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Abstract. Multivariate Extreme Value models are a funda-
mental tool in order to assess potentially dangerous events.
Exploiting recent theoretical developments in the theory of
Copulas, new multiparameter models can be easily con-
structed. In this paper we suggest several strategies in order
to estimate the parameters of the selected copula, according
to different criteria: these may use a single station approach,
or a cluster strategy, or exploit all the pair-wise relationships
between the available gauge stations. An application to flood
data is also illustrated and discussed.

1 Introduction

Multivariate extremes occur in several hydrologic prob-
lems (like, e.g., space-time precipitation and floods (Singh,
1986; Pons, 1992; Wilks, 1998; Kim et al., 2003; Herr
and Krzysztofowicz, 2005; Keef et al., 2009), or hydraulic
conductivity in porous media –Journel and Alabert, 1988;
Russo, 2009), as well as in many environmental problems
(like, e.g., water quality and pollution (Grenney and Heyse,
1985), or sea levels –Butler et al., 2007).

The investigation of multivariate phenomena is best car-
ried out via copulas. The use of copulas in hydrology, as
well as in other geophysical and environmental sciences, is
recent and rapidly growing. Incidentally, we observe that
all the multivariate distributions present in literature can be
described in a straightforward way in terms of suitable copu-
las. For a thorough bibliography seeNelsen, 2006; Salvadori
et al., 2007.

The problem of measuring the amount of dependence be-
tween the variables involved is a central issue when mod-
eling multivariate extremes. For instance, in literature the
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pair-wise dependence is generally measured via the canon-
ical Pearson’s correlation coefficient. However, it may not
be the best measure of dependence when dealing with ex-
tremes (Joe, 1997), since it does not exist for heavy-tailed
variables with infinite variance, and only involves a linear
kind of dependence. Recently, other quantities were con-
sidered (Nelsen, 2006) to measure the association between
pairs of random variables (hereafter, r.v.s): among others,
Kendall’s τ and Spearman’sρ rank correlation coefficients,
or the Blomqvist’sβ medial correlation coefficient. These
measures always exist (being based on the ranks), and model
several types of association (for a practical discussion see,
e.g., the case studies illustrated inSalvadori et al., 2007).

Instead, the notion of cluster-type dependence, when the
size of the cluster is larger than two (i.e., beyond the simple
pair-wise case), has only been partially explored. Generaliza-
tions of Kendall’sτ (Nelsen, 1996), Spearman’sρ (Schmid
and Schmidt, 2007a,b), and Blomqvist’sβ (Durante et al.,
2007; Schmid and Schmidt, 2007c) to the d-variate case
(d > 2) were only recently introduced – see below. These
extensions may be of practical importance: on the one hand,
they provide useful tools to quantify the dependence within
clusters; on the other hand, they can be used to estimate
the parameters of the multivariate model at play (see later).
However, at present the application of these measures in ac-
tual case studies is still quite limited.

Another important issue is represented by the construction
of Multivariate Extreme Value (hereafter, MEV) models in-
volving a significant number of parameters. Using the results
of Liebscher(2008), recent works (Durante and Salvadori,
2010; Salvadori and De Michele, 2010) have shown how
multiparameter MEV models can be easily constructed via
copulas and suitable techniques of extra-parameterization,
leading either to the formulation of new models, or to the
generalization of existing ones.

A further fundamental question is represented by the esti-
mate of the parameters of the multivariate copulas considered
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(seeGenest et al., 1995; Shih and Louis, 1995; Joe, 1997;
Genest and Favre, 2007, and references therein). Maximum
Likelihood (hereafter, ML) or Pseudo-likelihood procedures
involving the ranks of the data are generally used to fit these
parameters. Alternatively, the parameters may be sometimes
estimated via the Method of Moments and some pair-wise
measures of association (usually, the Kendall’sτ , the Spear-
man’sρ, or the Blomqvist’sβ). Apparently, no application
of thed-variate generalizations of these measures to the pa-
rameters’ estimation is available in literature.

In this paper we focus the attention on the estimation of the
parameters in copula-based MEV models, presenting some
new fitting strategies. In particular, each procedure exploits
a different source of information: (i) a suitable single station,
(ii) an appropriate cluster of stations, (iii) all the pairs of the
available stations. Below, in Sect.2 we introduce the con-
cept of multivariate Extreme Value copulas, describing some
of the mathematical features of interest here. In Sect.3 we
show several strategies for estimating the relevant parame-
ters. In Sect.4 an application to maximum annual flood data
is presented and discussed.

