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Abstract. Multivariate Extreme Value models are a funda- pair-wise dependence is generally measured via the canon-
mental tool in order to assess potentially dangerous eventscal Pearson’s correlation coefficient. However, it may not
Exploiting recent theoretical developments in the theory ofbe the best measure of dependence when dealing with ex-
Copulas, new multiparameter models can be easily contremes Joe 1997, since it does not exist for heavy-tailed
structed. In this paper we suggest several strategies in ordesariables with infinite variance, and only involves a linear
to estimate the parameters of the selected copula, accordirkind of dependence. Recently, other quantities were con-
to different criteria: these may use a single station approachsidered Nelsen 2006 to measure the association between
or a cluster strategy, or exploit all the pair-wise relationshipspairs of random variables (hereafter, r.v.s): among others,
between the available gauge stations. An application to floodKendall's t and Spearman’s rank correlation coefficients,
data is also illustrated and discussed. or the Blomgvist'sg medial correlation coefficient. These
measures always exist (being based on the ranks), and model
several types of association (for a practical discussion see,
e.g., the case studies illustratedSalvadori et a].2007).

Instead, the notion of cluster-type dependence, when the

Multivariate extremes occur in several hydrologic prob- Sizeé of the cluster is larger than two (i.e., beyond the simple
lems (like, e.g., space-time precipitation and floo85§h pair-wise case), has only been partially explored. Gene.rallza-
1986 Pons 1992 Wilks, 1998 Kim et al, 2003 Herr tions of Ke_ndaII'ST (Nelsen 1996, S_pearman'so (Schmid
and Krzysztofowicz 2005 Keef et al, 2009, or hydraulic ~ @nd Schmidt20078b), and Blomqvist'sg (Durante et al.
conductivity in porous media Journel and Alabeyiogg 2007 Schmid and Schmid20079 to the d-variate case
Russo 2009, as well as in many environmental problems (¢ > 2) were only recently introduced — see below. These
(like, e.g., water quality and pollutiorGfenney and Heyse extensmn; may be of practical |mportance: on the one harjd,
1985, or sea levels Butler et al, 2007. they provide useful tools to quantify the dependence W!thln
The investigation of multivariate phenomena is best car-ClUSters; on the other hand, they can be used to estimate
ried out via copulas. The use of copulas in hydrology, asthe parameters of the multwgnat_e model at play (see Iz_iter).
well as in other geophysical and environmental sciences, i$1OWever, at present the application of these measures in ac-
recent and rapidly growing. Incidentally, we observe thattU@l case studies is still quite limited. _
all the multivariate distributions present in literature can be Another importantissue is represented by the construction
described in a straightforward way in terms of suitable copu-Of Multivariate Extreme Value (hereafter, MEV) models in-
las. For a thorough bibliography shielsen 2006 Salvadori volving a significant number of parameters. Using the results
et al, 2007, of Liebscher(2008, recent works Durante and Salvadori
The problem of measuring the amount of dependence be2010 Salvadori and De Michele201Q have shown how
tween the variables involved is a central issue when modMultiparameter MEV models can be easily constructed via

eling multivariate extremes. For instance, in literature theCOPUlas and suitable techniques of extra-parameterization,
leading either to the formulation of new models, or to the

_ generalization of existing ones.
Correspondence td5. Salvadori A further fundamental question is represented by the esti-
BY (gianfausto.salvadori@unisalento.it) mate of the parameters of the multivariate copulas considered
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(seeGenest et al.1995 Shih and Louis1995 Joe 1997, A copulaC is MEV if it is max-stable, i.e. if it satisfies the
Genest and Favr@007, and references therein). Maximum equation

Likelihood (hereafter, ML) or Pseudo-likelihood procedures

involving the ranks of the data are generally used to fit theseC (i - uy) = [C(u1, ..., ua)]’ (2)
parameters. Alternatively, the parameters may be sometimes 4 . .
estimated via the Method of Moments and some pair—wisefor aII_u el“and allr > 0. As a simple example consider the
measures of association (usually, the Kendal'the Spear-  following two copulas:

man’s p, or'the Blomqv!st’sp). Apparently, no application Iy (U) = g, 3)

of the d-variate generalizations of these measures to the pa- i
rameters’ estimation is available in literature. Ma(U) = minfuy,...,uq}. (4)

