Knowledge Graphs and Artificial Neural Networks
(ANNs) behind Deep Learning expose a graph-based struc-
ture. Hence, we may imagine building the topology of the
hidden layers in the ANN by mimicking that of a Knowledge
Graph.

Here we show how the model built by SemAuto, although
very effective in computing accurate recommendations, can
also be adopted to compute content-based explanations to
recommended items. We evaluated the effectiveness of our
approach through an A/B testing platform and compared its
results with respect to two baselines. We tested both a point-
wise and a pairwise explanation style by exploiting different
kinds of the available information in DBpedia2 (categorical
and factual), in order to investigate how the effectiveness of
the proposed explanation changes according to the selected
knowledge adopted to feed SemAuto.

This paper presents more comprehensively the contribu-
tions presented in [7]–[9] and extends them by adding an
evaluation in the cold start scenario and a more detailed result
discussion.

The remainder of this paper is structured as follows: in the
next section, we discuss related works about recommender
systems exploiting deep learning, Knowledge Graphs, and

2http://dbpedia.org

Linked Open Data. Then, the basic notions of the technolo-
gies we adopted are introduced in Section III. The proposed
recommendation model, the experimental settings and eval-
uation are described in Sections IV and V. Conclusions and
Future Work close the paper.

II. RELATED WORKS
Autoencoders and Deep Learning for RS. The adoption
of deep learning techniques is undoubtedly one of the main
advances of the last years in the field of recommender sys-
tems. In [10], the authors propose the usage of a denoising
autoencoder performing a top-N recommendation task by
exploiting a corrupted version of the input data. A pure
Collaborative-Filtering (CF) model based on autoencoders is
described in [11], in which the authors develop both user-
based and item-based autoencoders to tackle the recommen-
dation task. Stacked Denoising Autoencoders are combined
with collaborative filtering techniques in [12] where the
authors leverage autoencoders to get a smaller and non-linear
representation of the users-items interactions. This represen-
tation is eventually used to feed a deep neural network, which
can alleviate the cold-start problem thanks to the integration
of side information. A hybrid recommender system is finally
built. Moreover, in [13], it is suggested how to apply deep
learning methods with side information to reduce the sparsity
of the rating matrix in collaborative approaches. In [14] the
authors propose a deep learning approach to build a high-
dimensional semantic space based on the substitutability
of items; then, a user-specific transformation is learned to
get a ranking of items from such a space. Analysis of the
impact of deep learning on both recommendation quality and
system scalability are presented in [15], where the authors
first represent users and items through a rich feature set made
on different domains and then map them to a latent space.
Finally, a content-based recommender system is built.

All the approaches based on deep learning models that
have been proposed over the years turned out to barely
leverage latent factors to which no meaning can be attached.
Among them, Autoencoder Neural Networks have proven
their effectiveness in CF settings, as shown in [11], in which
the authors use an Autoencoder fed with user ratings to pre-
dict the missing value for users’ unseen items. In other works
such as [13], a stacked architecture made of Autoencoders
is proposed to perform a generalization over a higher set of
latent features that every stacked autoencoder is able to learn.
More recently, in [16] the authors propose a hybrid architec-
ture for Autoencoders to incorporate both users’ feedbacks
and content description about items. A similar approach has
been proposed in [17], in which they exploit side information
in a CF setting by using Stacked Autoencoders to overcome
the cold start problem and data sparsity.
Knowledge Graphs and Linked Open Data for RS. Sev-
eral works have been proposed exploiting side information
coming from Knowledge Graphs (KGs) and Linked Open
Data (LOD) to enhance the performance of recommender
systems. Most of them rely on the usage of DBpedia as

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

KG. By leveraging the knowledge encoded in DBpedia, it
is possible to build an accurate content-based recommender
system [18]. In [19], for the very first time, a LOD-based
recommender system is proposed to alleviate some of the
major problems that affect collaborative techniques, mainly
the high sparsity of the user-item matrix. The effectiveness of
such an approach seems to be confirmed by a large number
of methods that have been proposed afterward. A detailed
review of LOD-based recommender systems is presented in
[20].

It is worth noticing how KGs are recently being used in lots
of applications; they freely offer a large amount of structured
data, which proved to be very useful also in recommenda-
tion scenarios [21]–[23]. In particular, in [7], the authors
introduce the idea of a Semantics-Aware Autoencoder, which
paves the way to compute explanations by leveraging deep
learning techniques.
Explanation for RS. A fundamental design principle for an
Explainable RS is the interpretability of its model, which
leads to a recommender system transparent to users. Explain-
able RSs are getting more and more relevance since they may
lead to users retain, as investigated in [24]. Different studies
[5], [25] have pointed out that introducing transparency in
the recommendation process may have lots of advantages
because users appear to be more satisfied with the recommen-
dation if they are aware of the reasons why certain items are
suggested. Furthermore, the provided explanation may also
convince users to try items they would have usually ignored,
thus improving users’ confidence in the system.

Since the explanation may be decoupled from the recom-
mendation process, a distinction between transparency and
justification has to be made [26]. The explanation brings
transparency to the system if it makes users aware of how
the recommender engine works, explaining somehow the
underlying algorithm behind the proposed suggestions. This
is usually the case of those explanations computed along
with the recommendation. On the other hand, justification
implies an explanation that is not directly related to the
recommendation algorithm; thus, it can be generated without
any constraint. Such kind of explanations may be preferred
to transparency because of algorithms that are difficult to
explain or have not to be disclosed.

The main advantages users may get from the explana-
tion are described in [27] and they include: transparency,
scrutability, trust, effectiveness, persuasiveness, efficiency
and satisfaction. In [28], the authors show how they can
be exploited as evaluation metrics for explanatory services.
However, providing adequate explanations is not always a
trivial task; RSs have undoubtedly proven to be very accurate
in accomplishing their tasks, but they usually work just like
black boxes, being not transparent at all. To overcome this
issue, new methods have been developed to generate an ex-
plainable recommendation ([25] provides an overview of the
most successful approaches proposed over the years) such as
MoviExplain [29], which exploits movies metadata to justify
its recommendation lists. Other interesting works include: a

RS based on Restricted Boltzmann Machines which looks
at the rating distribution to identify the most explainable
items [30]; a Latent Factor Model leveraging users reviews
to compute more transparent recommendations [31]; finally,
a novel approach based on movies information encoded in the
LOD cloud which generates natural language explanation for
the computed recommendation is presented in [32].

III. BACKGROUND
In this section, we briefly present the main technologies on
which we base our model.

A. KNOWLEDGE GRAPHS
In 2012, Google announced its KG3 as a new tool to improve
the identification and retrieval of entities in return to a search
query.

Since graph data are versatile so that they can model enti-
ties with connections among them, they can represent almost
anything in the real world. For this reason, several big tech
companies, such as Facebook4, are spending resources on the
development of their KG. Furthermore, the main advantage
of the usage of graph data is that side information is easy
to attach to the current graph, and this allows a company
to enrich their knowledge base about a domain of interest
progressively.

Detective films

Sleepy Hollow (film)

subject

Blade Runner

su
bj
ec
t

Ghost films

su
bj
ec
t

Corpse Bride

subject

Musical fantasy films
subject

Hercules (1997 film)

su
b
je
ct

Tim Burton

d
irector

Tim Burton

di
re
ct
or

Harrison Ford

starrin
g

FIGURE 1: Part of a KG related to the movie domain.

Even though top tech companies have started to use KGs
as knowledge bases in their products, the boost for this
technology is given by some communities that began to
develop KGs as well-structured graph data encoding the
human knowledge.