2 MEV copulas: an overview

In this Section we briefly outline the mathematics of copulas
needed in the sequel; for a thorough theoretical and practical
introduction see, respectively,Joe(1997); Nelsen(2006), and
Salvadori et al.(2007). Hereafter, for any integerd > 1, we
use the vector notation inRd , i.e.x= (x1,...,xd); operations
and inequalities are to be intended componentwise. Also,I =
[0,1] will denote the unit interval, andId thed-dimensional
unit cube.

The main target pursued here is to provide a general mul-
tivariate framework for modeling non-independent extreme
observations sampled via a network of gauge stations; the
particular situation of independent ones will be included as a
special case. As shown below, this can easily be achieved by
using copulas. The r.v.s used in the sequel may represent, for
instance, rainfall or flood measurements collected in a given
basin, or pollution samples in a region, or wave measure-
ments collected by marine buoys. Below,S = {S1,...,Sd}

will denote a set ofd gauge stations.
The problem of specifying a probability model for depen-

dent multivariate observations can be simplified by express-
ing the correspondingd-dimensional joint distributionF in
terms of its marginsF1,...,Fd , and the associated copulaC,
implicitly defined through the following functional identity
stated by Sklar’s Theorem (Sklar, 1959):

F(x1,...,xd)=C(F1(x1),...,Fd(xd)). (1)

A multivariate copulaC(u1,...,ud) is simply a joint distri-
bution overId with Uniform margins. The link betweend-
copulas and multivariate distributions is provided by Eq. (1).
If F1,...,Fd are all continuous, thenC is unique.

A copulaC is MEV if it is max-stable, i.e. if it satisfies the
equation

C
(
ut

1,...,u
t
d

)
= [C(u1,...,ud)]t (2)

for all u∈ Id and allt > 0. As a simple example consider the
following two copulas:

5d(u) = u1···ud , (3)

Md(u) = min{u1,...,ud}. (4)

The former one models independent variates, while the latter
one models comonotone dependent ones, where each vari-
able is a monotone increasing function of the others. Evi-
dently, both5d and Md are max-stable, and hence MEV.
A distributionF is MEV if, and only if, all its marginsFi ’s
are Generalized Extreme Value laws (hereafter, GEV), and
the corresponding copulaC is MEV. Note that not all cop-
ulas are MEV (i.e., satisfy the max-stability property (2)),
and consequently should not be used to construct consistent
MEV models. In addition, since the GEV law is continuous,
the representationF =C(F1,...,Fd) of a MEV distribution
F is unique. Most importantly, by exploiting the invariance
property of copulas (Nelsen, 2006), we may restrict our at-
tention to copulas only, and do not worry about the GEV
margins, as we shall do hereinafter.

The construction of multivariate measures of association
and/or dependence is an involved mathematical problem, and
is still an open question in statistics. Several ideas were de-
veloped in the last few years, and various measures were in-
troduced in order to describe concepts like, e.g., concordance
for random vectors (Joe, 1990; Nelsen, 1996, 2002; Úbeda-
Flores, 2005; Schmid and Schmidt, 2007a; Taylor, 2007).

For bivariate problems, several measures of association
are available (Joe, 1997; Nelsen, 2006). Among others,
Kendall’s τ and Spearman’sρ are frequently used in appli-
cations. The former one is the difference between the prob-
ability of concordance and discordance of the variables, the
latter one measures the average distance between52 (i.e., in-
dependence) and the bivariate copula of interest. As is well
known, these measures only depend upon the copula joining
the variables under investigation, and not upon the margins
(i.e., they are scale invariant). As already mentioned above,
a further advantage is that, if the variables involved are char-
acterized by heavy-tailed distributions, then the second order
moment (and, in turn, Pearson’s coefficient) may not exist,
whereas these latter measures always exist, being based on
the ranks.

Interesting extensions of Kendall’sτ (Nelsen, 1996) and
Spearman’sρ (Schmid and Schmidt, 2007a,b) to a generald-
variate framework (d > 2) were recently proposed, and sev-
eral new measures involving the genericd-copulaC were
introduced:

τd =
1

2d−1−1

(
2d

∫
Id

C(u)dC(u)−1

)
, (5)
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ρd,1 = h(d)

(
2d

∫
Id

C(u)du−1

)
, (6)

ρd,2 = h(d)

(
2d

∫
Id

5d(u)dC(u)−1

)
, (7)

ρd,3 = h(2)

(
22
∑
i<j

(
d

2

)−1∫
I2

Cij (u,v)dudv−1

)
, (8)

whereh(d)= (d+1)/(2d
−(d+1)), andCij is the bivariate

(i,j)-margin ofC. Note thatρd,3 is essentially the average
Spearman’sρ for all the pairs in a set ofd variables.

