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Microservices is an architectural style increasing in popularity. However, there is still a lack of understanding

how to adopt a microservice-based architectural style. We aim at characterizing different microservice archi-
tectural style patterns and the principles that guide their definition. We conducted a systematic mapping study
in order to identify reported usage of microservices and based on these use cases extract common patterns and
principles. We present two key contributions. Firstly, we identified several agreed microservice architecture
patterns that seem widely adopted and reported in the case studies identified. Secondly, we presented these as
a catalogue in a common template format including a summary of the advantages, disadvantages, and lessons
learned for each pattern from the case studies. We can conclude that different architecture patterns emerge for
different migration, orchestration, storage and deployment settings for a set of agreed principles.

1 Introduction

Microservices are increasing their popularity in in-
dustry, being adopted by several big players such as
Netflix, Spotify, Amazon and many others and sev-
eral companies are now following the trend, migrating
their systems to microservices. However companies
still have the issues of selecting the most appropriate
architectural patterns, mainly because of the lack of
knowledge about the available patterns (Taibi et al.,
2017).

Microservices are small autonomous services de-
ployed independently, with a single and clearly de-
fined purpose (Lewis and Fowler, 2014). Their in-
dependent deployability is advantageous for contin-
uous delivery. They can scale independently from
other services, and they can be deployed on the hard-
ware that best suits their needs. Moreover, because of
their size, they are easier to maintain and more fault-
tolerant since the failure of one service will not break
the whole system, which could happen in a mono-
lithic system (Lewis and Fowler, 2014). Microser-
vices have emerged as a variant of service-oriented
architecture (SOA). Their aim is to structure software
systems as sets of small services that are deployable
on a different platform and running in their own pro-
cess while communicating with each other through
lightweight mechanisms without a need for central-
ized control (Pahl et al., 2018). We consider an archi-

tectural style here as a set of principles and coarse-
grained patterns that provide an abstract framework
for a family of systems. An architectural style con-
sists of a set of architectural principles and patterns
that are aligned with each other to make designs rec-
ognizable and design activities repeatable: principles
express architectural design intent; patterns adhere to
the principles and are commonly occurring (proven)
in practice (Zimmermann, 2009).

Microservices enable continuous development
and delivery (Pahl et al., 2018). DevOps is the inte-
gration of Development and Operations that include a
set of continuous delivery practices aimed at decrease
the delivery time, increasing the delivery efficiency
and reducing time among releases while maintaining
software quality. It combines software development,
quality assurance, and operations (Bass et al., 2015).

Despite both microservices and DevOps being
widely used, there are still challenges in understand-
ing how to construct such kinds of architectures (Bal-
alaie et al., 2016), (Taibi and Lenarduzzi, 2018) and
developers often adopt the patterns where they can
find more documentation online (Taibi et al., 2017),
even if they are not the most appropriate ones. In
order to help developers to identify the most appro-
priate patterns, we aim here to identify and charac-
terize different microservice architecture patterns re-
ported in the literature, be that as proposals and or
as case studies with implementations. The identifi-



cation process is supported by a systematic mapping
study (Petersen et al., 2008). A previous systematic
mapping (Pahl and Jamshidi, 2016) has aimed at clas-
sifying and comparing the existing research body on
microservices including non peer-reviewed content,
while a recent work with a similar goal has been pub-
lished by (Malavolta and Lago, 2017). Our study dif-
fers in the following ways:

e Focus: We focus on suggested architectural style
definitions, emerging patterns, while (Pahl and
Jamshidi, 2016) initially characterized the body of
research and (Malavolta and Lago, 2017) focused
on the potential for industrial adoption. The cen-
tral new aspect here is on an exploration of archi-
tecture patterns for a set of agreed principles.

o Systematic Approach and Comprehensiveness:
We conducted a systematic mapping study imple-
menting the protocol (Petersen et al., 2008), fol-
lowed by a systematic snowballing process, in-
cluding all references found in the papers. We
included results from 8 bibliographic sources.

The contribution of our study is as follows: We iden-
tify and describe microservice architecture patterns
as a pattern catalogue, thus analysing advantages and
disadvantages of the different patterns based on their
implementations. These patterns aim to support de-
velopers in finding suitable solution templates for ar-
chitecting microservices-based software. As this is a
still developing domain, we also discuss our findings
in the context of wider research gaps and trends. Fur-
thermore, we specifically address cloud computing as
the key application environment.