Some prominent examples of KGs are DBpedia and
Wikidata, which are community-driven projects that lever-
age on Wikipedia pages to automatically parse structured
data. Wikipedia pages are very rich sources of information,
but, unfortunately, they are human-readable documents, i.e.,
unstructured data that computer agents cannot easily un-
derstand. Making this information structured allows com-

3https://googleblog.blogspot.it/2012/05/introducing-knowledge-graph-things-not.
html

4https://developers.facebook.com/docs/opengraph

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

puter agents to exploit this source of information. Start-
ing from Wikipedia infoboxes, which summarize human-
readable documents in tabular form, automatic tools extract
entities and their relationships, which are lately stored as
RDF triples5.

Mainly, we may identify two kinds of information in
DBpedia: semantics-aware and factual one. The former can
be divided into categorical and ontological data. Categor-
ical information is encoded through the dct:subject
predicate and represents items categories parsed from
Wikipedia infoboxes, such as Detective films6 or
Ghost films7. Categories in Wikipedia are collabora-
tively maintained by community editors, thus leading to a
rich set of categories that reflects a human classification by
encoding knowledge about classes, attributes, and other se-
mantic relations [33]. Ontological data capture entities types
(classes) and their hierarchy; it does not only represent their
taxonomy but extends it by using restrictions on its relation-
ships to other classes or on the properties a particular class
is allowed to possess. Finally, factual knowledge is merely
made of facts; it identifies items’ attributes, as it can be in the
movie domain that the actor Harrison Ford starred in the
movie Blade Runner, as depicted in Figure 1. Differently
from categorical information, factual one is identified via
different attributes/predicates connecting an item to different
entities as in the case of director, starring, etc..

In DBpedia, the quantity of categorical information is
higher than the factual one. The former is more distributed
over the items than the latter; if we consider movies, we see
that they are more connected with each other via categories
than via other entities. Hence, in this work, we focus on
categorical information.

B. AUTOENCODER NEURAL NETWORKS
Autoencoders are a special kind of unsupervised learning
ANNs that try to set the output values equal to the input
ones, modeling an approximation of the identity function
yyy = f(xxx) = xxx. Roughly, they are forced to predict the same
values they are fed with. Therefore, the number of output
units and that of input nodes is the same, i.e., |xxx| = |yyy|. Such
a task aims to obtain a new representation of the original
data based on the values of the hidden layer neurons. Each
of these layers projects the input data in a new Euclidean
space whose dimensions depend on the number of the nodes
in the hidden layer. Please notice that the actual meaning
of each dimension in the new space is unknown since it
encodes the implicit knowledge behind the original data.
Hence, autoencoders are usually exploited to perform the so-
called feature representation task.

IV. SEMANTICS-AWARE AUTOENCODER
Both knowledge graphs and autoencoder neural networks
share a common structure: they are directed graphs. Actually,

5http://www.w3.org/TR/rdf11-concepts/
6https://en.wikipedia.org/wiki/Category:Detective_films
7https://en.wikipedia.org/wiki/Category:Ghost_films

there are also differences between the two representations. In
fact, in a neural network, nodes are structured in layers where
two following ones are fully connected with each other; in a
knowledge graph, instead, we cannot identify such a structure
as each node (entity) is semantically connected to other ones.
Moreover, while in a KG the semantics of connections as well
as that of each node is explicit and well-defined; after the
training of an autoencoder, the hidden layers encode some
latent representation of the interaction between the input
nodes whose meaning remains unknown.

In a Semantics-Aware Autoencoder (SemAuto), the hid-
den layers and their connections are substituted by nodes and
labeled connections of a KG, thus having an explicit repre-
sentation of the meaning associated both to hidden nodes and
to their mutual connections [7]. This means that each neuron
represents an entity in the adopted KG, and the edge between
two autoencoder nodes exist if the corresponding KG entities
are connected with a predicate (labeled edge).

Inspired by fully-connected Autoencoders, Semantics-
Aware ones [9] try to solve the interpretability issue by
labeling neurons in hidden layers, thus assigning an attribute
in the explicit feature space to each of them. Considering
that every hidden neuron represents a feature, it has to be
stimulated only if it describes - and thus it belongs to -
the associated item. Therefore a generic neuron representing
an explicit feature results to be connected to those input or
output neurons that describe the item. Hence, the resulting
neural network is not fully-connected, as depicted in Figure
2.

Corpse
Bride5.0

Sleepy
Hollow
(film)

4.0

Blade
Runner2.0

Ghost
films

Musical
fantasy
films

Detective
films

Neo-noir

Corpse
Bride 5.0

Sleepy
Hollow
(film)

4.0

Blade
Runner 2.0

sub
ject

subject

su
bj
ec
t

subject

subject

sub
ject

subject

subje
ct

subject

subje
ct

subje
ct

subject

Hidden LayerInput Layer Output Layer

FIGURE 2: Architecture of a Semantics-Aware Autoencoder.

While DBpedia encodes different kinds of information,
factual and semantics, in this work, we used only the latter for
what concerns the recommendation since we found that cat-
egorical information (semantics) is better distributed among
entities in the KG with respect to the factual one. A uniform
distribution of item’s attributes allows us to explore better
the recommendation space since the user profiles we are able

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

to generate contain features shared across several items on
which our recommendation algorithm generalizes the better.

Hence, the resulting autoencoder has three layers: an input
layer, hidden layer, and output layer, where the input and
output layers represent items in the catalog while the middle
hidden layer contains their DBpedia categories.

Considering that the aforementioned autoencoder relies on
a not fully-connected architecture and item’s attributes are
connected only with items they belong to, user ratings are
propagating only through those hidden neurons that repre-
sent attributes related to rated items. Due to the nature of
Autoencoder Neural Networks, they learn how to reconstruct
input data by using a latent representation they encode in the
hidden layer. Analogously, Semantics-Aware Autoencoders
learn a function to reconstruct the input data by using a
semantic representation of the user ratings; therefore, they
reconstruct the user ratings they are fed with by using an
explicit representation in terms of features.

It turns out that features belonging to positively rated
items tend to have a higher weight, differently from those of
negatively rated items. This behavior is quite understandable
considering that a rating feeding an input node (representing
an item in the catalog) flows throughout the neural network
by crossing only features/nodes connected to it in the KG.
We want to stress here that, although each autoencoder is
trained over a not huge number of samples, in [9] we prove
that recommendation results have very good performance in
terms of accuracy and diversity also compared to state-of-
the-art algorithms8.

To train such kinds of autoencoder, we inhibit the feed-
forward and backpropagation step for those neurons which
result to be not connected in the KG by using a masking
multiplier matrix M where rows and columns represent
respectively items and features.

M =

a1,1 a1,2 · · · a1,n
...

...
. . .

...
am,1 am,2 · · · am,n

 (1)

The matrix in Equation (1) represents the adjacency matrix
of the KG where a generic entry is a binary value indicating
whether a connection among entities exists in it. In other
words, we have

ai,j ∈M =

{
1, if item i is connected to entity j
0, otherwise

Hence, hidden (h) and output (o) layers are computed by
the following two equations:

h = g(X × (W1 ◦M))

o = g(h× (W2 ◦MT))
(2)

8The code implementing SemAuto has been developed by using Tensor-
Flow and is available at https://github.com/sisinflab/SEMAUTO-2.0.

During the backpropagation step, gradients are computed
as usually for W1 and W2 with respect to a mean squared
error loss E = 1

2

∑
i ‖ xi − yi ‖2 being xi and yi the

elements of the input and output vector respectively.
The weights update step in SGD (Stochastic Gradient

Descent) backpropagation has been modified according to
Equations (3) in order to take into account the masking
matrix M :

W1 = (W1 ◦M)− r · ∂E
∂W1

W2 = (W2 ◦MT)− r · ∂E
∂W2

(3)

Where E is the mean squared error loss while W1 and W2

represent the weight matrices for the connections between the
input and hidden layer (W1) and between the hidden layer
and the output layer (W2). They are both initialized ran-
domly using Xavier initialization [34]. In our experiments,
we trained the model for 1000 epochs with a learning rate r =
0.03 and we used the well-known sigmoid σ(z) = 1

1+e−z as
activation function. Since we train one autoencoder per user,
and we want it to overfit on user ratings, we did not use any
form of regularization. According to equations (2), bias terms
are missing since, in this model, they do not represent any
information from the KG.
Computing user profiles. After training the autoencoder for
each user u, we extract the weights of the hidden neurons and
use them to build a user profile P (u):

P (u) = {〈fu1, wu1〉, . . . , 〈fum, wum〉} (4)

being fu the label associated to the neuron and wu its
corresponding weight for u. Indeed, as each hidden neuron
represents an entity in DBpedia, we may assume that its
weight after the training is an indicator of the importance of
the corresponding entity for u.