Another useful multivariate measure of association is
the medial correlation coefficientβd (see Durante et al.,
2007; Schmid and Schmidt, 2007c, and references therein),
which generalizes the well known Blomqvist’sβ coefficient
(Nelsen, 2006):

βd =

2d−1
(
C(1/2)+C(1/2)

)
−1

2d−1−1
, (9)

whereC is the survival function associated withC, given by
C(u)=P{C > u}, and1/2= (1/2,...,1/2). Clearly, alsoβd

is invariant with respect to the distributions of the margins.
As pointed out inSchmid and Schmidt(2007c), βd has some
advantages over competing measures such asτd or ρd,i ’s. In
fact, it can explicitly be derived whenever the copula is of
explicit form, which is often not possible for other measures,
and its estimation requires a low computational complexity.
Thus,βd may represent a fast alternative for estimating the
copula parameters (see below).

A further notion of interest is represented by Pickands’ de-
pendence functionA (Pickands, 1981). Recall that a bivari-
ate copulaC is MEV if there exists a convex functionA : I→
[1/2,1], satisfying the constraint max{t,1− t}≤A(t)≤1 for
all t ∈ I , such that

C(u,v)=exp

[
ln(uv)A

(
lnv

ln(uv)

)]
(10)

for all (u,v) ∈ I2. In particular, if A(t)≡ 1 thenC=52,
and if A(t)=max{t,1− t} thenC=M2. Conversely, given
a bivariate MEV copulaC, the corresponding dependence
functionA is given by

A(t)=−lnC
(
e−(1−t),e−t

)
, (11)

where t ∈ I . It is worth noting that the valueτC of the
Kendall’s τ associated withC, as well as the one of the
Spearman’sρ, can be expressed in terms ofA via (Nelsen,
2006; Salvadori et al., 2007)

τC=

∫ 1

0

t (1− t)

A(t)
dA′(t) (12)

and

ρC=12
∫ 1

0

1

(1+A(t))2
dt−3. (13)

A generalization of Pickands’ dependence function to the
multivariate case is shown inFalk and Reiss(2005). Since
A can be estimated via empirical data (Genest and Segers,
2009), then it may be used to check the statistical adequacy
of different models. We shall see later how to use Pickands’
dependence function.

Finally, below we shall also use the Kendall’s measure
functionKC (Genest and Rivest, 1993, 2001) given by

KC(t)=P{W ≤ t}=P{C(U1,...,Ud)≤ t}, (14)

wheret ∈ I is a probability level,W =C(U1,...,Ud) is a uni-
variate r.v. taking value onI , and theUi ’s are Uniform r.v.s
on I with copulaC. In the bivariate Extreme Value case,KC
is given by (Ghoudi et al., 1998)

KC(t)= t−(1−τC)t lnt, (15)

whereτC is the value of the Kendall’sτ associated with the
copulaC. Clearly, bivariate MEV copulas with the same
value of τ share the same functionKC. Unfortunately, at
present no useful expressions similar to Eq. (15) are known
for the general multivariate cased > 2.

The Kendall’s measureKC is a fundamental tool for intro-
ducing a mathematically consistent (copula-based) definition
of the return period for multivariate events (see also the dis-
cussion inSalvadori, 2004; Salvadori and De Michele, 2004;
Salvadori et al., 2007; Durante and Salvadori, 2010; Sal-
vadori and De Michele, 2010). In fact, Eq. (14) represents
a multivariate quantile relationship, since it corresponds to
a multidimensional Probability Integral Transform (Genest
et al., 2006).

Let µ be the average interarrival time of the events in the
sequence observed (e.g.,µ = 1 year for annual maxima),
and letp ∈ I be an arbitrary critical probability level (usu-
ally, p=90,95,99%, or any other threshold of interest). The
multivariate return periodTp associated withp (hereafter,
Kendall’s return period) is defined as

Tp =
µ

1−p
=

µ

1−KC(t)
=

µ

1−P{u∈ Id :C(u)≤ t}
, (16)

where the critical thresholdt ∈ I is given by

t = inf{s ∈ I :KC(s)=p}=K
[−1]
C (p), (17)

by analogy with the correct definition of quantile. Here
K
[−1]
C indicates the generalized (or pseudo-) inverse (Nelsen

(2006)) of the corresponding function. SinceKC is generally
non-linear (KC(t)= t only if C=Md), thent 6=p. More par-
ticularly, the relationKC(t)≥ t holds (Caṕeràa et al.(1997)),
and therefore

Tp = TKC(t)=
µ

1−KC(t)
≥

µ

1− t
=

µ

1−C(u)
, (18)

whereu∈ Id is such thatC(u)= t . The right-most term cor-
responds to the standard definition of multivariate return pe-
riod (for a thorough review seeZhang(2005); Singh et al.
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(2007), and references therein). Evidently, the traditional ap-
proach may yield an incorrect calculation of the return pe-
riod, and, in turn, a wrong estimation of the risk. Since em-
pirical estimators of the Kendall’s measure function are avail-
able (Genest et al., 2009; Salvadori and De Michele, 2010),
we shall see later how to use them to perform a return period
analyses of practical utility.