The paper is structured as follows. Section 2 de-
scribes our pattern identification methodology. Sec-
tion 3 shows the pattern catalogue, which is discussed
in Section 4. Section 5 contains our conclusions.

2 Pattern Identification Process

We used a literature review protocol (Petersen et al.,
2008) in combination with a systematic snowballing
process to detemine the patterns from the published
literature (Wohlin, 2014). We define our research
goal as follows: Analyze the architectural style pro-
posals for the purpose of comparing them and related
implementations with respect to their advantages and
disadvantages in the context of cloud-native software
implementation. We derived two research questions:

e RQI1l: Which are the different microservices-
based architecture patterns?

e RQ2: Which advantages and disadvantages have
been highlighted for these patterns?

We used eight bibliographic sources: ACM Dig-
ital Library, IEEE Xplore Digital Library, Science Di-
rect, Scopus, Google Scholar, Citeeser library, Inspec
and Springer Link. We defined the search strings
based on the PICO terms of our questions (Kitchen-
ham and Charters, 2007) using only the terms Popula-
tion and Intervention. We applied the following query
for the discovery of pattern descriptions:

(microservice* OR micro-service®*) AND (architect®
OR migrat* OR modern* OR reengineer* OR
re-engineer* OR refactor* OR re-factor* OR

rearchitect® OR re-architect* OR evol*)

The symbol * allow capturing possible variations in
search terms such as plural and verb conjugation.
We selected considering the following criteria:

o General Criteria: We only included papers in En-
glish. However, we also considered non peer-
reviewed contributions if their number of citations
was higher than those of average peer-reviewed
papers.

o Selection by Title and Abstract: We removed all
papers that do not contain any references to mi-
croservices or that use the term microservices for
different purposes or in different domains.

e Selection by full papers: We excluded papers that
do not present any evidence related to our research
questions or papers using microservices without
any clear reference to the adopted architectural
style, and microservices-based implementations
that do not report any advantages and disadvan-
tages of using microservices. We considered pro-
posals of microservices-based architectural styles,
implementations of microservices-based cloud
systems, migrations of monolithic systems into
cloud-native microservices-based systems, papers
reporting their advantages and disadvantages.

We retrieved a total of 2754 unique papers ap-
plying the two queries to any fields. Based on the
inclusion and exclusion criteria applied to title and
abstract, we selected 85 papers. In order to vali-
date the process, each author randomly and separately
applied the inclusion and exclusion criteria to a set
of 10 retrieved papers. Pairwise inter-rater reliabil-
ity was measured across the three decision sets in
order to get a fair/good agreement in the first pro-
cess iteration. This process was carried out to clar-
ify, where necessary, any incongruity among the au-
thors. At this stage, we conducted a forward and
backward systematic snowballing process among all
papers referenced in the 85 papers elicited, so as to
obtain a more comprehensive set of papers, as sug-
gested by Wohlin (Wohlin, 2014). As for backward



snowballing, we included all the references in the pa-
pers retrieved from bibliographic sources while for
the forward snowballing we included all the papers
that reference the retrieved papers, thereby obtaining
858 adidtional papers. After sifting these 858 papers
based on title and abstract, we included resulting in 12
additional papers, obtaining a total of 97 papers. After
reading the 97 papers, the process resulted in 40 peer-
reviewed papers and 2 non peer-reviewed ones. The
two works by Lewis and Fowler ([S1] and Richard-
son [S2]) added from the gray literature have a dra-
matically high number of citations compared to the
remaining works. Note that the patterns presented at
http://microservices.io/patterns/index.html are com-
piled by Richardson and were considered based on
his comments in [S2] and selected study [S2].