V. EXPERIMENTS
Here, we describe the experimental settings we used to test
our approach. In this work, we focused on three main aspects:
the recommendation accuracy and diversity, the cold start
problem, and finally, the explanation, which is a direct conse-
quence of our method since it is based upon an interpretable
model that leads to explainability of the recommendation.

In order to validate our approach we performed experi-
ments on the three datasets summarized in Table 1.

TABLE 1: Datasets.

#users #items #ratings sparsity

MovieLens 20M 138,493 26,744 20,000,263 99.46%
Amazon Digital Music 478,235 266,414 836,006 99.99%
LibraryThing 7,279 37,232 626,000 99.77%

In our experiments, we referred to the freely available KG
of DBpedia9. The mapping contains 22,959 mapped items for

9https://dbpedia.org

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

MovieLens 20M10, 4,077 items mapped for Amazon Digital
Music11 and 9,926 items mapped for LibraryThing12. For
our experiments, we removed from the datasets all the items
without a mapping in DBpedia.

A. RECOMMENDATION
In this section, we show how we used our approach to
generate accurate top-N recommendations (which also turn
to be easily explainable as we will demonstrate in Section
V-D).

Since the datasets used in the experimental settings are
very sparse, the resulting user profiles (see Equation 4) are
still sparse because users rated a few items with respect
to all the items in the catalog. To reduce the sparsity of
user profiles, inspired by [35], we use a word2vec based
approach, which lets us infer a score for missing features.
Word2vec is an efficient technique originally conceived to
compute word embeddings (i.e., numerical representations
of words) by capturing the semantic distribution of textual
words in a latent space starting from their distribution within
the sentences composing the original text. Given a corpus,
e.g., an excerpt from a book, it projects each word in a
multidimensional space such that words which are similar
from a semantic point of view result close to each other. In
this way, we can evaluate the semantic similarity between
two words even if they never appear in the same sentence.
Given a sequence of words [x1, . . . , xn] within a window,
word2vec compute the probability for a new word x′ to be
the next one in the sequence. More formally, it computes
p(x′ | [x1, . . . , xn]).
UserProfile2Vec. In our scenario, we may imagine replac-
ing sentences represented by sequences of words with user
profiles represented by sequences of features; given Fu =
{fu1, ..., fum} as the set of categories belonging to all the
items rated by u, we use the word2vec approach to compute
the weight of missing feature f 6∈ Fu.

Starting from P (u), we first generate a corpus made of
sequences of ordered features sorted by ω. Sorting each user
profile is meant to give a pattern among features in different
user profiles as they should appear nearby in word2vec’s
window according to their features ranking. This process lets
the learned pattern to infer the mostly like missing features
within the word2vec window for each user since a feature
f ∈ Fu results coherently for all u ∈ U .

Then, for each 〈f, ω〉 ∈ P (u) we create a corresponding
pair 〈f, norm(ω)〉 with norm being the mapping function

norm : [0, 1] 7→ {0.1, 0.2, 0.3, . . . , 1}

that linearly maps13 a value in the interval [0, 1] to a discrete
value in the set {0.1, 0.2, 0.3, . . . , 1}. The new pairs we

10https://grouplens.org/datasets/movielens/20m/
11http://jmcauley.ucsd.edu/data/amazon/
12https://www.librarything.com
13In our current implementation we use a standard minmax normaliza-

tion.

obtain from this discretization process form the normalized
set

Pnorm(u) = {〈f, norm(ω)〉 | 〈f, ω〉 ∈ P (u)}

For each normalized user profile set Pnorm(u) we then build
the corresponding sequence sorted in descending order

s(u) = [. . . , 〈fi, norm(ωu
i)〉, . . . 〈fj , norm(ωu

j)〉, . . .]

with ωu
i ≥ ωu

j .
Once we have the set S = {s(u) | u ∈ U} we

can feed the word2vec algorithm with this corpus to find
patterns of features according to their distribution across
all users. In the prediction phase, by using each user’s se-
quence of features s(u) as input for the trained word2vec
model, we estimate the probability of 〈f ′, norm(ω′)〉 ∈⋃

v∈U P
norm(v)−Pnorm(u) to belong to the given context,

or rather to be relevant for u. In other words, we compute
p(〈f ′, norm(ω′)〉 | s(u)).

It is worth noticing that given f ′ ∈ Fu we
may have multiple pairs with f ′ as first element
in

⋃
v∈U P

norm(v) − Pnorm(u). For instance, given
the feature dbc:Ghost_films we may have both
〈dbc : Ghost_films, 0.2〉 and 〈dbc : Ghost_films, 0.5〉,
with the corresponding probabilities:

p(〈dbc : Ghost_films, 0.2〉 | s(u))
p(〈dbc : Ghost_films, 0.5〉 | s(u))

As we want to add the feature dbc:Ghost_films and its
corresponding weight only once in the user profile, we select
the pair with the highest probability. The new user profile is
then

P̂ (u) = P (u) ∪ {〈f, ω〉 |
argmax

ω∈{0.1,...,1}
p(〈f, ω〉 | s(u)) and 〈f, ω〉 6∈ Pnorm(u)}

We point out that while the original P (u) is built by exploit-
ing only content-based information, the enhanced user profile
P̂ (u) also considers collaborative information as it is based
on the set S containing a representation for the profiles of all
the users in U .
Recommendations. Given the user profiles represented as
vectors of weighted features, recommendations are then com-
puted by using a well-known k-nearest neighbors approach
[36]. User vectors are projected into a Vector Space Model to
find user similarities, which are later exploited to compute,
for each user, her neighborhood. Therefore, for each pair of
users u and v we calculate their cosine similarity.

Given the users’ similarity matrix, for each user u we find
her top-k similar neighbors to infer the rate r for the item i as
the weighted average rate that the neighborhood gave to it:

r(u, i) =

∑k
j=1 sim(u, vj) · r(vj , i)∑k

j=1 sim(u, vj)
(5)

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

where r(vj , i) is the rating assigned to i by the user vj .
We use then ratings from Equation (5) to provide top-N
recommendation for each user.

B. EVALUATION PROTOCOL
In this section, we show how we evaluated the performances
of our methods in recommending items. For the evaluation of
our approach we adopted the "all unrated items" protocol de-
scribed in [37]: for each user u, a top-N recommendation list
is provided by computing a score for every item i not rated
by u, whether i appears in the user test set or not. Using the
Hold-Out 80/20 split protocol, we assure that every user has
80% of their ratings in the training set and the remaining 20%
in the test set. Then, recommendation lists are compared with
the test set by computing both accuracy and diversity [38]
metrics. More specifically, we evaluate Precision, Recall, F-1
score, nDCG [39], and aggregate diversity as a measure of
how much diversified the recommendations we are able to
generate are.