3 Parameters’ estimation

As is well known, the estimate of the parameters of multi-
variate distributions is an involved problem, and still an open
question in mathematical statistics. Usually, procedures like
Maximum Likelihood are used to simultaneously fit all the
parameters of interest. However, if, e.g., the copulas under
investigation have singular components, then ML may be dif-
ficult to implement and use.

Below, we outline several approaches for estimating the
parameters of interest: each procedure will exploit different
sources of information, and estimations achieved via differ-
ent techniques will generally differ from one another. For
instance, the estimate may rely only upon the information
drawn from a suitable single station (Sect.3.1), or an ap-
propriate cluster of stations (Sect.3.2), or the set of pairs
of all the stations (Sect.3.3). The methods are general, and
can be applied to any MEV copula, including those with sin-
gular components. Clearly, other approaches are possible,
depending upon the specific needs. Note that the estimates
calculated via the methods mentioned above could be used
as starting guesses for running other procedures (e.g., ML).

Generally, in the strategies presented below, the fitting
criterion is represented by the best agreement, in the Least
Squares sense (hereafter, LS), with the “local” dependence
structures or association measures: clearly, this may yield
estimates different from the ones achieved via other proce-
dures (e.g., the global ML). However, the overall fitting abil-
ity will always be certified via global Goodness-of-Fit tests
(see Sect.4), in order to verify whether the resulting para-
metric model could be accepted or not.

3.1 The single station approach

The first approach we propose for the estimate of the pa-
rameters of interest consists in using the information drawn
from a single station at a time. Practically, for each of
the available gauge stationsSi ’s, a suitable “companion”
stationSj = Sj (i) is identified, possibly according to spe-
cific physio-geomorphological conditions and/or hydrolog-
ical constraints. Then, we may estimate the parameters via
a LS fit, involving the empirical estimates of the Pickands’
dependence functionsAij ’s of the companion pairs. As an
alternative, also the Kendall’s measure functionKC could be
used. However, while the former is specific for any copula,
the latter is not, for it only depends upon the corresponding

value of the Kendall’sτ – see Eq. (15), and the comment
following it. Therefore, we suggest to use Pickands’ repre-
sentation.

The procedure is as follows. Letn be the sample size,
i.e. the number of availabled-dimensional observations. For
each stationSi , i = 1,...,d, a companion stationSj = Sj (i)

is identified, and an estimatêAij of the dependence func-
tion A of the model under investigation is calculated (Gen-
est and Segers, 2009). In particular, in order to use all the
information, since onlyn bivariate pairs are available, and
given the constraintsA(0)=A(1)= 1, the unit intervalI is
partitioned inton uniformly spaced intervals via the set of
abscissasxk = k/n, k = 0,...,n (clearly, other choices are
possible). Then, thêAij (xk)’s are estimated over the given
grid, and the LS objective function

Z(1)
=

d∑
i=1

Z
(1)
i =

d∑
i=1

n−1∑
k=1

∣∣Ai,j (i)(xk)− Âi,j (i)(xk)
∣∣2 (19)

is minimized, yielding the LS estimates of the parameters of
interest.

Note that, if {Si,Sj (i)} forms a pair-cluster (i.e.,Sj (i)

is the station companion toSi , and vice-versa), then there
is no need to compute also the symmetric contribution
{Si′=j (i),Sj (i′)=i}: this may reduce the computational bur-
den. Essentially, the single station approach (hereafter, 1-
MEV) exploits the relationships of theSi ’s with the corre-
sponding companion stations, i.e. it only uses the local (sta-
tion based) bivariate dependence structures.

A natural criterion for selecting the companion station
would be the use of the Euclidean distance: thenSj (i) would
simply be the station closest toSi . Note that, except for math-
ematically “pathological” cases of no interest here, usually
Sj is unique: a counter-example is given by a (practically
improbable) situation in which several stations are exactly
positioned on a circle centered inSi . Denoting by1ij the
distance betweenSi andSj , only two things may happen:

1. either{Si,Sj } forms a pair-cluster,

2. or, there exists another stationSk closer toSj thanSi ;
clearly,Sk may belong to a pair-cluster.

