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Abstract: For piecewise affine (PWA) systems whose dynamics are only defined in a bounded
and possibly non-invariant set X , this paper proposes a numerical approach to analyze the
stability of the origin and to find a region of attraction. The approach relies on introducing fake
dynamics outside X and on synthesizing a piecewise affine and possibly discontinuous Lyapunov
function on a larger bounded set containing X by solving a linear program. The existence of
a solution proves that the origin is an asymptotically stable equilibrium of the original PWA
system and determines a region of attraction contained in X . The procedure is particularly
useful in practical applications for analyzing a posteriori the stability properties of approximate
explicit model predictive control laws defined over a bounded set X of states, and to determine
whether, for a given set of initial states, the closed-loop system evolves within the domain X
where the control law is defined.

1. INTRODUCTION

Model predictive control (MPC) is a well-known control
technique to satisfy constraints on state and control vari-
ables in an optimized way. MPC has been widely adopted
in the process industries, and deeply studied by the re-
search community (see, e.g., Rawlings and Mayne (2009)).
It is well known that the main drawback of MPC is
the computation time for solving on-line an optimization
problem, which prevents the application of MPC on fast-
sampling processes, or when high hardware costs must be
avoided.

Explicit MPC is a very effective way of simplifying on-line
computations (Bemporad et al., 2002). The control law is
computed off-line as an explicit function of the state vector
by solving a multiparametric programming problem. For
constrained linear and piecewise affine (PWA) systems, the
resulting explicit function is in most cases a PWA function.
In this way on-line computations reduce to searching and
evaluating a lookup table of linear gains and affine terms.

However, in most practical applications of explicit MPC,
the control law is only defined on a bounded set of states
X ∈ Rn, and often does not enjoy a-priori stability guar-
antees. There are several reasons for such a situation.
First, constraints on states are usually treated as soft con-
straints, while instead most stability proofs of classical lin-
ear or hybrid MPC schemes rely on hard state constraints
(if any are enforced). Second, multiparametric solvers only
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solve the MPC problem on a bounded set X of states in
order to guarantee termination and a finite number of par-
titions of X . Third, the exact solution may be too complex,
so approximate explicit MPC solutions are sought (Alessio
and Bemporad, 2009; Bemporad and Filippi, 2003; Bem-
porad et al., 2011; Christophersen et al., 2007; Grieder
and Morari, 2003; Johansen and Grancharova, 2003; Jones
et al., 2007; Muñoz de la Peña et al., 2006). Especially in
the hybrid MPC case the number of regions tends to grow
quite considerably with the prediction horizon, and sub-
optimal explicit MPC solutions based on switching among
a set of explicit linear MPC controllers (based on linear
time-invariant models) can be exploited. Such solutions,
thanks to their reduced complexity, have been proposed
in practical applications (see e.g. Bemporad et al. (2007);
Di Cairano et al. (2010)) and can be implemented in low
cost hardware solutions (Poggi et al., 2011). As a result in
general (i) the bounded region X where the explicit control
law is defined is not invariant, (ii) the origin may not be
asymptotically stable, and (iii) its domain of attraction
may be unknown.

To solve this problem without increasing the complexity of
the controller, an a posteriori analysis must be carried out
on the closed-loop system, see e.g. Christophersen et al.
(2004, 2007). This problem is extensively treated in Biswas
et al. (2005), where the use of different Lyapunov functions
is discussed. The most used functions are quadratic, or
piecewise quadratic (PWQ), Lyapunov functions (see Jo-
hansson and Rantzer (1998) for the continuous-time and
Ferrari Trecate et al. (2002) for the discrete time cases).
As highlighted also in Grieder et al. (2005), the search
for a PWQ Lyapunov function can be overly conservative,
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even with the use of the so called S-procedure, which is
not lossless in the considered cases (see e.g. Boyd et al.
(1994)). A valid alternative are PWA Lyapunov functions,
although usually the considered set where the system is
defined is considered invariant by assumption, because, as
remarked in Biswas et al. (2005), the notion of stability
has no practical relevance if the state trajectory exits the
defined set of states. In case the given set is not invariant,
a possible approach is to perform a reachability analysis
to find the maximum positively invariant set (see Raković
et al. (2004), Blanchini and Miani (2008) and the refer-
ences therein) to establish, using a recursive procedure, an
invariant subset of the given set. However, this procedure
can lead to very involved solutions due to the exponential
explosion of the tree of one-step reachable subsets, and
in many cases searching for the maximum invariant set
requires an infinite number of steps.