In our investigations, we compared our method with three
different states of the art techniques widely used in recom-
mendation scenarios: BPRMF [40], WRMF [41], [42] and
a single-layer autoencoder for rating prediction. BPRMF is
a Matrix Factorization algorithm that leverages Bayesian
Personalized Ranking as the objective function. WRMF is
a Weighted Regularized Matrix Factorization method that
exploits users’ implicit feedback to provide recommenda-
tions. In their basic version, both strategies rely exclusively
on the User-Item matrix in a pure CF approach. Since our
approach relies on hybrid techniques, we exploited side in-
formation (additional data associated with items) within the
aforementioned baselines. In our experiments, we leveraged
categorical information found on the DBpedia KG as side
information and used the implementations of BPRMF and
WRMF available in MyMediaLite14 and implemented the
autoencoder in TensorFlow15. Moreover, we did not limit to
run the baselines with their default values, but we performed
a hyperparameters optimization to find the best parameters
for each baseline; the corresponding values are reported in
Table 2. For what concerns our method, we tuned some
hyperparameters such as the ones related to the word2vec
approach (window and embedding sizes), and we gathered
different results by varying the number k for the neighbor-
hood size. We found that our method works better with a
window size of 500 and an embedding size of 50.

C. COLD START
The cold start problem affects every CF-based RS when a
new item is added since, in that case, it has not received any
ratings yet; hence, CF algorithms are unable to recommend
a fresh item. On the other hand, when a user is new to the
system, she has no ratings; therefore, both CF and CB tech-
niques are unable to accurately predict any interesting item

14http://mymedialite.net
15https://www.tensorflow.org

since the system knows nothing about the user’s preferences.
As a consequence, in RSs, we may identify cold-item and
cold-user problems.

To evaluate the effectiveness of our approach in such situ-
ations, we simulated the cold start scenario by preprocessing
the datasets using the following protocol inspired by [43]. We
made the candidate users cold by removing their ratings from
the training set. We tested our approach with profiles reduced
to 2, 5 and 10 ratings.

The procedure we adopted during the evaluation is detailed
in the following.

1) Setup the cold start user scenario
• Randomly choose at most 25% of users (whether they

exist) from cold candidates and put them into set Uc

• ∀u ∈ Uc move out their ratings from the training set
to Fc

2) Evaluate the cold start user scenario
• Create an empty set Rc

• For n ∈ {2, 5, 10} do
– ∀u ∈ Uc do:
∗ randomly pick up n of his ratings from Fc and

move them to the training set
– Train the model
– ∀u ∈ Uc generate recommendation for all unrated

items
– Evaluate recommendations for cold-users only

The method we propose is evaluated against all the base-
lines with respect to the same cold start splits. Hence it eval-
uated on the same users we sampled as cold start candidates.

D. EXPLANATION

The strength of SemAuto is its explainability since the
model, as previously said, is interpretable. To validate the
explanation we are able to furnish users, we set up an
online experiment leveraging on an A/B test platform we
built ad-hoc [8]; thanks to 892 volunteers, we evaluated the
effectiveness of our approach and compared its results to
two baselines. Hence, we primarily focus on the following
research questions:

RQ1 Can we assume that the information encoded in the
hidden layer of the SemAuto autoencoder is represen-
tative of user preferences?

RQ2 Given a content-based explanation built upon the
SemAuto model, is a pairwise explanation better than
a simple pointwise one for the user?

In our experimental setting, we build the structure of
the SemAuto autoencoder by using those KG entities that
are reachable through the predicate dbo:subject as item
categories. To select the top-3 factual movie properties we
used the approach originally proposed in [44], retaining the
following properties: dbo:starring, dbo:director,

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

TABLE 2: Optimal hyperparameters adopted for each method.

MOVIELENS 20M
AUTOREC rate: 0.03, epochs: 1000, hidden_units: 15, keep_prob: 1
BPRMF factors: 50, rate: 0.05, iters: 50, reg_u: 0.0025, reg_i: 0.001, reg_j: 0.0025
BPRMF + SI factors: 5, rate: 0.05, iters: 15, reg_u: 0.0025, reg_i: 0.0025, reg_j: 0.001
WRMF factors: 50, iters: 50, regularization: 0.1, alpha: 1
WRMF + SI factors: 50, iters: 50, regularization: 0.1, alpha: 1

AMAZON DIGITAL MUSIC
AUTOREC rate: 0.01, epochs: 1000, hidden_units: 64, keep_prob: 1
BPRMF factors: 10, rate: 0.05, iters: 50, reg_u: 0.02, reg_i: 0.02, reg_j: 0.00025
BPRMF + SI factors: 100, rate: 0.05, iters: 100, reg_u: 0.0025, reg_i: 0.0025, reg_j: 0.002
WRMF factors: 10, iters: 100, regularization: 0.1, alpha: 1
WRMF + SI factors: 10, iters: 100, regularization: 0.1, alpha: 1

LIBRARYTHING
AUTOREC rate: 0.05, epochs: 1000, hidden_units: 64, keep_prob: 0.75
BPRMF factors: 100, rate: 0.05, iters: 100, reg_u: 0.01, reg_i: 0.0025, reg_j: 0.001
BPRMF + SI factors: 100, rate: 0.05, iters: 100, reg_u: 0.01, reg_i: 0.0025, reg_j: 0.001
WRMF factors: 100, iters: 100, regularization: 0.1, alpha: 1
WRMF + SI factors: 100, iters: 30, regularization: 0.075, alpha: 1

dct:writer16.
Explaining the provided recommendation to users is not

only a matter of model’s interpretability: it allows us to
catch the user’s attention, hence, an appropriate style should
have been taken into account. For this reason, in this work,
we evaluate different explanation styles we generate through
user profiles we compute with SemAuto.

In order to formulate a human-understandable explanation
for the provided results, we rely on the weights associ-
ated with features in the user profile, which also appear
in the description of the recommended items. In particu-
lar, given a user u and a recommendation list rec(u) =
[〈i1, r̃u1 〉, . . . , 〈in, r̃un〉], with r̃uk being a score/rating com-
puted for the item ik by a recommendation engine, we may
compute a pointwise and a pairwise personalized explana-
tion.
pointwise personalized. Given an item i = {f1i, f2i, . . . , fni}

described by a set of features fi, the pointwise explana-
tion e1k(i) is computed by considering the set of top-k
highest weighted features in P (u) which also appear in
i.

pairwise personalized. Given two items i and j such that
r̃ui > r̃uj , the pairwise explanation e2k(i, j) is computed
by evaluating both e1k(i) and e1k(j). In casem features
are in common between e1k(i) and e1k(j), we compute
e1k+m(j) and leave them only in e1k(i) thus avoiding
any overlap between the explanation for i and that for j.

To verify that the explanation generated through a
Semantics-Aware Autoencoder is able to satisfy the main

16We selected only the top-3 properties to reduce the dimension of the
feature space and then minimize the noise in the provided explanation.
Finding the best number of properties to compute explanations is not in the
scope of this paper and is part of our future work.

explanatory criteria of transparency, persuasiveness, effec-
tiveness, trust and satisfaction, we built a web platform that
returns the top-5 recommendations and then asks for users’
feedback about the provided explanation.