From a geometrical point of view, at least a couple of stations
must form a pair-cluster. In fact, the set ofNd = d(d−1)/2
pair distances1ij ’s is finite, and hence it has (at least) a min-
imum: this corresponds to a pair-cluster.

We stress that the use of the Euclidean distance as a cri-
terion for choosing the source of information (i.e., adopting
a nearest neighborprinciple) may not always be the most
advisable strategy. In fact, it has been shown (see, e.g.,
GREHYS, 1996; St-Hilaire et al., 2003; Merz and Bloeschl,
2004; Gaĺea and Canali, 2005; Wagener and Wheater, 2006;
Ouarda et al., 2008; Shu and Ouarda, 2008) that the geomet-
rical distance may not completely explain the dependence
structure of the hydrological behavior of catchments: indeed,
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several are the physio-geomorphological factors that may in-
fluence it. Therefore, the validity of the nearest neighbor ap-
proach should be tested out by carefully checking the practi-
cal case study under investigation.

It is worth pointing out that, if the model involves global
parameters (i.e., common to all stations), and these can be es-
timated a priori via other techniques, then the local parame-
ters (if any) can be calculated as follows. For each stationSi ,
the companion stationSj is identified, and the local parame-
ters are estimated via a LS fit of the dependence functionAij ,
using the values of the global parameters already estimated
(i.e., onlyZ

(1)
i is minimized). If {Si,Sj (i)} is a pair-cluster,

then all the estimates of the local parameters associated with
Si andSj are kept; otherwise, only those associated withSi

are stored. This latter strategy can easily deal with sets of sta-
tions of any size: in fact, only two stations at a time are con-
sidered for estimating the local parameters. In other words,
a global estimate is necessary only if the global parameters
cannot be estimated otherwise.

3.2 The cluster approach

The 1-MEV approach adopted in the previous Section only
exploited the information drawn by a single station. This
strategy can be generalized: in fact, a full cluster of com-
panion gauge stations (instead of just one) may be cho-
sen as a source of information. Clearly, the cluster can be
fixed according to specific physio-geomorphological condi-
tions and/or hydrological constraints (e.g., by identifying a
homogeneous region, or a basin of influence).

Let Si be thei-th station, and letC(i)
mi

be a cluster ofmi sta-
tions “pertinent” toSi , with 1≤mi < d. Clearly, the choice
of mi , as well as the selection of the set of relevant compan-
ion stations belonging toC(i)

mi
, can be made dependent upon

specific basin characteristics, and changed when consider-
ing different stationsSi ’s. Evidently, the casemi = 1 for all
i’s corresponds to the 1-MEV approach. Here the idea is to
estimate the parameters by exploiting suitable multivariate
measures of associationφ(i)

C calculated over the families of

stationsFi = {Si ∪C(i)
mi
}, with i = 1,...,d. For instance, any

of the five measures outlined in Eqs. (5)–(9) could be used.
The procedure is as follows. First, for each stationSi , an

estimatêφi of φ
(i)
C is calculated over the clusterFi . Then,

the LS objective function

Z(F)
=

d∑
i=1

Z
(F)
i =

d∑
i=1

∣∣∣φ(i)
C − φ̂i

∣∣∣2 (20)

is minimized, yielding the LS estimates of the parameters of
interest. Note that, ifFi is a closed cluster (i.e., if the station
Sj ∈ C(i)

mi
, thenFj =Fi), then the contribution of the cluster

can be calculated only once: this may reduce the computa-
tional burden. Essentially, the cluster approach (hereafter,
c-MEV) exploits the relationships of theSi ’s with suitable

cluster of stations, i.e. it is based on the localmi-variate as-
sociation structures.

The c-MEV strategy is quite flexible, and potentially most
promising. Unfortunately, its efficacy may be limited by the
current lack of easily usable mathematical tools, which at
present may turn it into a “weak” approach. In fact, the use
of measures of associationφ(i)

C ’s for ruling the fits (instead
of full dependence structures, as in the 1-MEV approach)
may discard some important details: roughly speaking, a few
“moments” of a distribution may not provide the same infor-
mation as of the distribution itself. As an obvious alternative,
we might suggest to use in the fits some multivariate equiv-
alents of the bivariate Pickands’ dependence functions (Falk
and Reiss, 2005), but the research in this area is still in its
infancy, and it is not yet clear how to proceed.