This paper provides a procedure to find a Lyapunov
function for (approximate) explicit MPC closed-loop sys-
tems, and more generally for (possibly discontinuous) au-
tonomous discrete-time PWA systems whose dynamics are
defined only for a set X of states that may not be invariant,
so as to prove stability and find domains of attraction. The
idea is to synthesize a Lyapunov function on a set of states
that is larger than the given region X , by making use of
a “fake” dynamics outside X , and then find an invariant
subset of X . To minimize conservativeness, continuity of
the Lyapunov function is not imposed on the boundaries
of the PWA partitions.

The paper is organized as follows: Section 2 introduces
the class of considered autonomous PWA (closed-loop)
systems. The analysis problem is formulated for a generic
PWA autonomous system. Section 3 shows the proposed
solution for the stability and invariance analysis, while a
simulation example is presented in Section 4. Conclusions
are gathered in Section 5.

2. PROBLEM FORMULATION

Consider the autonomous discrete-time piecewise affine
(PWA) system

x(k + 1) = Aix(k) + ai if x(k) ∈ Xi (1)

where A ∈ Rn×n, ai ∈ Rn, the sets Xi, i ∈ I , {1, ..., s},
are (possibly non-closed) polyhedra defined such that Xi∩
Xj = ∅, ∀ i, j ∈ I with i 6= j, and such that ∪si=1Xi , X is
a bounded and closed polyhedron (polytope). The set of
the vertices of the closure X̄i of Xi is denoted by vert(X̄i).
The interior of each partition Xi can be described as

int(Xi) = {x : Hix < hi, i ∈ I} (2)

with int(Xi) 6= ∅, where Hi and hi are constant matrices
of suitable dimensions, and < indicates a component-
wise inequality. Note that the dynamics (1) may not be
continuous with respect to x on the boundaries of the
partitions 1 .

Assumption 1. Given the PWA system (1), there exists an
index i ∈ I such that 0 ∈ vert(X̄i), 0 ∈ int(X ), and x = 0
is an equilibrium point.

1 In case the PWA mapping defined in (1) is continuous, the sets Xi

can be treated as closed polytopes, i.e., Xi = {x ∈ Rn : Hix ≤ hi},
∀i ∈ I, as no ambiguity arises on overlapping boundaries.

Note that, if the origin is not on a vertex of any polyhedron
Xi, it is always possible to further partition X to obtain a
new set of partitions Xi which fulfills this assumption.

The problem addressed in this paper is the following: prove
that the origin is an asymptotically stable equilibrium
point, and find an invariant subset P ⊆ X of its domain
of attraction.

3. PWA LYAPUNOV ANALYSIS

Since the set X is not assumed to be invariant, when
looking for a Lyapunov function we must take into account
that trajectories may possibly exit X . To this purpose,
define the set

X 1 , X ∪ {Aix+ ai : x ∈ Xi, i ∈ I} (3)

which represents an extension of X , including all the
state values that can be reached in one time step starting
from X . As dynamics (1) are not defined outside X , the
proposed strategy consists in defining a “fake” dynamics
in a region X 2 covering X 1 \ X . First, a set X 2 ⊇ X 1

is defined as the bounding box of X 1, i.e., the smallest
closed hyper-rectangle containing X 1. Let x(i) denote the
i-th component of the state vector, i = 1, ..., n, and define
x(i) , supX 1 x(i) and x(i) , infX 1 x(i). Then

X 2 ,
{
x ∈ Rn : x(i) ≤ x(i) ≤ x(i), i = 1, ..., n

}
(4)