In this paper we focus the attention on the estimation of theThe former one models independent variates, while the latter

parameters in copula-based MEV models, presenting SOMELe models comonotone dependent ones, where each vari-
new fitting strategies. In particular, each procedure exploits '

i " fint tion: (i itable sinale station able is a monotone increasing function of the others. Evi-
a difrerent source of Information. 0 asurable singe statio ' dently, bothIl;, and M, are max-stable, and hence MEV.
(i) an appropriate cluster of stations, (iii) all the pairs of the

lable stati Bel in Sea introd th N A distribution F is MEV if, and only if, all its marginsF;’s
avariable stations. Below, In sew.we introguce the co are Generalized Extreme Value laws (hereafter, GEV), and
cept of multivariate Extreme Value copulas, describing som

of the mathematical features of interest here. In S&uie ethe corresponding copufa is MEV. Note that not all cop-

how several strategies for estimating the relevant arameliIIaS are MEV (i.e., satisfy the max-stability proper@))(
Show several stralegies 1o ing P and consequently should not be used to construct consistent
ters. In Sect4 an application to maximum annual flood data

. ) MEV models. In addition, since the GEV law is continuous,

is presented and discussed. the representatioff = C(Fy,..., F;) of a MEV distribution

F is unique. Most importantly, by exploiting the invariance

2 MEV copulas: an overview property of copulasNelsen 2006, we may restrict our at-
tention to copulas only, and do not worry about the GEV

In this Section we briefly outline the mathematics of copulasmargins, as we shall do hereinafter.

needed in the sequel; for a thorough theoretical and practical The construction of multivariate measures of association

introduction see, respectivellpe(1997); Nelsen(2006, and  and/or dependence is an involved mathematical problem, and

Salvadori et al(2007). Hereafter, for any integef > 1, we is still an open question in statistics. Several ideas were de-

use the vector notation iR?, i.e.x = (x1,...,x4); operations  veloped in the last few years, and various measures were in-

and inequalities are to be intended componentwise. Also, troduced in order to describe concepts like, e.g., concordance

[0, 1] will denote the unit interval, antf thed-dimensional  for random vectorsJoe 1990 Nelsen 1996 2002 Ubeda-

unit cube. Flores 2005 Schmid and Schmid2007a Taylor, 2007).

The main target pursued here is to provide a general mul- For bivariate problems, several measures of association
tivariate framework for modeling non-independent extremeare available Joe 1997 Nelsen 2006. Among others,
observations sampled via a network of gauge stations; th&endall’st and Spearman’s are frequently used in appli-
particular situation of independent ones will be included as acations. The former one is the difference between the prob-
special case. As shown below, this can easily be achieved bgbility of concordance and discordance of the variables, the
using copulas. The r.v.s used in the sequel may represent, fdatter one measures the average distance betiiedne., in-
instance, rainfall or flood measurements collected in a giverdependence) and the bivariate copula of interest. As is well
basin, or pollution samples in a region, or wave measureknown, these measures only depend upon the copula joining
ments collected by marine buoys. Belo$/—= {S1,...,S4} the variables under investigation, and not upon the margins
will denote a set off gauge stations. (i.e., they are scale invariant). As already mentioned above,

The problem of specifying a probability model for depen- a further advantage is that, if the variables involved are char-
dent multivariate observations can be simplified by expressacterized by heavy-tailed distributions, then the second order
ing the corresponding-dimensional joint distributiorF in moment (and, in turn, Pearson’s coefficient) may not exist,
terms of its marging,..., F;, and the associated copWla  whereas these latter measures always exist, being based on
implicitly defined through the following functional identity the ranks.

stated by Sklar's Theorensklar, 1959: Interesting extensions of Kendallis (Nelsen 1996 and
Spearman’ (Schmid and Schmigd20073ab) to a generad-

F(x1,...,xq) = C(F1(x1), ..., Fd(xa)). @) variate frameworkd > 2) were recently proposed, and sev-

A multivariate copulaC(uz,...,uy) is simply a joint distri- _eral new measures involving the genedicopulaC were

bution overl¢ with Uniform margins. The link betweegt  introduced:

copulas and multivariate distributions is provided by Hg. ( 1 y

If Fu,..., F; are all continuous, the@ is unique. W= ST <2 /IIIC(U)dC(U) - 1>, (5)
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pa1=hd) (2d /.dc(“)d”‘ 1>, (6)

paz = h(d) (2‘1 fl Mawdc —1), @

Z(g)_l/l;cij(u,v)dudv—l>, (8)

i<j
whereh(d) = (d+1)/(2¢ — (d+ 1)), andC;; is the bivariate
(i, j)-margin of C. Note thatp, 3 is essentially the average
Spearman’s for all the pairs in a set of variables.

pd3=h(2) (22

Another useful multivariate measure of association is

the medial correlation coefficierg; (seeDurante et al.
2007 Schmid and SchmidR007¢ and references therein),
which generalizes the well known Blomqgvispscoefficient
(Nelsen 20006:

zd—l(C(l/Z) +E(1/2)) —1
Ba= ] :

(9)

v_vhereE is the survival function associated wii) given by
C(u)y=P{C>u},and1/2=(1/2,...,1/2). Clearly, also3,

is invariant with respect to the distributions of the margins.