Again, it is worth pointing out that, if the model involves
global parameters, and these can be estimated a priori via
other techniques, then the local parameters (if any) can be
calculated as follows. For each stationSi , the familyFi is
identified, and the local parameters are estimated via a LS fit
of φ

(i)
C , using the values of the global parameters already es-

timated. IfFi is a closed cluster, then all the estimates of the
local parameters associated with the stations inFi are kept;
otherwise, only those associated withSi are stored. Thus,
a global estimate is necessary only if the global parameters
cannot be estimated otherwise.

3.3 The all-pairs approach

A further approach to the estimate of the parameters may
rely upon the use of all thed(d−1)/2 bivariate margins, by
simultaneously considering the dependence structures of all
the pairs of stations. The strategy is to fix all the parameters
in such a way that the Pickands’ dependence functionsAij ’s
best fit (in the LS sense) the corresponding empirical ones.
From a practical point of view, this approach provides the
closest “bivariate” approximation to a global fit: mathemati-
cally speaking, it is a “combinatorial” strategy. Clearly, asd

gets larger and larger, the calculations required may become
computationally demanding.

The LS objective function to be minimized is given by

Z(p)
=

d−1∑
i=1

d∑
j=i+1

n−1∑
k=1

∣∣Ai,j (xk)− Âi,j (xk)
∣∣2, (21)

yielding the LS estimates of the parameters of interest. We
call this method p-MEV approach.

By exploiting the same strategy, a faster alternative would
be to calculate the parameters by simultaneously fitting all
the bivariate Kendall’sτ , or Spearman’sρ, or Blomqvist’s
β coefficients (or any other measure of association): essen-
tially, this corresponds to a Method of Moments procedure.
However, while the use of Pickands’ function involves the
full functional form of the dependence structure (which is
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Fig. 1. Map of the Spey catchment. The black circles indicate the four gauge stations of interest — see text.

17

Fig. 1. Map of the Spey catchment. The black circles indicate the
four gauge stations of interest – see text.

specific for every copula), the coefficients mentioned above
may not distinguish between different copulas. For this rea-
son, we neither suggest nor investigate this alternative.

4 Case study

For the sake of illustration, here we consider the same data
and copulas as used inSalvadori and De Michele(2010), to
which we make reference for further details: a short sum-
mary is reported below. Also, in the following, the use of the
Euclidean distance as a criterion for choosing the stations of
interest is motivated by illustrative purposes only.

The data are maximum annual flood measurements col-
lected in the Spey catchment (northern Highlands of Scot-
land). The basin is equipped with a network of 17 flow gauge
stations, and is managed by theScottish Environment Protec-
tion Agency(2009). Further details can be found inGilvear
(2004) andBlack and Fadipe(2009). In this study we con-
sider four gauge stations located in the middle and lower part
of the Spey catchment (see Fig.1): three on the main stream
(i.e.,S2, S10, andS6), and one on Dulnain tributary (i.e.,S9).

The available observations amount to 37 quadruples of
maximum annual floods. Evidently, from a statistical point
of view, the sample size is very small for investigating a mul-
tivariate problem: unfortunately, this is a typical situation
when extreme data bases are considered. However, here the
target is not to provide an ultimate extreme flood model, and
no practical project of hydrological works is undertaken. In-
stead, our point is only to show, in a relatively simple case,
how the techniques outlined above can be used in practice:
in other words, this is a methodological paper.

As a dependence model, here we use the multiparame-
ter 4-variate MEV copulaH introduced inSalvadori and De
Michele(2010):

Table 1. (Upper triangular) Inter-station distances (in km). (Di-
agonal) Labels of the nearest neighbor station. (Lower triangular)
Empirical estimates of the Kendall’sτ for all the pairs of the four
stations, with thep-values in parentheses – see text.

Station S2 S6 S9 S10

S2 S9 61.7 19.1 24.0
S6 0.06 S10 43.6 37.9

(0.62)
S9 0.25 0.34 S10 6.0

(0.03) (4e-3)
S10 0.43 0.29 0.54 S9

(2e-4) (0.01) (3e-6)

H(u) = Gξ (ua)×Gχ (u1−a)

= Gξ (u
a1
1 ,u

a2
2 ,u

a3
3 ,u

a4
4 )

×Gχ (u
1−a1
1 ,u

1−a2
2 ,u

1−a3
3 ,u

1−a4
4 ), (22)

with Gumbel parametersξ,χ ≥ 1, and “extra-parameters”
a1,a2,a3,a4 ∈ I , which represents a 4-variate generalization
of the well known Gumbel copulaGθ (Nelsen(2006); Sal-
vadori et al.(2007))

Gθ (u)=exp

−
[

4∑
i=1

(−lnui)
θ

]1/θ
, (23)

with parameterθ ≥ 1. Note that the Gumbel copulaGθ rep-
resents a sort of “standard” MEV model in hydrology (see,
e.g.,Yue (2000a,b); Zhang and Singh(2007), and references
therein). A straightforward interpretation of the parameters
ai ’s is as follows. Suppose thata= 1: then,H =Gξ . Con-
versely, should it bea= 0, thenH=Gχ . For other values of
a, H is a sort of “mixture” betweenGξ andGχ : in particular,
theai ’s play the role of “local” mixing parameters.