Consider the “fake” dynamics

x(k + 1) = ρx(k), if x(k) ∈ X 2 \ X (5)

where ρ ∈ [0, 1). The region X 2 \ X can be divided in
convex polyhedral regions as in (Bemporad et al., 2002,
Th. 3). As a result, a number of new regions Xi, i = s +

1, ..., s̃, is created. Let Ĩ , {1, ..., s̃}. The dynamics of the
extended system on X 2 is

x(k + 1) =

{
Aix(k) + ai if x(k) ∈ Xi, i ∈ I,
ρx(k) if x(k) ∈ X 2 \ X . (6)

For convenience, we define Ai = ρI, ai = 0 for i ∈ Ĩ \ I.

Lemma 1. The set X 2 is invariant for the PWA system (6).

Proof: If x ∈ X 2, then either x ∈ X or x ∈ X 2 \ X . If
x ∈ X then the successor state Aix + ai ∈ X 1 ⊆ X 2. If
x ∈ X 2 \ X , the successor state ρx ∈ X 2, because X 2 is a
hyper-rectangle (convex set) including the origin. �

Lemma 1 will be of fundamental importance when facing
the problem of finding a Lyapunov function for system (1).
The choice of defining X 2 as a bounding box, and the
dynamics in X 2 \ X as in (5) is simplistic, yet we will
prove its effectiveness. Other choices of X 2 ⊇ X 1 and of
the dynamics (5) are clearly possible, provided that X 2 is
invariant.

3.1 Synthesis of the PWA Lyapunov function

By recalling classical results of stability of nonlinear
discrete-time systems (see e.g. Vidyasagar (1993) and
(Lazar, 2006, Chap.2)), we look for a function V : X 2 → R
that satisfies the conditions

V (x) ≥ α‖x‖ (7a)

V (f(x))− λV (x) ≤ 0 (7b)
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∀x ∈ X 2, where f : Rn → Rn is the PWA state update
function defined in (6), α > 0, λ ∈ (0, 1), and ‖ · ‖ denotes
any linear vector norm (such as 1-norm or ∞-norm) 2 .
Note that (7a) and (7b) imply the condition V (0) = 0.

The goal is now to synthesize a PWA Lyapunov function
for system (6) satisfying (7). A state x and its successor
f(x) in (7b) may belong to the same region or to different

regions, say x ∈ Xi and f(x) ∈ Xj , (i, j) ∈ Ĩ ×Ĩ. Similarly
to (Grieder et al., 2005), to characterize such transitions
we define the region transition map S

S(i,j) ,
{

1 if ∃x ∈ X̄i : Aix+ ai ∈ X̄j

0 otherwise
(8)

For any pair (i, j) ∈ Ĩ×Ĩ, the subset of Xi that is mapped
in one step into the region Xj is contained in the set

X(i,j) , {x ∈ X 2 : Hix ≤ hi, Hj(Aix+ ai) ≤ hj} (9)

that we refer to as transition set. Note that X(i,j) = ∅ if
S(i,j) = 0.

We are ready to define the candidate PWA Lyapunov
function V : X 2 → R

V (x) = max
i∈N (x)

Vi(x) (10a)

where
N (x) , {i ∈ Ĩ : x ∈ X̄i} (10b)

and Vi : X̄i → R is defined as

Vi(x) , Fix+ gi (10c)

for i ∈ Ĩ, where in (10c) Fi ∈ R1×n and gi ∈ R are coeffi-
cients to be determined. The condition V (0) = 0 and the
continuity of V in 0 are immediately obtained by requiring
that gi = 0 for all i ∈ Ĩ such that 0 ∈ X̄i. Note that simply
V (x) = Fix + gi for x ∈ int(Xi). The rationale for using
maximization in (10a) is that for numerical reasons we
want to consider closed sets X̄i and the affine terms Vi(x),
Vj(x) may not coincide on common boundaries X̄i ∩ X̄j ,
in alternative to imposing very conservative continuity
conditions on such boundaries.