E. EXPLANATION STYLES
We provided our platform with four different explanation
styles: as in [32], we used a popularity-based explanation
and a non-personalized one as baselines [28] while as third
and fourth style we provide our pointwise and pairwise
approaches. While a user interacts with the platform, we ran-
domly select one of the four styles and show the associated
explanation generated for the top-2 recommended items in
a pairwise fashion. Hence, the user may receive one of the
following explanations:
popularity-based We suggest these items since they are very

popular among people who like the same movies as you.
(non-/pointwise) personalized We guess you would like to

watch i and j since they are about f̃u1, . . . f̃uk
pairwise personalized We guess you would like to watch

i more than j because you may prefer e1k(i) over
e1k+m(j) (Example 1)

Example 1. In order to show the difference between a
pointwise and a pairwise personalized explanation, hereafter
we report the two explanation styles with reference to a
recommendation having Terminator 2: Judgment Day and
Transformers: Revenge of the fallen as the first two items
in the recommendation list. The pointwise personalized
explanation may look like:

We guess you would like to watch Terminator 2: Judgment
Day (1991) and Transformers: Revenge of the Fallen (2009)

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

because you may prefer:

• (subject) 1990s science fiction films
• (subject) Science fiction adventure films
• (subject) Drone films
• (subject) Cyberpunk films

and:

• (subject) Science fiction adventure films
• (subject) Films set in Egypt
• (subject) Robot films
• (subject) Films shot in Arizona
• (subject) Ancient astronauts in fiction

while the pairwise version (see also Figure 3b) is a bit
different:

We guess you would like to watch Terminator 2: Judgment
Day (1991) more than Transformers: Revenge of the Fallen
(2009) because you may prefer:

• (subject) 1990s science fiction films
• (subject) Science fiction adventure films
• (subject) Drone films
• (subject) Cyberpunk films

over:

• (subject) Films set in Egypt
• (subject) Robot films
• (subject) Films shot in Arizona
• (subject) Ancient astronauts in fiction
• (subject) IMAX films

�

The popularity-based explanation, as its name suggests,
justifies recommender choices by leveraging the popularity
of suggested items among the users with similar tastes of
the active user u, hence it may be considered as the less
meaningful to the user. The non-personalized explanation,
instead, tries to explain the provided recommendation by
using additional information about the items. In our exper-
iments, given the top-2 recommended items i and j, we
randomly select k = 5 features from the set Fij = Fi ∪
Fj = {f1i, f2i, . . . , fni} ∪ {f1j , f2j , . . . , fn′j}. In a similar
manner, in a pointwise personalized explanation we selected
the top-5 features from each set Fi and Fj . The value k = 5
has been selected also to compute e2k(i, j) in the pairwise
personalized explanation.

Please notice that the considered set of features per item
varies according to the different configuration adopted for the
SemAuto autoencoder; it may include just item categories,
factual data or both of them.

During the online A/B testing phase, we fixed a sequence
of steps in order to measure the aforementioned explanatory
criteria.

Steps 1-3. At the beginning of the experiment, the user u
selects at least 15 movies she has watched among the ones
randomly listed by the platform. The movies belong to the

(a) Step 4. The user is asked to rate the recommended items, even if she has not
watched them.

(b) Step 5. The user is asked to read the explanation and after that to rate again
the top-2 recommended items.

FIGURE 3: Screenshots of the A/B testing platform.

well-known MovieLens 20M dataset 17. Then, she is invited
to rate each selected movie on a five-stars rating scale; data so
gathered are exploited to get both the user profile computed
with the semantic autoencoder and a top-5 recommendation
list.
Step 4. Once the recommendation has been generated,
the user is asked to rate the suggested items, even if no
explanation has been shown yet (see Figure 3a): these ratings
will be relevant to determine the impact the explanation has

17https://grouplens.org/datasets/movielens/20m/

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

on the user (persuasiveness).
Step 5. The next step consists of showing to u one of the four
randomly selected explanation styles deployed within the
application (see Figure 3b). After enjoying the explanation,
the user has to re-rate the top-2 recommended items, letting
us measure how different is the evaluation of the items before
and after the explanation has been provided.
Step 6. Similarly, in the last part of the experiment, the user
is asked to re-rate the recommended movies after watching
the related trailers. This phase allows u to emulate the
consumption of the items and makes her more aware of
the topics of the suggested movies. In this way we can
evaluate how much effective the selected explanation style
was (effectiveness).
Step 7. Finally, the user fills a questionnaire, aimed at mea-
suring the explanation transparency, trust and satisfaction
(see Table 3).

When evaluating an explanation system, the main metrics
to evaluate are [25]:

• transparency, which refers to the capability of the expla-
nation to make users aware of how the system works;

• trust, or rather the confidence users have in the system;
• satisfaction, if users have an enjoyable experience in the

usage of the system;
• persuasiveness, which evaluates how much convincing

is the proposed explanation;
• effectiveness: the explanation is said to be effective if it

helps users to correctly estimate items relevance before
the consumption.

The first three metrics are evaluated by collecting answers
from users after filling the questionnaire at Step 7. As a
final score for the first and the second metrics, we used the
percentage of users that answered positively to the questions
while we exploited the average score assigned by users to
quantify the overall satisfaction.

In order to evaluate the persuasiveness of the proposed
explanation, we asked users to rate each recommended item
before and after showing them the explanation: if the rating
provided after looking at the explanation is higher than the
original one, then the explanation has been able to persuade
the user to try the suggested item. More formally we measure
persuasiveness as [25]:

persuasiveness =
1

|U |
·
∑
u∈U

1

N
·
∑
i∈Iu

N

(reui − rui)

where U stands for the collection of users; IuN represents
the set of top-N recommended items for u; rui and reui are,
respectively, the ratings u assigns to i just before and after
the explanation is provided.

Analogously, we evaluated the effectiveness as the differ-
ence between two ratings (see Equation (V-E) [25]), where
rtui represents the rating the user gives to the suggested movie
after watching the related trailer (rtui).

effectiveness =
1

|U |
·
∑
u∈U

1

N
·
∑
i∈Iu

N

||reui − rtui||

The lower this value, the more effective the explanation,
since it implies that users have rated each item with very
similar values before and after the explanation has been
provided.

TABLE 3: The final questionnaire.

METRIC QUESTION

transparency I understood the reason why the two movies have
been ranked in the proposed order.

trust The explanation increased my trust in the system.

satisfaction

The provided explanation:
really captures my tastes.
partially captures my tastes.
does not capture my tastes.

We conducted our experiment with the help of 892 volun-
teers18, with at least 73 subjects for each of the implemented
settings. As stated in [45], 73 has to be considered as the
minimum acceptable sample size for such kinds of exper-
iments. This assures the significance of our experimental
results. Furthermore, we verified the statistical significance
of our experiment by using Wilcoxon Rank-Sum Test, getting
p� 0.01.

VI. RESULTS DISCUSSION
We have evaluated our approach by comparing it with dif-
ferent state-of-the-art baselines and using three datasets in
different domains, with respect to accuracy and diversity
point of view. In Table 6, we report the results gathered
in datasets by applying the methods discussed above. As
for our approach SemAuto, we tested it for a different
number of neighbors by varying k. In terms of accuracy,
we see that SemAuto outperforms our baselines on both
MovieLens 20M and Amazon Digital Music datasets, while
on LibraryThing the achieved results are quite the same as
BPRMF and WRMF baselines. In particular, we suppose that
the LibraryThing dataset is highly affected by popularity bias
since the fully-connected autoencoder significantly outper-
forms all the other baselines obtaining an aggregate diversity
of only 118 items.

Moreover, focusing on the results, it seems that our ap-
proach provides very discriminative descriptions for each
user, letting us identify the best neighborhood and compute
both accurate and diversified recommendations. Regarding
diversity, we get much better results on all the datasets. As
a matter of fact, we achieve the same results in terms of
accuracy as the baselines by suggesting many more items.
This means that our approach really captures the real users’
preferences and therefore, it provides useful recommenda-
tions that turn out to be also diversified since SemAuto

18They were recruited both among our students and via Amazon Mechan-
ical Turk.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

extracts unusual features from user ratings that are relevant
to the user. Hence, exploring the long tail allows SemAuto
to provide both accurate and diversified recommendations.
A further confirmation that our approach examines the long
tail is given by results reported in Table 6, where at a given
baselines’ value for the F-1 score, our approach recommends
more items than the baselines. Even if one may argue that our
method is more likely a rating prediction approach, nDCG
results reported in Table 6 confirm that SemAuto ranks
recommended items as they appear in the test set. In other
words, it means that our method not only suggests relevant
items, even from the long tail and so maintaining a high level
of diversity, but it does in the proper ranking order within the
recommendation list it generates.

