
Hindawi Publishing Corporation
Research Letters in Communications
Volume 2009, Article ID 645615, 5 pages
doi:10.1155/2009/645615

Research Letter

Optimal Filtering in Pilot-Aided Carrier Recovery

Arnaldo Spalvieri and Luca Barletta

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

Correspondence should be addressed to Luca Barletta, barletta@elet.polimi.it

Received 8 April 2009; Accepted 22 June 2009

Recommended by J. Fiorina

The paper deals with carrier recovery based on pilot symbols in single-carrier systems. Wiener’s method is used to determine the
optimal unconstrained filter in estimation of phase noise assuming that a sequence of equally spaced pilot symbols is available.
Our analysis allows to capture two effects that are not considered in the existing literature: the impact of aliasing due to sampling
of the phase noise sequence at the pilot rate and the cyclostationary nature of the estimate hence of its performance. Experimental
results are derived also for the case, where the filter is constrained to the cascade of two moving averages. These results show that,
in the considered example, the mean-square phase error of the constrained filter is within 0.35 dB from the MSE of the optimal
filter.
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1. Introduction

The performance of single-carrier microwave radio systems
operating at high spectral efficiency is often limited by the
phase noise introduced by local oscillators that generate the
sinusoid used for up/down-conversion. As the number of
constellation points grows, the S-curve of the conventional
decision-directed phase detector used in carrier recovery
based on phase-locked loop becomes narrow and narrow.
As a consequence, the receiver becomes less and less able
to recover the phase noise that affects the incoming carrier,
up to the appearance of the phenomenon of cycle slip,
that definitively degrades performance. To overcome this
limit, pilot symbols can be periodically introduced in the
data sequence to improve the robustness of the receiver
in estimating the carrier phase, as proposed in [1] for
synchronous transmission systems. In [2] the influence of
the pilot pattern in burst transmission is investigated. Pilot
symbols have proven their usefulness also in iterative joint
decoding and synchronization [3, 4].

In the present paper, we consider the optimization of
the filter that produces the phase estimate at symbol rate
from the noisy observation of the phase noise at pilot
rate. One crucial point in pilot-aided carrier recovery is
the design of the pilot rate. The pilot rate should be kept
as small as possible to maintain low the overhead due to
the pilot symbols. However, a too small pilot rate induces

substantial aliasing in the sequence of sampled phase noise,
compromising the performance of carrier recovery. The
novelty of the present contribution is the consideration of
aliasing in the design of the carrier recovery mechanism and
in the evaluation of its performance.

The paper is organized as follows. In Section 2 the
system model is introduced, and the performance of the
system is defined. In Section 3 the optimal pilot filter is
derived by optimizing the performance criterion introduced
in the previous section, and the performance is analyzed.
In Section 4 simulation results are presented together with
the results coming from the analysis for the case where the
phase noise is modelled as random phase walk. In Section 5
conclusion is drawn.

2. System Model and Problem Statement

Consider a passband signal of power P embedded in white
noise of two-sided power spectral density N0/2. We assume
that the frequency of the carrier of the passband signal is
known and therefore that the signal can be down-converted
around f = 0. We also assume that perfect symbol timing
is available and that the received signal is free of intersymbol
interference. Let

x(k) = a(k)e jθ(k) +w(k) (1)
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be the kth element of the sequence obtained after sampling at
symbol frequency. In the above equation, {a(k)} is the data
sequence that includes payload symbols and pilot symbols,
j is the complex unit, {θ(k)} is the random sequence of
samples of the phase of the free-running oscillator, and
{w(k)} is the complex envelope of the sequence of samples
of white channel noise. Independency between data, phase
noise, and channel noise is assumed. We assume that the
baseband signal is scaled in such a way that the data sequence
{a(i)} has zero mean and unit variance, and that the power
of the zero-mean complex white noise {w(k)} is

E
{
|w(k)|2

}
= 1

SNR
, (2)

where

SNR = PT

N0
(3)

is the channel signal-to-noise ratio, with T−1 being the
symbol rate. The random sequence {θ(k)} is a real-valued
stationary random sequence of phase noise characterized
by the power spectral density Ψ( f ). Suppose that the pilot
symbols have unit amplitude, and that the pilot rate is
(MT)−1, meaning that one pilot symbol is inserted after M−
1 payload symbols. Without loosing generality, we assume
that the ith pilot symbol occurs at time iM.