Since X̄i are convex sets and Vi are affine on X̄i, it is enough
to impose the Lyapunov conditions (7) only at the vertices
vert(X̄i) of the X̄i and vert(X̄(i,j)) of the X(i,j):

Fiv
h
i + gi ≥ α‖vhi ‖ (11a)

for all mi vertices vhi ∈ vert(X̄i), i ∈ Ĩ, h = 1, . . . ,mi, and

Fj(Aiv
h
ij + ai) + gj − λ(Fiv

h
ij + gi) ≤ 0 (11b)

for all vhij ∈ vert(X(i,j)), h = 1, . . . ,mij , such that S(i,j) =

1, with (i, j) ∈ Ĩ × Ĩ. Considering that all the vertices
of the partitions are given, the resulting constraints (11)
define a linear feasibility problem in the unknowns Fi,
gi, α, for a fixed decay rate λ, and a feasible solution
can be determined by linear programming (LP). As for
the computational burden, the LP (11) has a number of
variables equal to nv = 1 + s̃(n + 1). One inequality is
imposed for each vertex of each region Xi, i = 1, ..., s̃ to

2 Condition (7b) could be replaced by V (f(x)) − V (x) ≤ −γ‖x‖,
where γ = (1 − λ)α > 0. In fact by (7) it follows that V (f(x)) −
V (x) ≤ −(1 − λ)V (x) ≤ −(1 − λ)α‖x‖. Moreover an upperbound
β‖x‖ on V (x) can always be found here, as V is defined over a
bounded set.

fulfill (11a). Moreover, to fulfill (11b), for each vertex of
each X(i,j) one has to impose another inequality. Then, the
overall number of scalar constraints is

nc =

s̃∑
i=1

mi +
∑

j∈Ĩ:S(i,j)=1

card
(
vert(X(i,j))

)
where card

(
vert(X(i,j))

)
is the number of vertex of X(i,j).

Lemma 2. If the LP (11) associated with the autonomous
PWA dynamics (6) and the candidate Lyapunov func-
tion (10) is feasible, then the origin is an asymptotically
stable equilibrium with domain of attraction X 2.

Proof: Since the Vi(x) are affine functions defined on
convex partitions Xi, the satisfaction of (11a) for all

vhi ∈ vert(X̄i), with i ∈ Ĩ, h = 1, . . . ,mi, for x ∈ X̄i

leads to α‖x‖ = α‖
∑mi

h=1 β
h
i v

h
i ‖ ≤

∑mi

h=1 β
h
i α‖vhi ‖ ≤∑mi

h=1 β
h
i (Fiv

h
i + gi) = Fi(

∑mi

h=1 β
h
i v

h
i ) + gi

∑mi

h=1 β
h
i =

Fix + gi, where βh
i ≥ 0,

∑mi

h=1 β
h
i = 1 are a set of

coefficients defining x as a convex combination of the
vertices of Xi. For this reason, for x ∈ int(Xi), since
Vi(x) = Fix+ gi, (7a) holds. Moreover, on the boundaries
of X̄i, according to (10a), one has α‖x‖ ≤ Fix + gi for
all i ∈ N(x), and therefore α‖x‖ ≤ maxi∈N (x){Fix +

gi} = V (x). This implies that (7a) holds for all x ∈ X 2,
since X 2 =

⋃
i∈Ĩ X̄i. Following a similar procedure, it is

possible to show that (7b) holds for all x ∈ X 2. As a result,
(7) hold for all x ∈ X 2, which proves the lemma. �

3.2 Feasibility

In case the LP (11) is infeasible, besides increasing the
value of λ, a possibility is to increase the number of
partitions of X 2, therefore providing more flexible PWA
Lyapunov functions.