The selection resulted in 42 accepted papers pub-
lished up to end of 2016. 27 of these papers were pub-
lished at conferences, while another 10 papers were
accepted at workshops. Only 3 papers were published
as journal articles, and 2 papers are non peer-reviewed
websites (gray literature).
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Figure 1: The chronological overview of the selected papers
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Figure 2: The publication types of the selected papers

3 The Pattern Catalogue

A key role in the microservices architectural style
play the architecture patterns. Thus, we determine
key patterns with their advantages and disadvantages.
Three commonly used patterns emerge. In this classi-
fication, we attribute to the different patterns both the
papers explicitly reporting the usage of a specific style
and those where the adopted patterns can be clearly
deduced from the description. Please note that we re-
port on patterns in three subsections that categorize
the emerging architecture patterns:

e Orchestration and Coordination-oriented archi-
tecture patterns that capture communication and
coordination from a logical perspective.

e Patterns reflecting physical Deployment strategies

for microservices on hosts through containers or
virtual machines.

e Patterns that reflect on data management, specif-
ically Data Storage options in addition to the or-
chestration and coordination patterns oriented at
inter-component communication.

We will use a Concept, Origin, Goal, Properties, Evo-
lution, Reported Usage and Advantages, Disadvan-
tages template to discuss these microservices archi-
tecture patterns.

3.1 Orchestration and Coordination
Architecture Patterns

3.1.1 Service Composition - The API-Gateway
Pattern

Concept: Microservices can provide their functions
to other services through an API. However, the cre-
ation of end-user applications based on the composi-
tion of different microservices requires a server-side
aggregation mechanism. In the selected works, the
API-Gateway emerged as a commonly recommended
approach (Figure 3).

API Gateway is the entry point of the system
that routes the requests to the appropriate microser-
vices, also invoking multiple microservices and ag-
gregating results. It provides a tailored API to each
client to route requests, transform protocols, and im-
plement shared logic like authentication and rate-
limiters. Moreover, it can be responsible for different
tasks such as authentication, monitoring, and static re-
sponse handling. In some cases, the API Gateway can
also serve as load balancer since it knows the location
and the addresses of all services.

Origin: The API-Gateway is a pattern that resem-
bles more SOA principles than REST ones, without
an Enterprise Service Bus (ESB).

Goal: The main goal is to increase system per-
formance and simplify interactions, thus reducing the
number of requests per client. It acts as an entry point
for the clients, routing their requests to the connected

Client-
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y / Shzzstmg
API Product
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/ \
Protocol
System
Figure 3: The API-Gateway Architecture Pattern

Translation



Table 1: The Papers Selection Process

Selection Process #considered | #rejected Validation
papers papers

Paper extracted from the bibli- | 2754 10 random papers independently classified

ographic sources by three researchers

Sift based on title and abstract 2669 Good inter-rater agreement on first sift (K-
statistic test)

Primary papers identified 85

Secondary papers inclusion 858 855 Systematic snowballing (Wohlin, 2014) in-
cluding all the citations reported in the 85
primary papers and sifting them based on
title and abstract

Full papers considered for re- | 88 Each paper has been read completely by

view two researchers and 858 secondary papers
were identified from references

Sift based on full reading 46 Papers rejected based on inclusion and ex-
clusion criteria

Relevant papers included 42

services, aggregating the required contents, and serv-
ing them to the clients [S2].

Properties: The API-Gateway does not provide
support for publishing, promoting, or administering
services at any significant level. However, it is re-
sponsible for the generation of customized APIs for
each platform and for optimizing communications be-
tween the clients and the application, encapsulating
the microservices details. It allows microservices to
evolve without influencing the clients. As an exam-
ple, merging or partitioning two or more microser-
vices only requires updating the API-Gateway to re-
flect the changes to any connected client. In Figure
3, the API-Gateway is responsible for communicat-
ing with the different front-ends, creating a custom
API for each client for them to see only the features
they need, which simplifies the creation of end-user
applications without adding the complexity of expos-
ing and parsing useless information.

Evolution and Reported Usage: This is the first ar-
chitectural pattern reported in the considered works,
and was named API-Gateway by Richardson [S2].
Ten works implemented cloud-native applications
based on the pattern [S2], [S3], [S11], [S12], [S14],
[S21], [S31], [S34], [S37] and [S39] reporting several
API-Gateway specific advantages:

e Ease of Extension. Because the pattern can pro-
vide custom APIs, implementing new features is
easier compared to other architectures [S14],[S3].

o Market-centric Architecture. Services can be eas-
ily modified, based on market needs, without the
need to modify the whole system [S14].

o Backward Compatibility. The gateway guarantees
for evolving services that existing clients are not

hampered by interface endpoint changes [S34].

