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Abstract

This paper presents a system for the acquisition of in-house parameters, such as temperature, pressure, humidity and so on, that
can be used for the intelligent control of a building. The main objective of this work is to determine an environmental model of an
in-house room using machine learning techniques. The system is based on a low data-rate network of sensing and control nodes
to acquire the data, realized with a new protocol, called ToLHnet, that is able to employ both wired and wireless communication
on different media. Several standard machine learning techniques, namely linear regression, classification and regression tree
algorithm, support vector machine, have been used for the regression of the input-output thermal model. Additionally, a recently
proposed new technique named particle-Bernstein polynomial has been successfully applied. Experimental results show that this
technique outperforms the previous techniques, for both accuracy and computation time.
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1. Introduction

Primary energy consumption in buildings represents about 40% of total energy produced world wide, and more
than a half is used by heating ventilation and air conditioning (HVAC) systems [2]. Accurate internal temperature
forecast can reduce energy usage in building firstly because it is more efficient to maintain temperature in a room than
to heat or cool it and secondly because HVAC controller system is able to minimize a cost function based on energy
consumption. The most challenging phase in predictive building controller designs is the control-oriented modeling
of building thermal dynamics. Time-series prediction has demonstrated as one of the most powerful method to model
indoor temperature behaviour [3, 16, 11]. Additionally the increasing availability and use of sensor devices enables to
collect a large amount of data [15]. As a consequence, combining these two key aspects, machine learning techniques
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for the identification of input-output nonlinear systems from data, can be fruitfully adopted for internal temperature
modeling [12, 13].

The aim of this paper is to present a system for the acquisition of in-house parameters, such as temperature,
pressure, humidity and so on, that can be used for an intelligent control of building system. The key points of such
a system are: i) low data-rate network of sensing and control nodes, ii) the machine learning techniques for the
environmental modeling of an in-house room. As far as the first point is concerned a new protocol, called ToLHnet
[5, 6, 1, 4], that is able to employ both wired and wireless communication on different media among thousands of
nodes, has been adopted. With reference to the second point several standard machine learning techniques [9], namely
linear regression (LR) [14], classification and regression tree algorithm (CART) [8], support vector machine (SVM)
[10], have been used. Additionally a recently proposed new technique named particle-Bernstein polynomials (PBP)
[7] has been used for the regression of input-output thermal modeling, that outperforms previous techniques.

The remainder of this paper is organized as follows. In Section 2 we describe the wireless in-house parameters
acquisition system used for the experimentation. In Section 3 the environmental model identification problem is for-
malized and the machine learning techniques for regression are described. Section 4 is devoted to experimental results.
Finally, Section 5 summarizes some conclusions.

2. Wireless in-house parameters acquisition system

2.1. ToLHnet protocol

ToLHnet is a simple communication protocol that was conceived for implementing low-data-rate networks of
sensing and control nodes, using a tree-based routing scheme. The protocol is able to employ both wired and wireless
communication over different media among thousands of nodes. The protocol was designed so as to allow a strongly
asymmetrical implementation, moving most of the complexity out of the standard nodes and into a single special node
that will be the master controller of the network. To this end, as the master controller takes care of computing routing
tables, assigning addresses, configuring the network, it shall have larger computing and memory resources than those
required by other nodes. The main tasks the master controller carries out are:

• finding the optimal tree;
• choosing the routers;
• building appropriate routing tables;
• dispatching the tables to the routers.

2.2. Sensor network

The sensor network used for the experiments includes 19 Bluetooth Low Energy (BLE) sensors, 3 nodes and
a master controller equipped with a Linux operating system. With the firmware developed a maximum of 7 BLE
sensors can be polled by each ToLHnet node, thus the architecture chosen in this work is as shown in Fig. 1.

The sensors are able to provide measures of ambient temperature, humidity and pressure, at a rate of 1 read-
ing/minute by sending them to the linked node. The sensor network topography used for the experiments is reported
in Fig. 2; as you can see the sensors have been deployed in a 5 m × 8.93 m room to form a uniformly spaced grid.

2.3. Client/server architecture

The acquisition system has been organized on the basis of a client/server architecture that, through a browser,
allows the user to have access to the data that reside on a server. The architecture uses an HTTP communication
protocol as shown in Fig. 3. Two databases have been used to storage the data: SQLite for the storage of the sensors
data and MySQL for the management of the graphical interface (create sensors map, update sensors map, select node,
change node, . . . ).
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Fig. 1. Architecture of sensor network.

Fig. 2. The map of sensors.