PWQ Lyapunov approaches assume that V is quadratic
on each cell Xi. On the other hand, assuming that
V is affine on each Xi may not provide enough de-
grees of freedom. Therefore, for each polyhedron Xi one
can compute its Delaunay triangulation (Yepremyan and
Falk, 2005) {XD

i,1, . . . ,XD
i,ni
}, i ∈ s̃. The PWA Lya-

punov synthesis procedure is performed by replacing
the sets Xi with the elements of the simplicial parti-
tion {XD

1,1, . . . ,XD
1,n1

,XD
2,1, . . . ,XD

2,n2
, . . . ,XD

s̃,1, . . . ,XD
s̃,ns̃
},

and consequently by setting Ĩ = {1, . . . ,
∑s̃

i=1 ni}, and

I the subset of Ĩ of indices for which Xi ⊆ X .

Another possible way is to consider the X(i,j) as the new
Xi and restart the procedure. Alternatively, in case the Xi

are simplices, one can split each of them into n + 1 new
simplices by considering the barycenter v̄ = 1

n+1

∑n
i=0 vi

as a new vertex. Note that by iterating such procedures,
the complexity of the LP (11) may grow quite fast. On
the other hand, we underline that the complexity of the
explicit MPC controller which leads to the closed-loop
system (1) remains unchanged.

Remark 1. The procedure described so far to find a PWA
Lyapunov function given an invariant set is analogous
to that in Grieder et al. (2005), with two important
differences. The first is that we explicitly handle the case
of discontinuous PWA Lyapunov functions. The second is
that in Grieder et al. (2005) the analogous of the set X is
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defined as the set of initial conditions for which the optimal
control problem is feasible, and is assumed a priori to be
invariant, which simplifies the approach. This is instead
not assumed in our setup.

Since we analyze the stability and invariance of a system
that we partially defined in an arbitrary way, we cannot get
conclusions at this point about the invariance and stability
of the “true” system (1) defined in X , which is tackled in
the next section.

3.3 Invariance analysis

Consider again system (6) in X 2, assume that a feasible
solution to (11) exists, define

V̄ , inf
x∈X 2\X

V (x) (12)

and consider the subset P of X
P , {x ∈ X : V (x) < V̄ } (13)

Note that the set P may not be convex, not even con-
nected.

The stability of the augmented system (6) proved in
Lemma 2 and the definition of P in (13) are exploited
now to state the main result of the paper.

Theorem 1. Consider system (1), whose dynamics are only
defined in X . Assume that the dynamics are extended
in X 2 \ X as in (5) and that a Lyapunov function for
system (6) is found by solving the LP (11). Then, the
set P ⊆ X defined in (13) is invariant with respect
to the dynamics (1), the origin is asymptotically stable,
and moreover limk→+∞ x(k) = 0 for any initial condition
x(0) ∈ P.

Proof: The proof consists of showing that the PWA
Lyapunov function V P : Rn → R

V P(x) , V (x), ∀x ∈ P (14)

where V (x) is found as in Lemma 2 for (6) in X 2, is a
Lyapunov function for (1) over the set P. First of all,
considering that P is invariant for (6) in X 2, one can
note that the state update x(k + 1) ∈ P for x(k) ∈ P
is always calculated using the dynamics in (1). Then, P
is an invariant set for (1), because dynamics (5) are never
active. Considering that P ⊆ X 2, (7) hold for any point
x ∈ P, since it is already proved that (7) are satisfied for
all x(k) ∈ X 2. We conclude then that V P(x) is a Lyapunov
function for system (1) in P. �

As a practical procedure to represent the set P, one can
define the polyhedra

XPi , {x ∈ Xi : Fix+ gi < V̄ }, i = 1, ..., I, (15)

and define the invariant set P as

P =

I⋃
i=1

XPi (16)

In addition, in order to check if a given set P0 ⊆ X of
initial states of interest is contained in P, which proves
that all trajectories starting in P0 live in X and converge
to 0, it is enough to check if

P0 ∩ P = P0 (17)

or, equivalently,

I⋃
i=1

(
XPi ∩ P0

)
= P0 (18)

The overall stability and invariance procedure proposed in
this paper is summarized in Algorithm 1.