However, disadvantages have also been observed:

o Potential Bottleneck. The gateway layer is a sin-
gle entry point for all requests. If not designed
correctly, it could be a bottleneck [S14], [S39].

o Implementation complexity. The gateway layer
increases the complexity since it requires imple-
mentation of several interfaces for each service
[S14], [S34].

o API reuse must be considered carefully. Since
each client can have a custom API, we must keep
track of cases where different types of clients use
the same API and modify both of them accord-
ingly for changes to the API [S34].

e Scalability. When the number of microservices in
a system explodes, a more efficient and scalable
routing mechanism to route the traffic through
the services APIs, and better configuration man-
agement to dynamically configurate and apply
changes to the system will be needed [S37].

3.1.2 Service Discovery Patterns

Multiple instances of the same microservice usually
run in different virtualized containers/VMs. The
communication among them must be dynamically
defined and the clients must be able to efficiently
communicate to the appropriate microservice that
dynamically change instances. For this purpose, the
service discovery dynamically supports the resolu-
tion of DNS address into IP addresses. Richardson
proposes to differentiate between client-side and




server-side patterns [S2].

The Client-Side Discovery Pattern. Concept: Here,
clients query the Service Registry, select an available
instance, and make a request directly (Fig. 4).
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Figure 4: The Client-side Service Registry Pattern

Goal: With the client-side service discovery, the
client is responsible for picking one of the available
services instances to their network locations loca-
tions. Moreover, the service discovery can also serve
as load balancer of the requests. The client queries a
service registry, which is a database of available ser-
vice instances. The client then uses a load-balancing
algorithm to select one of the available service in-
stances and makes a request.

Evolution and Reported Usage: According to
Richardson, the main advantage of this pattern is
connected to the ease of development. The clients are
aware of the service instance locations and therefore
can connect directly to them without adding the
development complexity of the server-side discovery.
The main reported disadvantage is the high coupling
between the client and the service registry.

The Server-Side Discovery Pattern.

In this pattern, clients make requests via a load
balancer, which queries the registry and forwards the
request to an available instance.

Goal: Unlike the API-Gateway pattern, this pat-
tern allows clients and microservices to talk to each
other directly. It relies on a Service Registry, see Fig-
ure 5, acting in a similar manner as a DNS server.

Properties: The Service Registry knows the dy-
namic location of each microservice instance. When
a client requests access to a specific service, it first
asks the registry for the service location; the reg-
istry contacts the microservice to ensure its availabil-
ity and forwards the location (usually IP address or
DNS name and port) to the calling client. Finally,
unlike in the API-Gateway, clients communicate di-
rectly with the required services and access all avail-
able APIs exposed by the service, without any filter
or service interface translation.

Evolution and Reported Usage: Eleven papers im-
plemented this pattern. Ten fully use it [S25], [S13],
[S9], [S10], [S24], [S26], [S16], [S30] and [S38]
while [S23] proposes a variant, implementing the reg-
istry through a NoSQL database. [S36] report a par-
tial migration where a legacy SOA system provided
some services in connection with new microservices.
In this case, the legacy system was accessed like any
other microservice. The Service Registry contained
the addresses of all microservices and services pro-
vided by the legacy system.

This architectural pattern has several advantages:

o [ncreased Maintainability. All papers reported an
increased maintainability.

e FEase of Communication. Services can communi-
cate with each others directly, without interpreta-
tion [S25], [S36].

e Health Management. Resilience and scalability
mechanisms provide “health management” and an
out-scaling for atomic/composed service [S7].

e Failure Safety. In the case of failure, microser-
vices can be easily restarted, due to their stateless
properties [S7].

o Software Understandability. Better under-
standibility through small services is reported
[S1], [S2].

e Ease of Development. Equally, easier develop-
ment results from smaller services [S1], [S2].

e FEase of Migration. Existing services can be re-
implemented with microservices, replacing the
legacy service by changing its location in the Ser-
vice Registry that will start to dynamically serve
all microservices instances instead of statically
pointing to the legacy system [S36], (Jamshidi et
al., 2017).