The generic bivariate dependence functionAij of H is

Aij (t) =
{
[(1−ai)(1− t)]χ +

[
(1−aj )t

]χ}1/χ

+

{
[ai(1− t)]ξ +

[
aj t
]ξ}1/ξ

, (24)

i.e. a non-linear, possibly asymmetric, function, able to
model non-exchangeable variables (an important issue in ap-
plications, not shared byGθ – see, e.g., the discussion in
Grimaldi and Serinaldi, 2006). From a practical point of
view, this latter feature may provide a consistent model of the
asymmetric relationship between upstream and downstream
river stations, viz. the upstream stations may “influence” the
downstream ones, but the converse may be difficult to prove.

In Table1 (upper triangular) we show the inter-station dis-
tances1’s. It is then immediate to identify, for each site,
the nearest neighbor station: namely,S2← S9, S6← S10,
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Fig. 2. Plots of empirical and fitted Pickands’ dependence functions for all the pairs of stations and the models
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Fig. 2. Plots of empirical and fitted Pickands’ dependence functions for all the pairs of stations and the models of interest – see text.

S9↔ S10, i.e. the latter two stations form a pair-cluster (see
Table1 – diagonal). In Table1 (lower triangular) we show
the empirical estimates of the bivariate Kendall’sτ , for all
the pairs of the four stations of interest here. It is inter-
esting to note that the coefficient is very small for the two
farthest stations{S2,S6}: this means that the association be-
tween the two is negligible, as confirmed by the correspond-
ing p-values, though this does not imply that the stations are
statistically independent (as, instead, is commonly misinter-
preted). On the contrary, the analysis of thep-values shows
that the estimates of the coefficients for all the other pairs are
statistically significantly different from zero: this means that
the corresponding stations are definitely dependent.

Below we shall statistically compare the performances of
the copula model provided by Eq. (22), using sets of param-

eters fitted via different methods. The estimates are reported
in Table 2. The six parameters ofH have been estimated
in Salvadori and De Michele(2010) via ML (see the first
row of Table2): this will give us the possibility to compare
and discuss the results of fitting techniques different from
the standard one. The estimates of the same parameters ac-
cording to, respectively, the 1-MEV, the c-MEV, and the p-
MEV strategies are also reported in Table2. For illustrative
purposes, the c-MEV approach is run using as multivariate
measure of association the Spearman’sρd,3 – see Eq. (8),
and considering the following four clusters of stations, hav-
ing different sizes:F2={S2,S9,S10},F6={S6,S9,S10}, and
F9=F10={S9,S10}. As a variant (not shown), also the mul-
tivariate Blomqvist’sβd – see Eq. (9) – was used, but the
results did not significantly change. It is interesting to note
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Table 2. Estimates of the parameters of the 4-variate copulaH using
different fitting techniques – see text. Also shown are thep-values
of the corresponding models.

Method ξ̂ χ̂ â1 â2 â3 â4 p-v.

ML 1.55 11.04 0.97 0.36 0.78 0.89 0.40
1-MEV 2.73 11.03 0.99 0.12 0.48 0.79 0.78
c-MEV 1.69 11.91 1.00 0.02 0.60 0.75 0.38
p-MEV 1.99 11.03 1.00 0.15 0.71 0.82 0.67

that, independently of the fitting procedure,Gξ ≈54 – the
copula of independence – see Eq. (3), – whereasGχ ≈M4
– the copula of full dependence – see Eq. (4). Thus, as al-
ready mentioned, the extra-parametrized copulaH is a sort
of “mixture” between54 andM4, ruled by the “local” mix-
ing parametersai ’s.

In Fig. 2 we plot the empirical and fitted Pickands’ func-
tionsA’s for all the pairs of stations and the models of inter-
est. The graphs allow for a preliminary visual analysis of the
different performances: clearly, being just low-dimensional
bivariate slices of the four-dimensional copulaH, they can-
not (and should not) be used to judge the overall fitting abil-
ity of the different models – see below. Furthermore, it must
be stressed that the empirical estimates of the true (but un-
known) dependence functions do not generally respect the
convexity constraint, i.e. they are not intrinsic estimators –
see also the discussion inGenest and Segers(2009), and ref-
erences therein.