As pointed out irschmid and Schmid20079, B8; has some
advantages over competing measures suah aspg;'s. In

143

A generalization of Pickands’ dependence function to the
multivariate case is shown iRalk and Reis$2005. Since
A can be estimated via empirical dat@gnest and Segers
2009, then it may be used to check the statistical adequacy
of different models. We shall see later how to use Pickands’
dependence function.

Finally, below we shall also use the Kendall's measure
function K¢ (Genest and Rives1993 2001]) given by

Kc(@®)=P{W <t} =P{C(Uy,...,Uy) <t}, (14)

wherer €| is a probability levelW = C(Us, ..., Ug) is a uni-
variate r.v. taking value oh, and theU;’s are Uniform r.v.s
on| with copulaC. In the bivariate Extreme Value cadég
is given by Ghoudi et al. 1998

Kc(t)=t—(A—1c)tIne, (15)

wherezc is the value of the Kendall's associated with the
copulaC. Clearly, bivariate MEV copulas with the same
value of r share the same functiokic. Unfortunately, at
present no useful expressions similar to Eip) @re known
for the general multivariate cage> 2.

The Kendall's measur&c is a fundamental tool for intro-
ducing a mathematically consistent (copula-based) definition
of the return period for multivariate events (see also the dis-

fact, it can explicitly be derived whenever the copula is of cussion inSalvadorj 2004 Salvadori and De Miche|@004
explicit form, which is often not possible for other measures, Salvadori et al. 2007 Durante and Salvador201Q Sal-
and its estimation requires a low computational complexity.vadori and De Michelg2010. In fact, Eq. (4) represents
Thus, 8; may represent a fast alternative for estimating thea multivariate quantile relationship, since it corresponds to

copula parameters (see below).

A further notion of interest is represented by Pickands’ de-

pendence functiod (Pickands1981). Recall that a bivari-
ate copulaC is MEYV if there exists a convex functiofi: | —
[1/2,1], satisfying the constraint méx1—:t} < A(¢) <1 for

all r €1, such that
Inv
In(uv)

for all (u,v) €12. In particular, if A(r) =1 thenC = I,
and if A(r) = max{¢t,1—t} thenC =M. Conversely, given
a bivariate MEV copuleC, the corresponding dependence
function A is given by

C(u,v) =exp[|n(uv)A< (20)

Al = _|nc(e—<l—’>,e—’), (11)
wheret € 1. It is worth noting that the valuec of the
Kendall's = associated withC, as well as the one of the
Spearman’y, can be expressed in terms #fvia (Nelsen
2006 Salvadori et a].2007)

Yr@-n
and
o
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a multidimensional Probability Integral TransforiGénest
et al, 2006.

Let u be the average interarrival time of the events in the
sequence observed (e.gt,= 1 year for annual maxima),
and letp €| be an arbitrary critical probability level (usu-
ally, p =90,95,99%, or any other threshold of interest). The
multivariate return period’, associated witlp (hereafter,
Kendall's return period) is defined as

® 3 ®

T = = = 1
P71—p  1—Kc@t) 1-P{ueld:.Cu)<t}’ (16)

where the critical thresholde | is given by

t=inf{s el:Kc(s) = p} = K5 (p), (17)

by analogy with the correct definition of quantile. Here
K([:_” indicates the generalized (or pseudo-) invefdelgen
(20006) of the corresponding function. Siné&: is generally
non-linear Kc(z) =t only if C=My), thent # p. More par-
ticularly, the relationKc(¢) > r holds Caperaa et al.(1997),
and therefore

Y
1—-Kc(t) " 1—-t 1-Cu)’

Tp=Tkcq) = (18)

whereu € 1€ is such thatC(u) =¢. The right-most term cor-

responds to the standard definition of multivariate return pe-
riod (for a thorough review seghang(2005; Singh et al.

Hydrol. Earth Syst. Sci., 15,16012011
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(2007, and references therein). Evidently, the traditional ap-value of the Kendall’'st — see Eq. 15), and the comment
proach may yield an incorrect calculation of the return pe-following it. Therefore, we suggest to use Pickands’ repre-
riod, and, in turn, a wrong estimation of the risk. Since em-sentation.