Using the pilot symbols the receiver produces the zero-
padded sequence

{
e jθ(kM) +w′(kM)

}
, (4)

where w′(kM) is complex AWGN statistically equivalent to
w(kM). The pilot filter is optimized by assuming that its
input is the phase sequence

y(kM) = θ(kM) + n(kM), (5)

where n(kM) is real AWGN with zero mean and power

E
{
n2(kM)

} = 1
2 · SNR

. (6)

The estimate of the phase sequence produced by the pilot
filter is

θ̂(m) =
∑

i

y(iM)h(m− iM), (7)

where {h(i)} is the impulse response of the pilot filter, that
is hereafter assumed to be noncausal and of unconstrained
duration. The criterion that we adopt to design the pilot filter
is the minimization of the mean-square (phase) error (MSE):

MSEm = E
{(
θ(m)− θ̂(m)

)2
}
. (8)

Note that the sequence θ̂(m) is cyclostationary with period
M, therefore

E
{(
θ(m)− θ̂(m)

)2
}

= E
{(
θ(m + lM)− θ̂(m + lM)

)2
}

, ∀l.
(9)
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Figure 1: Block diagram of carrier recovery. The block ZP produces
a zero-padded sequence at symbol rate by introducing M − 1 zeros
between two successive samples at pilot rate. After the ZP block the
system works at symbol rate.

In view of the above periodicity, in what follows we will
restrict our attention to

m = 0, 1, . . . ,M − 1. (10)

Also, in what follows we will use index m to indicate the M
phases of the cycle, and, anywhere m occurs, it is understood
that that equation should be considered for the values of m
of (10).

A remark about the implementation of the pilot filter is in
order. A common approach in feedforward synchronization
is that of planar filtering. In planar filtering, the complex

envelope (4) is filtered in place of its phase. The angle θ̂(t)
is then extracted from the filtered complex envelope. An
example of this approach can be found in the paper by A.
J. Viterbi and A. M. Viterbi [5]. One prefers not to extract
the phase from the unfiltered complex envelope because
extraction is subject to errors in phase unwrapping, with the
errors being caused by the large power of the unfiltered noise
that affects the unfiltered complex envelope. It should be
observed that, when the complex envelope (4) is narrowband
frequency modulation plus noise, filtering the complex
envelope by a given transfer function and then extracting
the angle produce virtually the same result as filtering the
unwrapped phase through the same transfer function. In
other words, when (4) is narrowband frequency modulation
plus noise, the optimized phase transfer function can be used
for the transfer function of the filter that receives at its input
the complex envelope, virtually without loosing optimality.
This observation is motivated by the classical result, that
can be found in Middleton [6], that narrowband frequency
modulation approximates the cascade of integration in time
domain of the frequency modulating signal and amplitude
modulation. Hence narrowband frequency modulation can
be treated as amplitude modulation, with the modulating
signal being θ(t). The block diagram of the system based on
planar filtering is shown in Figure 1.

3. Optimal Pilot Filter

Given a discrete-time sequence {s(k)} whose spectrum is

S
(
f
) =

∑

k

s(k)e− j2πk f T , (11)
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define the spectra of the down-sampled sequences over M
phases

Sm
(
f
) =

∑

k

s(m + kM)e− j2π(m+kM) f T . (12)

The following properties of Sm( f ) will be used in what
follows.