Analyzing Table 4, we can state that SemAuto performs
better on those datasets whose items are described by a larger
amount of categorical information, which implies the usage
of many hidden units. Since ANNs can model very complex
functions if enough hidden units are provided, as Universal
Approximation Theorem points out, the more dataset’s items
are rich in features, the better SemAuto performs. For this
reason, our approach proved to work better on MovieLens
20M dataset (whose related neural networks have a high
number of hidden units) rather than the others. In particular,
the experiments show that the performances get worse as the
number of the neurons decreases, i.e., available categories are
not enough.

Regarding the cold user start scenario, we can see that the
same trend is confirmed. Our SemAuto approach performs
better when a large number of features are associated with
items since the more feature we have, the more hidden
neurons our model has. Taking a look at Table 7 we can see
that in a cold start scenario our method performs the best on
MovieLens 20M where we have a huge amount of features in
the user profiles, while we perform worst on Amazon Digital
Music and LibraryThing where few features are available
(Table 5).

TABLE 4: Summary of hidden units for mapped items only.

average #features

Movielens 20M 1015.87
Amazon Digital Music 7.22
LibraryThing 206.88

TABLE 5: Average number of features in cold start user
profiles.

average #features
n = 2 n = 5 n = 10

Movielens 20M 760.03 775.09 793.49
Amazon Digital Music 6.57 6.72 6.89
LibraryThing 156.41 161.11 166.35

Concerning the explanation, analyzing the results shown
in Figure 4, we can state that, as expected, users prefer a CB
explanation, as the popularity-based merely tells users that

the recommended item is popular among the user’s neigh-
borhood. All the explanation metrics but the persuasiveness
one, confirm this trend; in this case, quite interestingly, the
non-personalized explanation style with categorical infor-
mation get negative values, as it happens when users rate
items with lower values after looking at the explanation than
before. This means that the provided explanation discourage
users from watching the suggested movies, probably because
prompting a random set of item’s feature as an explanation
is deleterious for what concerns users’ persuasion to watch
a movie. Interestingly, it is worthy to notice that when a
personalized explanation is provided to users, the categorical
information works better than the factual one, although com-
bining both of them achieves the best results in users’ persua-
sion. Considering the satisfaction, it is reasonable to expect
that non-personalized style works worst with respect to other
explanation styles since it uses a random set of items’ feature;
this behavior is confirmed when it uses categorical or factual
information. However, when both of them are combined,
unexpectedly non-personalized outperforms the categorical
pairwise. We suppose that the more considerable amount of
diversified item’s attributes deceive the user and lead her to
be satisfied with the received explanation; furthermore, we
assume that a significant contribution is given by the factual,
as also pointed by the effectiveness metric. Here, the fac-
tual information outperforms all the other explanation styles
when used in the pairwise approach, but when combined
with the categorical information, they perform worst with
respect to the former alone. We suppose that the categorical
information brings so much noise that it makes the user not
correctly to estimate her expectation after she read the expla-
nation. In detail, the factual information works better than the
categorical one; we assume that users feel more comfortable
with entities such as actors, directors, or real people rather
than abstract concepts like the ones categorical information
provides. The same goes for trust in which it turns out that
users consider more affordable an explanation, whether it
consists of factual information. Regarding transparency, the
system is perceived as more transparent from users when
supplementary information is prompted to them, therefore
combining categorical and factual gets the best result.

Finally, we can state that the personalized style outper-
forms the non-personalized since the latter relies on a random
list of features that belong to the suggested item, with no
assurance that they reflect the user’s preferences. Further-
more, among the personalized approaches, the pairwise is the
one that performs better; we suppose that it actually captures
the user’s preferences, and is capable to rank items’ features
accordingly.

To provide an answer to RQ1, examining the results, it
turns out that our SemAuto provides reliable users’ descrip-
tions, as evidenced by the effectiveness metric, which gets
the lowest value by using a pairwise explanation. This can be
interpreted as a strong signal that the information encoded in
the autoencoder hidden layer is representative of the users’
preferences because the users are less prone to change her

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

TABLE 6: Experimental Results.

k F1 Prec. Recall nDCG aggrdiv
MOVIELENS 20M

AUTOREC − 0.17837 0.17840 0.17835 0.21211 372
BPRMF − 0.16902 0.17334 0.16491 0.17106 3827
BPRMF + SI − 0.15129 0.15025 0.13786 0.16112 1191
WRMF − 0.23161 0.23066 0.23255 0.26664 1567
WRMF + SI − 0.23235 0.23072 0.23248 0.26652 1566

SemAuto

5 0.18857 0.18551 0.19173 0.21941 5214
10 0.21268 0.21009 0.21533 0.24945 3350
20 0.22886 0.22684 0.23092 0.27147 2417
40 0.23675 0.23534 0.23818 0.28363 1800
50 0.23827 0.23686 0.23970 0.28605 1653
100 0.23961 0.23832 0.24090 0.28924 1310

AMAZON DIGITAL MUSIC
AUTOREC − 0.01728 0.00981 0.07230 0.04762 534
BPRMF − 0.01164 0.00651 0.05479 0.02363 1017
BPRMF + SI − 0.01206 0.00677 0.05502 0.02475 539
WRMF − 0.02261 0.01278 0.09794 0.05656 122
WRMF + SI − 0.02151 0.01216 0.09325 0.05220 111

SemAuto

5 0.01514 0.00862 0.06233 0.04365 3378
10 0.01920 0.01091 0.07994 0.05421 3449
20 0.02233 0.01267 0.09385 0.06296 3523
40 0.02572 0.01460 0.10805 0.06980 3549
50 0.02618 0.01486 0.10974 0.07032 3549
100 0.02835 0.01608 0.11964 0.07471 3448

LIBRARYTHING
AUTOREC − 0.11157 0.15073 0.08856 0.14919 118
BPRMF − 0.01672 0.01464 0.01950 0.01834 2354
BPRMF + SI − 0.01344 0.01148 0.01620 0.01588 3165
WRMF − 0.01838 0.01648 0.02077 0.01996 1715
WRMF + SI − 0.01385 0.01251 0.01551 0.01574 1769

SemAuto

5 0.00840 0.00764 0.00931 0.00930 4895
10 0.01034 0.00930 0.01163 0.01139 3558
20 0.01152 0.01029 0.01310 0.01248 2245
40 0.01195 0.01073 0.01347 0.01339 1498
50 0.01229 0.01110 0.01378 0.01374 1312
100 0.01278 0.01136 0.01461 0.01503 873

ratings after she read the explanation.

As for RQ2, we can assert that the pairwise approach
outperforms the pointwise one in all metrics, especially in
transparency because it provides a better justification on how
the system ranks items according to the importance of the
features in the user profile. This lets the user understand bet-
ter how her preferences are involved in the recommendation
process. This has an impact, especially for the persuasiveness
metric, where the pairwise approach has a higher score with
respect to the pointwise explanation, thus leading users to
consume an item after they have read the provided explana-
tion.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel approach that ex-
ploits both deep learning techniques and knowledge graphs
to provide accurate, diversified and explainable recommen-
dations. Usually, a classical application of autoencoders con-
sists of compressing the original input data into a new latent
space with lower dimensions so that finding relationships and
similarities among the data should be easier thanks to the
reduced dimensionality. In this case, we rely on the topology
of a KG to label hidden neurons for a not fully-connected
Autoencoder Neural Network whose model turns out to be
interpretable. We used our approach to auto-encode user rat-
ings in a recommendation scenario via the DBpedia KG and
proposed an algorithm to compute user profiles, which are
exploited to provide recommendations based on the seman-

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

P
B

N
P

P
oi
nt
P

P
ai
rP

1.8

2

2.2

2.4

2.6

(a) satisfaction

P
B

N
P

P
oi
nt
P

P
ai
rP

0

0.05

0.1

(b) persuasiveness

P
B

N
P

P
oi
nt
P

P
ai
rP

0

0.1

0.2

0.3

(c) effectiveness

P
B

N
P

P
oi
nt
P

P
ai
rP

0.6

0.8

(d) transparency

P
B

N
P

P
oi
nt
P

P
ai
rP

0.4

0.6

0.8

(e) trust

categorical

factual

categorical+factual

PB: popularity-based
NP: non-personalized
PointP: pointwise personalized
PairP: pairwise personalized

FIGURE 4: Results comparison.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

TABLE 7: Experimental results in cold start scenario.