Several papers also identified pattern disadvantages:

o [nterface Design Must be Fixed. During mainte-
nance, individual services may change internally,
but there could be a need to also update the in-
terface, requiring adaptation of all connected ser-
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Figure 5: The Server-side Service Discovery Pattern




vices. Keeping the interface definition stable min-
imizes the impact of changes [S38].

o Service Registry Complexity. The registry layer
increases the complexity as it requires the imple-
mentation of several interfaces per service [S16].

e Reuse. If not designed correctly, the registry could
be the main bottleneck of the system [S25].

o Distributed System Complexity. Direct com-
munication among services increases several as-
pects: Communication among Services [S2], Dis-
tributed Transaction Complexity [S2], Testing of
distributed systems, including shared services
among different teams can be tricky [S2].

3.1.3 Hyrbid Patterns

The Hybrid Pattern. Concept and Origin: This pat-
tern combines Service Registry and API-Gateway, re-
placing the API-gateway with a message bus.

Goal and Properties: Clients communicate with
the message bus, which acts as a registry and routes
requests to the requested microservices. Microser-
vices communicate with each other through a mes-
sage bus, similar to an Enterprise Service Bus used in
SOA architectures.

Evolution and Reported Usage: Six works imple-
mented this pattern [S27], [S33], [S32], [S35], [S4]
and [S3] reporting the following advantages:

e FEase of Migration. This pattern eases the migra-
tion of existing SOA applications, since the ESB
can be used a communication layer for the mi-
croservices that gradually replace legacy services.

e Learning Curve. Those familiar with SOA can
easily implement this pattern with little training.

and a disadvantage:

e SOA Issues. The pattern does benefit from
the IDEAL properties of microservices (isolated
state, distribution, elasticity, automated manage-
ment, loose coupling) and from the possibility to
independently develop different services with dif-
ferent teams. However it still communicate thru
the ESB as other SOA services.

3.2 Deployment Strategies & Patterns

We now look at architecture patterns from a microser-
vice deployment strategy perspective (deployment
pattern) that emerged from our mapping study.

The Multiple Service per Host Pattern. Principle:

Multiple services run on the same host (node).
Reported Usage: Four of the selected works

implemented this approach [S19], [S7], [S30], and

[S33], without specifying whether they deployed the
services into containers or VMs. Fifteen works
adopted the pattern by deploying each service into
a container [S25], [S10], [S35], [S8], [S9], [S11],
[S32], [S34], [S36], [S37], [S38], [S40], [S41], [S16]
and [S22]. Richardson refers to this sub-pattern as
”service instance per container pattern” [S2]. Two
works implemented this pattern deploying each mi-
croservice into a dedicated virtual machine [S27],
[S31], called service instance per virtual machine”
by Richardson.

Despite adoption reports, only a few discuss their
advantages:

o Scalability. Systems can easily scale to deploy
multiple service instances at the same or in host.

e Performance. Multiple containers allow rapid
deployment of new services compared to VMs
[S40], [S34], [S10].

In principle, a Single Service per Host Pattern could
be identified. Here [S2] mentions that every service is
deployed in its own host. The main advantage of this
approach is the complete isolation of services, reduc-
ing the possibility of conflicting resources. However,
this dramatically reduces performance and scalability.
In practice, dedicating a single node for a microser-
vice is counterproductive, violating the basic idea of
microservices.

3.3 Data Storage Patterns

Like any service, microservices need to store data.
Sixteen implementations reported on the data storage
pattern that they adopted. Among these papers, we
identified three different data storage patterns that are
also described by [S1], [S3] and [S24]. Although it
is recommended to adopt Object Relational Mapping
approaches with NoSQL databases [S1], the patterns
identified are also applicable for relational databases.

The Database-per-Service Pattern. Principle and
Properties: In this pattern, each microservice ac-
cesses its private database. This is the easiest ap-
proach for implementing microservices-based sys-
tems, and is often used to migrate existing monoliths
with existing databases.