(i) Sm( f − n(MT)−1) is determined from Sm( f ) as

Sm

(
f − n

MT

)
= Sm

(
f
)
e j(2πnm/M). (13)

(ii) From (13) we see that |Sm( f )|2 is periodic with
period (MT)−1,

∣∣Sm
(
f
)∣∣2 =

∣∣∣∣Sm
(
f − n

MT

)∣∣∣∣
2

, ∀n. (14)

(iii) Sm( f ) can be obtained by folding S( f ) as

Sm
(
f
) = 1

M

M−1∑

i=0

S
(
f − i

MT

)
e− j(2πmi/M). (15)

(iv) For m = 0, from (15) one gets

∫ T−1

0
S
(
f
)
df =M

∫ (MT)−1

0
S0
(
f
)
df . (16)

Let

Hm
(
f
) =

∑

k

h(m + kM)e− j2π(m+kM) f T , (17)

and let

H
(
f
) =

M−1∑

i=0

Hi
(
f
)

(18)

indicate the frequency response of the pilot filter. Since each
of theM phases of the down-sampled sequence is a stationary
sequence, one can apply the classical result for the stationary
MSE (see, e.g., [7]) to each of the M phases

MSEm = T
∫ T−1

0
Ψ
(
f
)∣∣1−Hm

(
f
)∣∣2

df

+ T
∫ T−1

0

∣∣Hm
(
f
)∣∣2

2 · SNR
df .

(19)

The first term in the right-hand side of the above equation
is due to the high-frequency components of phase noise that
are rejected by the filter, hence that are not recovered by the
estimate. The second term is due to the white additive noise
that passes through the filter. Filter design should optimize
the compromise between the two terms. Specifically, large
bandwidth is desired in order the keep small the first term,
while narrow bandwidth is desired in order to keep small the
second term.

The complex exponentials appearing in (15) form an
orthogonal basis

∫ T−1

0
Ψ
(
f
)
H∗
m

(
f
)
df =

∫ T−1

0
Ψm

(
f
)
H∗
m

(
f
)
df

=M
∫ (MT)−1

0
Ψm

(
f
)
H∗
m

(
f
)
df .

(20)

Using the above equality together with (16) and (14) the MSE
(19) is written as

MSEm =MT
∫ (MT)−1

0

(
Ψ0
(
f
)(

1 +
∣∣Hm

(
f
)∣∣2

)

+−2R
{
Ψm

(
f
)
H∗
m

(
f
)}

+

∣∣Hm
(
f
)∣∣2

2 · SNR

)
df .

(21)

Setting to zero the derivative of (21) with respect to Hm( f )
in the range 0 ≤ f < (MT)−1 one gets the solution

Hm
(
f
) = Ψm

(
f
)

Ψ0
(
f
)

+ (2 · SNR)−1 , 0 ≤ f < (MT)−1. (22)

By using (13) we see that the restriction can be removed,
getting

Hm
(
f
) = Ψm

(
f
)

Ψ0
(
f
)

+ (2 · SNR)−1 . (23)

Substituting the optimal filter into (21), themth MSE is easily
seen to be

MSEm =MT
∫ (MT)−1

0
Sm
(
f
)
df , (24)

where

Sm
(
f
) = Ψ0

(
f
)(

1−
∣∣Ψm

(
f
)∣∣2

∣∣Ψ0
(
f
)∣∣2 + (2 · SNR)−1Ψ0

(
f
)
)
.

(25)

4. Numerical Results

The model of phase noise considered in this section is the
popular random phase walk

θ(k) = θ(k − 1) + γ(k), (26)

where {γ(k)} is white noise with zero mean and variance σ2.
The power spectral density of phase noise is

Ψ
(
f
) = σ2

(
1− e j2π f T)(1− e− j2π f T) . (27)

To derive specific results, we put σ = 0.3◦, that is, σ = 5.23 ·
10−3 radians. This is the experimental setting used in [4] to
characterize carrier recovery in a system operating at high
spectral efficiency, hence at high channel SNR.
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Figure 2: MSE versus M for SNR = 25 dB (upper family of
curves) and SNR = 30 dB. Dashed lines: computed minimum and
maximum MSEm. Squares: simulation of the mean MSE. Circles:
simulation of the maximum MSEm. Triangles: simulation of the
minimum MSEm.
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Figure 3: Normalized noise bandwidth of the M subfilters versus
SNR for two values of M. Solid lines: M = 3. Dashed lines: M = 9.