#ratings k F1 Prec. Recall nDCG aggrdiv
MOVIELENS 20M

AUTOREC

2

− 0.00596 0.00356 0.03564 0.01824 88
BPRMF − 0.02136 0.01175 0.11749 0.05675 492
WRMF − 0.01647 0.00906 0.09057 0.05541 840
SemAuto 100 0.02211 0.01216 0.12159 0.06039 78
AUTOREC

5

− 0.00798 0.00439 0.04395 0.02068 78
BPRMF − 0.02907 0.01599 0.15995 0.08020 652
WRMF − 0.03549 0.01952 0.19517 0.09586 553
SemAuto 100 0.03579 0.01969 0.19689 0.10161 354
AUTOREC

10

− 0.01215 0.00694 0.04877 0.02648 113
BPRMF − 0.04542 0.02598 0.18054 0.10064 968
WRMF − 0.05594 0.03199 0.22251 0.10953 887
SemAuto 100 0.05093 0.02911 0.20328 0.10809 654

AMAZON DIGITAL MUSIC
AUTOREC

2

− 0.00011 0.00006 0.00061 0.00032 435
BPRMF − 0.00514 0.00283 0.02828 0.01076 45
WRMF − 0.01144 0.00629 0.06296 0.03763 62
SemAuto 100 0.00116 0.00064 0.00634 0.00228 41
AUTOREC

5

− 0.00044 0.00024 0.00243 0.00143 774
BPRMF − 0.00480 0.00264 0.0264 0.01157 14
WRMF − 0.01011 0.00556 0.05565 0.02863 59
SemAuto 35 0.00249 0.00137 0.01369 0.00634 59
AUTOREC

10

− 0.00076 0.00045 0.00256 0.00172 918
BPRMF − 0.00612 0.00356 0.02189 0.01212 14
WRMF − 0.01541 0.00903 0.05246 0.02909 66
SemAuto 100 0.00507 0.00292 0.01916 0.00967 33

LIBRARYTHING
AUTOREC

2

− 0.00020 0.00011 0.00111 0.00070 2291
BPRMF − 0.02496 0.01373 0.13726 0.07732 437
WRMF − 0.02796 0.01538 0.15380 0.09429 1364
SemAuto 100 0.01694 0.00932 0.09316 0.04933 707
AUTOREC

5

− 0.00178 0.00098 0.00982 0.00508 1371
BPRMF − 0.02665 0.01466 0.14664 0.08040 598
WRMF − 0.02996 0.01648 0.16483 0.10044 1270
SemAuto 100 0.01864 0.01025 0.10253 0.05391 656
AUTOREC

10

− 0.00267 0.00159 0.00830 0.00406 321
BPRMF − 0.03373 0.02012 0.10419 0.06090 730
WRMF − 0.04263 0.02547 0.13065 0.09167 1254
SemAuto 100 0.02661 0.01587 0.08214 0.05334 595

tic features we extract with our autoencoder. Experimental
results show that we are able to outperform state-of-the-art
recommendation algorithms on both accuracy and diversity.
We tested our approach even in a cold start scenario, finding
a common trend: the more categorical information (features)
we have for each user profile, the better our method performs.
This is quite interesting since this approach could be used
to perform studies on data quality for knowledge bases in
recommendation scenarios; in a future investigation, we will

compare how the use of different knowledge graphs within
our method will impact the quality of recommendations
regarding both accuracy and diversity. Furthermore, we will
compare our approach with other competitive baselines, as
suggested in more recent works [46].

We also performed online experiments to validate the
capability of our approach to generating an explanation for
recommendation lists via the exploitation of data coming
from the DBpedia knowledge graph. Experimental results
show that our SemAuto can be used to generate a com-

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

pelling explanation for a recommendation list. In particu-
lar, a content-based explanation is preferred by users, as it
outperforms other baselines concerning transparency, trust,
satisfaction, persuasiveness,and effectiveness. As we can see
in the satisfaction, effectiveness and trust plots in Figure 4,
for both pointwise and pairwise approaches, an interesting
point is that, in order to build an explanation, factual data
works better than the semantic/categorical one, achieving the
same results as when both semantic and factual data are
exploited.

The results presented in this paper pave the way for
various further investigations in different directions. From
a methodological and algorithmic point of view, we can
surely investigate the augmentation of further deep learn-
ing techniques via the injection of explicit and structured
knowledge coming from external sources of information.
Giving an explicit meaning to neurons in an ANN as well
as to their connections can fill the semantic gap in describ-
ing models trained via deep learning algorithms. Moreover,
having an explicit representation of latent features opens the
door to better and explicit user modeling. We are currently
investigating how to exploit the structure of a KG-enabled
autoencoder to infer qualitative preferences represented by
means of expressive languages such as CP-theories [47].
Providing such a powerful representation may also result in
being a key factor in the automatic generation of explanation
to recommendation results.

REFERENCES
[1] T. Di Noia, V. Ostuni, J. Rosati, P. Tomeo, E. Di Sciascio, R. Mirizzi, and

C. Bartolini, “Building a relatedness graph from linked open data: A case
study in the it domain,” Expert Systems with Applications, vol. 44, pp.
354–366, 2016.

[2] S. Oramas, V. Ostuni, T. Di Noia, X. Serra, and E. Di Sciascio, “Sound
and music recommendation with knowledge graphs,” ACM Transactions
on Intelligent Systems and Technology, vol. 8, no. 2, 2016.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in Proceedings of the 6th
International The Semantic Web and 2Nd Asian Conference on Asian
Semantic Web Conference, ser. ISWC’07/ASWC’07. Springer-Verlag,
2007, pp. 722–735.

[4] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based
recommender system: A survey and new perspectives,” ACM Comput.
Surv., vol. 52, no. 1, pp. 5:1–5:38, Feb. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3285029

[5] R. Sinha and K. Swearingen, “The role of transparency in recommender
systems,” in CHI ’02 Extended Abstracts on Human Factors in Computing
Systems, ser. CHI EA ’02. New York, NY, USA: ACM, 2002, pp. 830–
831.

[6] N. Tintarev, “Explanations of recommendations,” in Proceedings of the
2007 ACM Conference on Recommender Systems, ser. RecSys ’07.
New York, NY, USA: ACM, 2007, pp. 203–206. [Online]. Available:
http://doi.acm.org/10.1145/1297231.1297275

[7] V. Bellini, V. W. Anelli, T. Di Noia, and E. Di Sciascio, “Auto-encoding
user ratings via knowledge graphs in recommendation scenarios,” in
Proceedings of the 2nd Workshop on Deep Learning for Recommender
Systems. ACM, 2017, pp. 60–66.

[8] V. Bellini, A. Schiavone, T. Di Noia, A. Ragone, and E. Di Sciascio,
“Knowledge-aware autoencoders for explainable recommender systems,”
in Proceedings of the 3rd Workshop on Deep Learning for Recommender
Systems, ser. DLRS 2018. New York, NY, USA: ACM, 2018, pp. 24–31.

[9] V. Bellini, A. Schiavone, T. Di Noia, A. Ragone, and E. Di Scias-
cio, “Computing recommendations via a knowledge graph-aware autoen-
coder,” in Proceedings of the RecSys 2018 Workshop on Knowledge-
aware and Conversational Recommender Systems (KaRS) co-located with

12th ACM Conference on Recommender Systems (RecSys 2018), Van-
couver, Canada, October 7, 2018., 2018.