Reported Usage: 1In the selected works, six
adopted this pattern [S12], [S23], [S36], [S11], [S24]
and [S26]. This pattern has several advantages:

e Scalability. The database can be easily scaled in
a database cluster within a second moment [S24],
in case the service need to be scaled.

o [ndependent Development. Teams can work in-
dependently on a service, without influencing the



work of others in case of DB schema changes.

o Security Mechanism. Other microservices access-
ing and corrupting data not needed is avoided
since only one microservice can access a schema.

The Database Cluster Pattern. Principle and Prop-
erties: The second storage pattern, described by
Richardson [S2], proposes storing data on a database
cluster. This improves scalability, allowing to move
the databases to dedicated hardware. In order to pre-
serve data consistency, microservices have a sub-set
of database tables that can be accessed only from a
single microservice; in other cases, each microser-
vice may have a private database schema. From the
microservices point of view, this pattern is identi-
cal to the "Shared Database Server” pattern since it
in both cases the database is accessed in the same
way. The only difference is internally in the adopted
database. In both cases the database is seen from the
microservice-side as a single database.

Reported Usage: The pattern was implemented
by [S27], [S6], and [S15] by using a separated DB
schema for each service. [S15] also proposed it for
replicating the data across the DBs of each service.

This pattern has the advantage of improving scal-
ability. It is recommended for implementations with
huge data traffic. Disadvantages include:

o Increased Complexity due to cluster architecture.

e Risk of Failure increases because of the intro-
duction of another component and the distributed
mechanism.

The Shared Database Server Pattern. Principle
and Properties: This pattern is similar to the Database
Cluster Pattern, but, instead of using a database clus-
ter, all microservices access a single shared database.

Reported Usage: Six implementations adopted
this pattern [S13], [S39], [S25], [S18], [S30], and
[S16]. All these implementations access to data con-
currently, without any data isolation approach.

The main advantage reported is the simplicity of
the migration from monolithic applications since ex-
isting schema can be reused without any changes.
Moreover, the existing code base can be migrated
without the need to make important changes (e.g., the
data access layer remains identical).

3.4 Guiding Principles of a
Microservices Architectural Style

In order to answer to RQ2, we report on microser-
vices principles not related to a specific pattern, but
mentioned in the papers as being important and serve

as overarching principles that guide the pattern defi-
nition. A summary of generic and pattern-related ad-
vantages and disadvantages is reported in Table 2.

The most common reported advantages of mi-
croservice architectures are:

o [ncreased maintainability This is the key charac-
teristic of microservices-based implementations
reported by all the papers.

e Possibility to write code in different languages.
Highlights the benefit of using different lan-
guages, in contrast to monolithic applications
[S13], [S34], [S11].

e Flexibility. Every team can choose their own tech-
nology based on their needs [S30], [S14], [S38]

e Reuse. The maintenance of a single microservice
will reflect on any connected project, reducing
the effort overhead by applying the same changes
to the same component used in different projects
[S34], [S12].

e Ease of Deployment. Each microservice can
be deployed independently, without the need to
recompile and redeploy the whole application
[S14], [S30]

e Physical Isolation. This is the key for scal-
ing, thanks to the microservices architectural style
[S3] and [S38].

e Self-Healing.  Failed services can be easily
restarted or replaced by previous safer versions
[S7], [S30].

e Application Complexity. Since the application is
decomposed into several components, these are
less complex and easier to manage [S30].

e Design for Failure. Better support for continuous
delivery of many small changes can help develop-
ers in changing one thing at a time [S37].

e Observability. A microservices architecture helps
to visualize the "health status” of every services in
the system in order to quickly locate and respond
to any problem that occurs [S37].

o Unlimited Application size. In monolithic appli-
cations the application size is limited by the hard-
ware and by web container specifications, while
with microservices we could build a system with,
in theory, no size limits. [S13].

As agreed advantages, these can be considered to
form the principles of the architectural style.