Figure 2 shows two families of curves corresponding to
two values of SNR. For each family, in the figure are shown
the computed and the simulated minimum and maximum
MSE and the simulated mean value of MSE versus pilot
spacing M. The mean value of MSE is defined as

1
M

M−1∑

m=0

MSEm. (28)

The gap between the maxima and the minima of the MSE

is due to the cyclostationary nature of the sequence {θ̂(k)},
which is obtained by filtering a zero-padded sequence. The
minimum inside the period M occurs for m = 0, which
indicates the estimate of phase noise at the time instant where
the pilot symbol occurs. The maximum occurs for

m =
⌊
M

2

⌋
, (29)

where �x� indicates the integer part of x. The above m is the
maximum time distance between the estimate of phase noise
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Figure 4: MSE versus SNR. Solid line: computed optimal filter.
Dashed line: computed suboptimal filter. Crosses: simulation,
optimal filter. Squares: simulation, suboptimal filter.

and the closer pilot symbol. As expected, the gap grows with
the pilot spacing M. Also, the gap grows with the SNR, since
the larger is the SNR, the larger is the influence of phase
noise on system performance compared to the influence of
the channel SNR.

Figure 3 shows the normalized noise bandwidth of the
mth subfilter, defined as

BmT =MT
∫ 1/2MT

0

∣∣Hm
(
f
)∣∣2

df , (30)

versus SNR, for M = 3 and M = 9. The noise bandwidth
increases with SNR and with the pilot spacing M. The
increase of the noise bandwidth with SNR is due to the
optimization of the compromise between the two terms
appearing in the right side of (19). Specifically, at high
SNR the compromise between the two mentioned terms is
optimized by a filter with large bandwidth. The increase of
the noise bandwidth with M is explained by noting that the
spectral effect of the time spacing M between to successive
pilot symbols is that of folding M times the spectrum of
channel noise. Since the noise bandwidth is a measure of the
channel noise that passes through the filter, one expects that,
due to aliasing, the noise bandwidth increases with M. Also,
from the figure one appreciates that the difference between
subfilter bandwidths becomes nonnegligible for BmT > 10−1,
independently of M and SNR.

In Figure 4 it is shown the family of curves {MSEm},
with M = 7, versus channel SNR. For comparison it is also
shown {MSEm} for a suboptimal FIR pilot filter obtained by
cascading two moving averages, each one of duration NM
samples. The impulse response of the suboptimal filter has
the following triangular shape:

h(k) =

⎧⎪⎨
⎪⎩

1
MN2

(MN − |k|), |k| < NM,

0, |k| ≥ NM.
(31)

Figure 5 shows the impulse response of the optimal pilot
filter for M = 7 and SNR = 35 dB along with the
impulse response of the best suboptimal FIR pilot filter.
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Figure 5: Impulse response of the planar filter for M = 7, SNR =
35 dB. Crosses: optimal filter. Triangles: suboptimal filter (N = 2).

The parameter N used to derive the results of Figure 4 is
optimized by computing (19) for several values of N and for
all the values of m between 0 andM−1, then by taking theN
that optimizes the mean MSE. Disregarding the case m = 0,
that corresponds to estimating the phase noise at the time
instant where the pilot symbol occurs, the performance loss
of the suboptimal filter is within 0.35 dB (m = 1, SNR =
40 dB) from the performance of the optimal filter.

5. Conclusion

The performance of pilot-aided carrier recovery has been
analyzed, and the optimal planar filter has been derived
taking aliasing into account. The main contribution of
the paper is that of having captured the important role
of aliasing in the design of pilot rate. Compared to the
previous literature [1], our analysis also puts light on
the cyclostationary nature of the recovered phase, which
becomes substantial when aliasing is nonnegligible, that is, at
high SNR and for low pilot rate. Simulation results, obtained
for the case where phase noise is modelled as random phase
walk, confirm the theory. Also, the results presented in the
paper show that the performance of a suboptimal filter
obtained by cascading two moving averages is close to that
of the optimal filter in cases of practical interest.
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