[10] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising
auto-encoders for top-n recommender systems,” in Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining,
ser. WSDM ’16. New York, NY, USA: ACM, 2016, pp. 153–162.

[11] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders
meet collaborative filtering,” in Proceedings of the 24th International
Conference on World Wide Web, ser. WWW ’15 Companion. New York,
NY, USA: ACM, 2015, pp. 111–112.

[12] F. Strub, R. Gaudel, and J. Mary, “Hybrid recommender system based on
autoencoders,” in Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, ser. DLRS 2016. New York, NY, USA: ACM,
2016, pp. 11–16.

[13] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for
recommender systems,” in Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, ser. KDD
’15. New York, NY, USA: ACM, 2015, pp. 1235–1244.

[14] J. B. P. Vuurens, M. Larson, and A. P. de Vries, “Exploring deep space:
Learning personalized ranking in a semantic space,” in Proceedings of the
1st Workshop on Deep Learning for Recommender Systems, ser. DLRS
2016. New York, NY, USA: ACM, 2016, pp. 23–28.

[15] A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning approach
for cross domain user modeling in recommendation systems,” in Proceed-
ings of the 24th International Conference on World Wide Web, ser. WWW
’15. Republic and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee, 2015, pp. 278–288.

[16] H. Wang, X. SHI, and D.-Y. Yeung, “Collaborative recurrent autoencoder:
Recommend while learning to fill in the blanks,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,
pp. 415–423.

[17] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, “A hybrid collab-
orative filtering model with deep structure for recommender systems.” in
AAAI, 2017, pp. 1309–1315.

[18] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. Zanker, “Linked
open data to support content-based recommender systems,” in Proceed-
ings of the 8th International Conference on Semantic Systems, ser. I-
SEMANTICS ’12. New York, NY, USA: ACM, 2012, pp. 1–8.

[19] B. Heitmann and C. Hayes, “C.: Using linked data to build open, collab-
orative recommender systems,” in In: AAAI Spring Symposium: Linked
Data Meets Artificial IntelligenceâĂŹ. (2010, 2010.

[20] M. de Gemmis, P. Lops, C. Musto, F. Narducci, and G. Semer-
aro, “Semantics-aware content-based recommender systems,” in Recom-
mender Systems Handbook, 2015, pp. 119–159.

[21] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. Zanker, “Linked
open data to support content-based recommender systems,” in Proceedings
of the 8th International Conference on Semantic Systems. ACM, 2012,
pp. 1–8.

[22] M. de Gemmis, P. Lops, C. Musto, F. Narducci, and G. Semeraro,
Semantics-Aware Content-Based Recommender Systems. Boston, MA:
Springer US, 2015, pp. 119–159.

[23] S. Oramas, V. C. Ostuni, T. D. Noia, X. Serra, and E. D. Sciascio, “Sound
and music recommendation with knowledge graphs,” ACM Trans. Intell.
Syst. Technol., vol. 8, no. 2, pp. 21:1–21:21, Oct. 2016.

[24] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” in Proceedings of the 2000 ACM Conference
on Computer Supported Cooperative Work, ser. CSCW ’00. New York,
NY, USA: ACM, 2000, pp. 241–250.

[25] N. Tintarev and J. Masthoff, Designing and Evaluating Explanations for
Recommender Systems. Boston, MA: Springer US, 2011, pp. 479–510.

[26] J. Vig, S. Sen, and J. Riedl, “Tagsplanations: Explaining recommendations
using tags,” in Proceedings of the 14th International Conference on Intel-
ligent User Interfaces, ser. IUI ’09. New York, NY, USA: ACM, 2009,
pp. 47–56.

[27] N. Tintarev and J. Masthoff, “A survey of explanations in recommender
systems,” in Proceedings of the 2007 IEEE 23rd International Conference
on Data Engineering Workshop, ser. ICDEW ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 801–810.

[28] N. Tintarev and J. Masthoff, “Evaluating the effectiveness of explanations
for recommender systems,” User Modeling and User-Adapted Interaction,
vol. 22, no. 4-5, pp. 399–439, 2012.

[29] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, “Moviexplain: A
recommender system with explanations,” in Proceedings of the Third

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953308, IEEE Access

Bellini et al.: Semantics-Aware Autoencoder

ACM Conference on Recommender Systems, ser. RecSys ’09. New York,
NY, USA: ACM, 2009, pp. 317–320.

[30] B. Abdollahi and O. Nasraoui, “Explainable restricted boltzmann ma-
chines for collaborative filtering,” CoRR, vol. abs/1606.07129, 2016.

[31] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma, “Explicit
factor models for explainable recommendation based on phrase-level
sentiment analysis,” in Proceedings of the 37th International ACM SIGIR
Conference on Research & Development in Information Retrieval, ser.
SIGIR ’14. New York, NY, USA: ACM, 2014, pp. 83–92.

[32] C. Musto, F. Narducci, P. Lops, M. De Gemmis, and G. Semeraro,
“Explod: A framework for explaining recommendations based on the
linked open data cloud,” in Proceedings of the 10th ACM Conference on
Recommender Systems, ser. RecSys ’16. New York, NY, USA: ACM,
2016, pp. 151–154.

[33] V. Nastase and M. Strube, “Decoding wikipedia categories for knowledge
acquisition.” in AAAI, vol. 8, 2008, pp. 1219–1224.

[34] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics, 2010, pp. 249–
256.

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States., 2013, pp. 3111–3119.

[36] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-
to-item collaborative filtering,” IEEE Internet computing, no. 1, pp. 76–80,
2003.

[37] H. Steck, “Evaluation of recommendations: Rating-prediction and rank-
ing,” in Proceedings of the 7th ACM Conference on Recommender Sys-
tems, ser. RecSys ’13. New York, NY, USA: ACM, 2013, pp. 213–220.

[38] P. Castells, N. J. Hurley, and S. Vargas, “Novelty and diversity in recom-
mender systems,” in Recommender Systems Handbook. Springer, 2015,
pp. 881–918.

[39] K. Järvelin and J. Kekäläinen, “Ir evaluation methods for retrieving highly
relevant documents,” in Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’00. New York, NY, USA: ACM, 2000, pp. 41–48.

[40] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Proceedings of
the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, ser.
UAI ’09. Arlington, Virginia, United States: AUAI Press, 2009, pp. 452–
461.

[41] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang,
“One-class collaborative filtering,” in Proceedings of the 2008 Eighth
IEEE International Conference on Data Mining, ser. ICDM ’08. Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 502–511.

[42] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, ser. ICDM ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 263–272.

[43] J. Xu, Y. Yao, H. Tong, X. Tao, and J. Lu, Ice-Breaking: Mitigating cold-
start recommendation problem by rating comparison, 2015, pp. 3981–
3987.

[44] A. Ragone, P. Tomeo, C. Magarelli, T. Di Noia, M. Palmonari, A. Maurino,
and E. Di Sciascio, “Schema-summarization in linked-data-based feature
selection for recommender systems,” in Proceedings of the Symposium on
Applied Computing, ser. SAC ’17. New York, NY, USA: ACM, 2017,
pp. 330–335.

[45] B. P. Knijnenburg and M. C. Willemsen, Evaluating Recommender Sys-
tems with User Experiments. Boston, MA: Springer US, 2015, pp. 309–
352.

[46] C. Musto, T. Franza, G. Semeraro, M. de Gemmis, and P. Lops, “Deep
content-based recommender systems exploiting recurrent neural networks
and linked open data,” in Adjunct Publication of the 26th Conference on
User Modeling, Adaptation and Personalization, ser. UMAP ’18. New
York, NY, USA: ACM, 2018, pp. 239–244.

[47] T. Di Noia, T. Lukasiewicz, M. V. Martínez, G. I. Simari, and O. Tifrea-
Marciuska, “Combining existential rules with the power of cp-theories,”
in Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, 2015, pp. 2918–2925.

16 VOLUME 4, 2016