However, several papers identified potential dis-
advantages that need to be taken into account:

o Testing Complexity. More components and col-

laborations among them increases testing com-
plexity [S37], [S21], [S31], [S24], [S26], [S28].



o [mplementation Effort. It is reported that imple-
menting microservices requires more effort than
monolithic systems [S30], [S38], [S28]

e Network related issues. Since endpoints are con-
nected via a network, the network should be re-
liable [S14], [S41]. Latency: network latency
can increase the communication time among mi-
croservices [S14], [S11], [S9]. Bandwidth: as
service communication often relies on a network,
bandwidth during normal and high peak opera-
tion needs to be considered. In cloud environ-
ments and other distributed systems settings, un-
reliability is given and failure is always possible.
Microservices can also fail independently of each
other, rather than together on a single node.

o User Authorization. The API exposed by the mi-
croservices need to be protected with a shared
user-authentication mechanism, which is often
much more complex to implement than mono-
lithic solutions [S14].

e Complexity. In the case of applications with a rel-
atively small number of users (hundreds or thou-
sands), the monolith could be a faster approach
to start and could possibly be refactored into a
microservices-based architectural style once the
user-base grows [S11].

o Automation Requirement. The explosion of the
number of services and relationships among them
requires a way to automate things. DevOps could
be a good solution for this issue [S37].

o [ncreased Dependence. Microservices are meant
to be decoupled, making it critical to preserve in-
dependence and independent deployability.

o Development Complexity. The learning curve is
not very steep, but requires an experienced devel-
oper, at least for setting-up the basic architecture
when compared to monolithic systems [S30].

4 Pattern Catalogue Discussion

Most of the implementations reported relate to re-
search prototypes, with the goal of validating the
proposed approaches (Table 3). Only six papers re-
port on implementations in an industrial context. Re-
garding the size of the systems implemented, all the
implementations are related to small-sized applica-
tions, except [S38]. Only four implementations re-
port on the development language used ([S11], [S32]
Java/NodelS, [S34] php/NodeJS/Python, [S13] php).

4.1 Architecture and Deployment
Pattern Applications

Several patterns for microservice-based systems have
emerged from existing implementations (Table 2).
We can associate some patterns with specific appli-
cation settings such as a monolith-to-microservice or
SOA-to-microservice migration.

Migration: Several implementations report the us-
age of hybrid systems, aimed at migrating existing
SOA-based applications to microservices. Mainte-
nance, and specially independent deployment and the
possibility to develop different services with differ-
ent non-interacting teams, are considered to be the
main reasons for migrating monoliths to microser-
vices. The flexibility to write in different languages
and to deploy the services on the most suitable hard-
ware is also considered a very important reason for
the migration.

Reported migrations from monolithic systems
tend to be architected with an API-Gateway archi-
tecture, probably due to the fact that, since the sys-
tems need to be completely re-developed and re-
architected, this was done directly with this approach.
Migrations from SOA-based systems, on the other
hand, tend to have a hybrid pattern, keeping the Enter-
prise Service Bus as a communication layer between
microservices and existing SOA services. Based on
this, the Enterprise Service Bus could re-emerge in
future evolutions of microservices.

Deployment: Another interesting outcome is that
deployment of microservices is still not clear. As re-
ported for some implementations, microservices are
deployed in a private VM, requiring complete startup
of the whole machine during the deployment, thus de-
feating the possibility of quick deployment and de-
creasing system maintainability due to the need for
maintaining a dedicated operating system, service
container, and all VM-related tasks.

4.2 Trends and Open Issues

We have compiled a catalogue of microservices ar-
chitectural patterns, that together with the principles
we identified form an architectural style (Malavolta
and Lago, 2017). Some researchers also propose a
new variant of such a microservice architectural style
([S24] and [S26]), applying a database approach for
microservice orchestration. However, because they
have just been published, no implementations have
adopted these practices yet. Also in this case, we be-
lieve that an empirical validation and a set of bench-
marks (Aderaldo et al., 2017) comparing this new
style with existing one could be highly beneficial for



Table 2: Classification of Advantages and Disadvantages of the Identified Patterns

-Physical isolation
-Self-healing

Pattern Advantages Disadvantages

General -Increased maintainability -Development/testing complexity
-Can use different languages -Implementation effort
-Flexibility -Network-related issue
-Reuse