Apparently, none of the ML, 1-MEV, and c-MEV strate-
gies seem to provide uniformly consistent fits, whereas the
p-MEV method overall provides valuable approximations.
However, the lacks of fit are more apparent than real: in fact,
due to the small sample size, the confidence bands are ex-
pected to be quite large. Most interestingly, the copulaH
fitted via the “local” strategies is able to match the asymme-
tries shown by the empirical functions, and may adapt itself
to the “in situ” behaviors of the data. Furthermore, the “de-
gree of dependence”, as measured via the Kendall’sτ , ranges
from≈ 0.1 to≈ 0.6 (see Table3, reporting the estimates for
the 1-MEV and p-MEV strategies), whereas the correspond-
ing values fitted via ML only range from≈ 0.2 to≈ 0.4 (see
Salvadori and De Michele, 2010).

However, when the problem is multivariate, what should
always be analyzed is the full dependence structure, and its
global ability to fit the actual data. For this purpose, we ex-
ploit some robust Goodness-of-Fit tests for multivariate cop-
ulas (Genest et al., 2009). These tests use Cramér-von-Mises
statistics, and acceptance or rejection of a model is based on
thep-values calculated via bootstrap techniques: small ones
suggest to discard the corresponding copula, whereas large
ones support its suitability. In our case, thep-values are as
reported in Table2. In turn, all the models investigated here

Table 3. Values of the Kendall’sτ for all the pairs of the four sta-
tions – see text: (upper triangular) estimates using the 1-MEV strat-
egy; (lower triangular) estimates using the p-MEV strategy.

Station S2 S6 S9 S10

S2 1 0.12 0.37 0.55
S6 0.12 1 0.60 0.32
S9 0.39 0.39 1 0.57

S10 0.43 0.29 0.54 1

should be accepted, since thep-values are much larger than
5%. It is worth mentioning that thep-values should only be
used to reject a copula, according to some standard criterion
(like, e.g., a value smaller than 1%). It is a common error
to consider as “better” those models yielding the highestp-
values: mathematically speaking, this is generally false.

A further issue of interest concerns the investigation of the
Kendall’s return period: this is a fundamental point in ap-
plications, since it provides crucial information of practical
utility. In principle, it might be possible to use the estimates
of the multivariate return period function in order to choose
between models fitted via different strategies. In Fig.3 we
show the empirical and the fitted Kendall’s return periods for
all the four stations and the models of interest: the plot shows
the return periods associated with all critical probability lev-
els t ∈ I . Note that, due to the limited sample size, the esti-
mates of the largest empirical return periods are spoiled (as
is well evident in Fig.3). Visually, both the ML and the p-
MEV fits are valuable, whereas the 1-MEV and c-MEV ones
apparently fail to provide a consistent approximation: this
may not be surprising, since these latter strategies either use
the least amount of information, or rely upon measures of
association instead of full distributional functions.

As illustrated and discussed inSalvadori and De Michele
(2010), these multivariate return periods are generally much
larger than the ones calculated via the formulas usually found
in literature – see Eq. (18), – and the ensuing discussion).
Clearly, the underestimates provided by the standard ap-
proach, i.e. a return period much smaller than the correct
one, may have sizable consequences. Instead, following the
Kendall’s measure approach illustrated here, a correct risk
analysis can be performed.

5 Conclusions

In order to properly assess the risk, MEV models are funda-
mental in all areas of geophysics. This paper is of method-
ological nature, and introduces new estimation techniques
for dealing with extremes. In particular, we outline several
strategies in order to estimate the parameters of MEV cop-
ulas according to different criteria: we use either a “com-
panion” station/cluster approach, or exploit all the pair-wise
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Fig. 3. Plot of empirical and fitted return periods for all the four
stations and the models of interest – see text.

relationships between the available gauge stations. The tech-
niques suggested may offer interesting alternatives to stan-
dard fitting methods (e.g., ML). An application to flood data
is also presented, and a comparison between different es-
timating strategies is illustrated: this shows how the tech-
niques outlined in the paper can be used in practice.
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Publ. Inst. Statist. Univ. Paris, 8, 229–231, 1959.

St-Hilaire, A., Ouarda, T., Lachance, M., Bobée, B., Barbet, M.,
and Bruneau, P.: La régionalisation des précipitations: une revue
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