3. Environmental model identification

The main objective of this work is to determine an environmental model of an in-house room using machine learn-
ing techniques. Mathematically this problem can be formalized as the identification of an input-output relationship

Fig. 3. Client/server architecture.
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Tin(t) = h (Text(t)) , t = 1, . . . ,N (1)

between internal temperature Tin(t) and external temperature Text(t), sampled at different time instants t. In this work
we refer to the network of Fig. 1, thus Tin(t) is a vector that contains the 18 temperatures acquired by the internal
sensors (N5:0,N1:0, . . .), while Text(t) is the external temperature measured by the sensor N5:5. Due to the thermal
inertia the internal temperature Tin(t) at time instant t, depends on present and past values of Text(t), thus (1) can be
rewritten as

Tin(t) = h (Text(t), Text(t − 1), . . . ,Text(t − p)) (2)

where Text(t − i), i = 1, . . . , p are the lagged values of Text(t). The identification of model (2) corresponds to the
regression of the function f (·) through input-output data, thus can be viewed as a supervised learning problem. In
particular the data matrices used for learning have the following form

X =



x(t) x(t − 1) x(t − 2) · · · x(t − p)
x(t + 1) x(t) x(t − 1) · · · x(t − p + 1)
...

...
...

...
...

x(t + N) · · · · · · · · · x(t − p + N)


(3)

Y =



y1(t) y2(t) · · · y18(t)
y1(t + 1) y2(t + 1) · · · y18(t + 1)
...

...
...

...
y1(t + N) y2(t + N) · · · y18(t + N)


(4)

where N is the number of the observations.

3.1. Regression model of thermal behaviour

The regression of input-output relationship (2) given the data matrices (3) and (4) can be solved using a machine
learning approach. In this paper some standard techniques, LR, CART, SVM, and a novel technique, PBP, have been
used for comparison. As the standard techniques are well known we will briefly describe only the most recent PBP
technique.

3.2. Machine learning regression based on particle-Bernstein polynomials

This particularly effective algorithm has been recently proposed for the regression of input-output relationships
from data, and is based on Bernstein polynomials. The m−degree Bernstein polynomials are defined by

bm
k (x) =

(
m
k

)
xk(1 − x)m−k, k = 0, 1, . . . ,m (5)
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Fig. 4. Particle-Bernstein polynomials.

where x ∈ [0, 1] and
( m

k
)
= m!

(m−k)! k! . In (5) both the variables m and k are integer, as the binomial coefficients are
defined for integer values. Relaxing this constraint assuming k is real and denoting this value with ξ, a new set of
functions called particle-Bernstein polynomials can be defined as follows

Cm
ξ (x) = αm

ξ xξ (1 − x)m−ξ = αm
ξ km
ξ (x), ξ ∈ R1, ξ ∈ [0,m] , (6)

where the coefficients αm
ξ are chosen in such a way the integral constraint

∫ 1

0
Cm
ξ (x) dx = 1, (7)

holds. Several examples of functions defined by (6) for m = 20 and different values of ξ are reported in Fig. 4.

4. Experimental results

The experimental data used for validating the proposed approach were collected by the sensor network of Fig. 2
over a period of six days. Temperature was sampled at a rate of 1 sample every minute, so as 8640 observations were
gathered. Since an observation includes 18 values of internal temperature and 1 value of external temperature, a total
of 164160 temperature reading were collected. The identification of the input-output relationship (2) was performed
using several different algorithms, namely LR, CART, SVM, PBP. For each algorithm two models were derived using
two different input/output data matrices:

1. Input data matrix X1(8620 × 20): in this case the temperature at time instant t depends on the p = 19 lagged
values;
Output data matrix Y1(8620 × 18).

2. Input data matrix X2(8540 × 100): in this case the temperature at time instant t depends on the p = 99 lagged
values;
Output data matrix Y2(8540 × 18).
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(a) (b)

Fig. 5. LR: (a) Input data matrix X1, frame 1000. (b) Input data matrix X2, frame 1000.

(a) (b)

Fig. 6. LR: (a) Input data matrix X1, frame 3000. (b) Input data matrix X2, frame 3000.

Four testing vectors were used corresponding to the frames 1000, 3000, 6500 and 8621 for p = 19 and to the frames
1000, 3000, 6500 and 8541 for p = 99. For each test, the corresponding row and its corresponding p following lines
were removed from the data matrix used for training.

The experiments were conducted on a computer equipped with:

• CPU Intel Core i7-6800K (15M Cache, up to 3.60 GHz);
• Ram DIMM DDR4 32GB at 2666 MHz.

4.1. Linear regression (LR)

The results achieved with this algorithm for the frame 1000 and 3000 are reported in Fig. 5, 6.

4.2. Classification and regression trees algorithm (CART)

The results achieved with this algorithm for the frame 1000 and 3000 are reported in Fig. 7, 8.