Orchestration
& Coordination

API -Extension easiness

-Potential bottleneck

Gateway -Market-centric Architecture -Development complexity
-Backward compatibility -Scalability
Service -Increased maintainability -Interface design must be fixed
Registry -Communic., developm., migration -Service registry complexity
-Software understandability -Reuse
-Failure safety -Distributed system complexity
Hybrid -Migration easiness -SOA/ESB integration issues
-Learning curve
_;% = Multiple service -Scalability
5 E per host -Performance
_ Single service -Service isolation -Scalability
per host -Performance
g DB per -Scalability -Data needs to be splitted
g Service -Independent development -Data consistency
i -Security mechanism
= DB -Scalability -Increase complexity
=] . . . .
Cluster -Implementation easiness -Failure risks
Shared DB server -Migration easiness -Lack of data isolation
-Data consistency -Scalability
Table 3: The Implementations Reported in the Selected Works
Research Prototype / System Validation-specific Implementations Industrial Implementations
Websites [S11], [S39] [S15], [S24], [S26], [S31] [S13], [S32]

Services & APIs 10T Integration [S33]

[S9], [S10], [S14], [S16], [S23], [S37], [S36]

[S21], [S34]

Others Enterprise Measurement [S4]
IP Multimedia [S25]

Benchmark/Test [S35], [S41], [S42]
Business Process Modeling [S12]

Mobile Dev Platform [S38]
Deployment Platform [S30]

researchers and practitioners.

Microservices move us towards continuous devel-
opment and delivery (Pahl et al., 2018). DevOps is the
integration of Development and Operations. An im-
portant observation is that microservices require full
application stacks. That means that their infrastruc-
ture resources like data stores and networks have to be
managed properly. DevOps in this way connects soft-
ware development with concerns of technology oper-
ations and quality management. In this context, con-
tainer technology and cloud-native services can pro-
vide the required cloud-based virtualization and im-
plementation support for microservices (Pahl et al.,
2018).

Resulting from our study, but also discussions in
(Malavolta and Lago, 2017) or (Pahl et al., 2018), we
can identify the following emerging issues:

o Comparison of SOA and Microservices. The dif-
ferences have not been thoroughly investigated.
There is a lack of comparison from different
points of view (e.g., performance, development
effort, maintenance).

e Microservices Explosion. What happens once a

growing system has thousands, or millions of mi-
croservices is still not clear. Will all the men-
tioned microservices qualities degrade (Kratzke
and Quint,2017)?

e Negative Results. In which contexts do microser-
vices turn out to be counterproductive? Are there
anti-patterns (Kratzke and Quint,2017)?

All require more experience reports and empirical in-
vestigations.

5 Conclusion

We presented principles and a catalogue of patterns
of a microservices-based architectural style. We have
determined these patterns and principles by conduct-
ing a systematic mapping study.

We have used the concept of architecture pat-
terns to extract some common structural properties
of microservice architectures. Three orchestration
and data-storage patterns emerged that appear to be
widely adopted when implementing microservices-
based systems. Although some patterns were clearly
used for migrating existing monolithic applications



(using service registry pattern) and others for migrat-
ing existing SOA applications (using hybrid pattern),
adopting the API-Gateway pattern in the orchestra-
tion layer in order to benefit from microservice ar-
chitectures without needing to refactor a second time
emerges as a key recommendation. Overall, a 3-
layered catalogue of patterns emerges with patterns

e for orchestration/coordination and storage as
classical structure-oriented architectural pattern
groups that address component-level interaction
and data management concerns, resp., as tradi-
tional software architecture concerns,

e for deployment alternatives that link microser-
vices to their deployment in the form of containers
or VMs, linking microservices inherently to their
deployment strategies in host environments.

We have embedded these in a discussion of principle
benefits and disadvantages of a microservices style
overall.

Independent deployability, being based on strong
isolation, and easing the deployment and self-
management activities such as scaling and self-
healing, and also maintainability and reuse as classi-
cal architecture concerns are the most widely agreed
beneficial principles. The emergence of deployment
patterns here is a first step towards a deeper coverage
of continuous development, integration and deploy-
ment in a DevOps style framework. The patterns con-
firm the need to address microservices in conjunction
with their deployment through containers or VMs.

A further observation concerns the notion of an
architecture style itself in the presence of continuous
architecting. The latter becomes an integral element
of software architecture these days. Correspondingly,
an architectural style needs to cover continuous archi-
tecting activities as well in addition to purely devel-
opment stage concerns such as system design usually
focused on in architectural styles.
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