Algorithm 1 Stability and invariance procedure

Given the (closed-loop) PWA system (1)

REPEAT

1. If necessary, split the existing regions in subsets, obtain-
ing a new set of Xi;

2. Compute X 1 in (3) and find a bounding box X 2;
3. Define the “fake” dynamics (5);
4. Find the transition map S in (8) and the transition sets
X(i,j) in (9);

5. Solve the LP feasibility problem (11)
UNTIL the LP has a solution, or a given maximum number
of iterations has exceeded

6. If the LP was feasible, find the region of attraction
P ⊆ X in (13)

4. SIMULATION EXAMPLE

The proposed stability and invariance analysis procedure
is tested on the closed-loop system composed by a discrete-
time PWA system and a switched explicit linear MPC
controller. The PWA system is defined by

x(k + 1) = Ãix(k) + B̃iu(k) if x(k) ∈ Xi,

with i ∈ {1, 2}, X1 = {x ∈ R2 : H1x ≤ h1}, X2 = {x ∈
R2 : H2x ≤ h2} \ X1, and

Ã1 =

[
0.8 0.8

0 0.8

]
, Ã2 =

[
0.7 0.7

0 0.7

]
,

B̃1 = B̃2 =

[
1
0

]
,

H1 =

 0 0.1
0 −0.1

−0.1 0
1 0

 , H2 =

 0 0.1
0 −0.1
−1 0
0.1 0

 ,

h1 =

 1
1
1
−1

 , h2 =

 1
1
1
1

 .
The switched explicit linear MPC controller is defined by
computing an explicit MPC control law ui(x) for each

linear system (Ãi, B̃i), and by setting

u(k) = ui(k) if x(k) ∈ Xi, i ∈ {1, 2}. (19)

The overall closed-loop system does not have any a priori
stability properties. Moreover, it is easy to check that X is
not invariant. Then, we find X 1 and X 2 according to (3)
and (6) with ρ = 0.99. In this case, the set X 2\X is convex

X 2 \ X =

x ∈ R2 :

[
0 1
−1 0
0 −1

]
x ≤

[
10
12
10

]
[1 0]x < −10

 .

The regions obtained using the switched explicit MPC,
together with the extension given by X 2 \X , are shown in
Fig. 1.
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Fig. 1. The (invariant) bounding box X 2 is constituted by
the union of the regions of the explicit MPC (in color)
and the box X 2 \ X (in dark grey)

Fig. 2. The Lyapunov function obtained for λ = 0.99

According to Algorithm 1, we found the transition map S
in (8), the transition sets X(i,j) in (9), and solved the LP in
(11) with λ = 0.99. The LP is composed of 435 constraints
on s̃ = 31 polytopes (i.e., regions Xi). In order to solve it
using the LINPROG solver of MATLAB, it took 0.10s on a
2.4 GHz processor. The corresponding Lyapunov function
is shown in Figure 2 and the invariant set P is shown in
Figure 3.

5. CONCLUSIONS

This paper has addressed the problem of determining the
stability of (possibly discontinuous) discrete-time PWA
systems using (possibly discontinuous) PWA Lyapunov
functions, and to determine invariant sets. The problem
is particularly relevant when dealing with approximations
of explicit MPC, where a priori guarantees on stability and
invariance are not available. The approach provides a valid
alternative to the use of PWQ Lyapunov functions. Its
main limitation is the possible growth of complexity of the
LP problem (11) that may occur if, to increase the number
of degrees of freedom of the PWA Lyapunov function,
step 3 of Algorithm 1 needs to be executed several times.

Fig. 3. The invariant set P obtained for λ = 0.99

Current research is devoted to extending the results of
this paper to stability and invariance analysis of uncertain
PWA systems.
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D. Muñoz de la Peña, A. Bemporad, and C. Filippi.
Robust explicit MPC based on approximate multi-
parametric convex programming. IEEE T. Aut. Contr.,
51(8):1399–1403, 2006.

T. Poggi, S. Trimboli, A. Bemporad, and M. Storace.
Explicit hybrid model predictive control: discontinuous
piecewise-linear approximation and FPGA implementa-
tion. In IFAC World Congress, Milan, Italy, August
2011.
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