4.3. Support vector machine algorithm (SVM)

The results achieved with this algorithm for the frame 1000 and 3000 are reported in Fig. 9, 10.
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(a) (b)

Fig. 7. CART: (a) Input data matrix X1, frame 1000. (b) Input data matrix X2, frame 1000.

(a) (b)

Fig. 8. CART: (a) Input data matrix X1, frame 3000. (b) Input data matrix X2, frame 3000.

(a) (b)

Fig. 9. SVM: (a) Input data matrix X1, frame 1000. (b) Input data matrix X2, frame 1000.

4.4. Particle-Bernstein polynomial algorithm (PBP)

The results achieved with this algorithm for the frame 1000 and 3000 are reported in Fig. 11, 12.
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(a) (b)

Fig. 10. SVM: (a) Input data matrix X1, frame 3000. (b) Input data matrix X2, frame 3000.

(a) (b)

Fig. 11. PBP: (a) Input data matrix X1, frame 1000. (b) Input data matrix X2, frame 1000.

(a) (b)

Fig. 12. PBP: (a) Input data matrix X1, frame 3000. (b) Input data matrix X2, frame 3000.

4.5. Algorithm comparison

The complete results are summarized in Table 1 for p = 19 and Table 2 for p = 99. These tables report the
performances of each algorithm in terms of mean squared error regression loss (the best value is 0.0), explained
variance regression score function (the best possible score is 1.0), and R2 (coefficient of determination) regression
score function (the best possible score is 1.0).
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Table 1. MSE, Variance score and R2 score for p = 19.

frame number
MSE

LR CART SVM PBP

1000 0.952207 0.952207 0.723615 0.056278
3000 0.002207 0.002207 0.010166 0.028946
6500 0.100648 0.100648 0.090766 0.051349
8621 2.950574 3.002713 4.678558 0.384642

frame number
Variance score

LR CART SVM PBP

1000 0.979 0.979 0.957 0.991
3000 0.990 0.990 0.975 0.997
6500 0.101 0.990 0.956 0.991
8621 0.959 -6.034 0.968 0.995

frame number
R2 score

LR CART SVM PBP

1000 0.979 0.979 0.957 0.991
3000 0.990 0.990 0.975 0.997
6500 0.101 0.990 0.956 0.991
8621 0.959 -6.034 0.968 0.995

Table 2. MSE, Variance score and R2 score for p = 99.

frame number
MSE

LR CART SVM PBP

1000 1.148228 0.000054 0.679614 0.056278
3000 0.015192 0.000271 0.008087 0.056278
6500 0.183171 0.001302 0.097049 0.056278
8541 2.700020 0.000217 4.657414 0.000006

frame number
Variance score

LR CART SVM PBP

1000 0.975 1.000 0.957 0.991
3000 0.990 0.998 0.978 0.991
6500 0.974 0.984 0.936 0.991
8541 0.963 0.998 0.966 1.000

frame number
R2 score

LR CART SVM PBP

1000 -6.441 1.000 -3.404 0.247
3000 0.885 0.998 0.939 0.247
6500 -1.572 0.982 -0.363 0.247
8541 -19.070 0.998 -33.621 1.000

Table 1 shows that the better performances are obtained with the PBP algorithm, while, as shown in Table 2, with
p = 99, CART algorithm achieves the better accuracy. However, in terms of computation time, PBP achieves always
the better results, as shown in Tables 3, 4.

5. Conclusion

In this paper, an acquisition system of in-house parameters from wireless sensors for the identification of an en-
vironmental model, has been presented. The system employs a low data-rate network of sensing and control nodes,
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Table 3. Execution time for p = 20.

frame number
Training & Testing time [s]

LR CART SVM PBP

1000 0.063287 1.414434 41.268678 0.014175
3000 0.059241 1.314986 41.318781 0.018037
6500 0.059966 1.384132 39.158068 0.013535
8621 0.057017 1.379291 41.202026 0.009359

Table 4. Execution time for p = 100.

frame number
Training & Testing time [s]

LR CART SVM PBP

1000 0.506092 8.561662 94.922802 0.037444
3000 0.508766 8.133819 95.163664 0.038142
6500 0.507753 8.578798 90.216109 0.049462
8541 0.514602 8.525970 94.794116 0.036270

using a new protocol, called ToLHnet. The regression of the input-output thermal model has been realized using sev-
eral standard machine learning techniques. Among this, a recently proposed new technique named particle-Bernstein
polynomial has been successfully applied. Experimental results show that, in term of mean squared error regression
loss, variance regression score and R2 regression score, for p = 19, this technique achieves the best performance.
Furthermore, in terms of computation time, this new technique achieves always the better results.
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