pirical estimators of the Kendall’s measure function are avail- The procedure is as follows. Latbe the sample size,

able Genest et a/.2009 Salvadori and De Miche]&010, i.e. the number of availablé-dimensional observations. For
we shall see later how to use them to perform a return periogach statiors;, i =1,...,d, a gompanion statio; = S ;)
analyses of practical utility. is identified, and an estimaté;; of the dependence func-

tion A of the model under investigation is calculaté&sle-
est and Seger2009. In particular, in order to use all the
3 Parameters’ estimation information, since only: bivariate pairs are available, and
given the constraintd (0) = A(1) = 1, the unit interval is
As is well known, the estimate of the parameters of multi- partitioned inton uniformly spaced intervals via the set of
variate distributions is an involved problem, and still an openabscissas = k/n, k =0,...,n (clearly, other choices are
question in mathematical statistics. Usually, procedures likepossible). Then, thel; j(xk)'s are estimated over the given
Maximum Likelihood are used to simultaneously fit all the grid, and the LS objective function
parameters of interest. However, if, e.g., the copulas under ., I
investigation have singular components, then ML may be dif- -~ 2
ficult togimplement ang use. P ’ 7= Zzi(l) =22 Mo 00 = Aijo ()| (19)
Below, we outline several approaches for estimating the
parameters of interest: each procedure will exploit differentiS minimized, yielding the LS estimates of the parameters of
sources of information, and estimations achieved via differ-interest.
ent techniques will generally differ from one another. For Note that, if {S;,S;)} forms a pair-cluster (i.e.S; )
instance, the estimate may rely only upon the informationis the station companion t§;, and vice-versa), then there
drawn from a suitable single station (Se8tl), or an ap- IS no need to compute also the symmetric contribution
propriate cluster of stations (Se®.2), or the set of pairs  {Si—j).Sji»=i}: this may reduce the computational bur-
of all the stations (Sec8.3). The methods are general, and den. Essentially, the single station approach (hereafter, 1-
can be applied to any MEV copula, including those with sin- MEV) exploits the relationships of th;'s with the corre-
gular components. Clearly, other approaches are possiblgponding companion stations, i.e. it only uses the local (sta-
depending upon the specific needs. Note that the estimate#n based) bivariate dependence structures.
calculated via the methods mentioned above could be used A natural criterion for selecting the companion station
as starting guesses for running other procedures (e.g., ML).would be the use of the Euclidean distance: thgp would
Generally, in the strategies presented below, the fittingSimply be the station closest$p. Note that, except for math-
criterion is represented by the best agreement, in the Leagtmatically “pathological” cases of no interest here, usually
Squares sense (hereafter, LS), with the “local” dependencé; is unique: a counter-example is given by a (practically
structures or association measures: clearly, this may yieldmprobable) situation in which several stations are exactly
estimates different from the ones achieved via other procepPositioned on a circle centered K. Denoting byA;; the
dures (e.g., the global ML). However, the overall fitting abil- distance betwee§; andS;, only two things may happen:
ity will always be certified via global Goodness-of-Fit tests
(see Sectd), in order to verify whether the resulting para-

metric model could be accepted or not. 2. or, there exists another statioh closer toS; than s;;
clearly, Sx may belong to a pair-cluster.

i=1 i=1k=1

1. either{S;, S;} forms a pair-cluster,

3.1 The single station approach

From a geometrical point of view, at least a couple of stations
The first approach we propose for the estimate of the pamust form a pair-cluster. In fact, the setdf =d(d —1)/2
rameters of interest consists in using the information drawnpair distanceg\;;’s is finite, and hence it has (at least) a min-
from a single station at a time. Practically, for each of imum: this corresponds to a pair-cluster.
the available gauge statiorg’s, a suitable “companion” We stress that the use of the Euclidean distance as a cri-
station S; = S;(;) is identified, possibly according to spe- terion for choosing the source of information (i.e., adopting
cific physio-geomorphological conditions and/or hydrolog- a nearest neighboprinciple) may not always be the most
ical constraints. Then, we may estimate the parameters viadvisable strategy. In fact, it has been shown (see, e.g.,
a LS fit, involving the empirical estimates of the Pickands’ GREHYS 1996 St-Hilaire et al, 2003 Merz and Bloeschl
dependence functions;;'s of the companion pairs. As an 2004 Gaka and Canal2005 Wagener and Wheate2006
alternative, also the Kendall's measure functioficould be  Ouarda et a).2008 Shu and Ouard2008 that the geomet-
used. However, while the former is specific for any copula,rical distance may not completely explain the dependence
the latter is not, for it only depends upon the correspondingstructure of the hydrological behavior of catchments: indeed,
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several are the physio-geomorphological factors that may in€luster of stations, i.e. it is based on the loeglvariate as-
fluence it. Therefore, the validity of the nearest neighbor ap-sociation structures.
proach should be tested out by carefully checking the practi- The c-MEV strategy is quite flexible, and potentially most
cal case study under investigation. promising. Unfortunately, its efficacy may be limited by the

It is worth pointing out that, if the model involves global current lack of easily usable mathematical tools, which at
parameters (i.e., common to all stations), and these can be epresent may turn it into a “weak” approach. In fact, the use
timated a priori via other techniques, then the local parameof measures of associatigif’’s for ruling the fits (instead
ters (if any) can be calculated as follows. For each stafion  of full dependence structures, as in the 1-MEV approach)
the companion statio§; is identified, and the local parame- may discard some important details: roughly speaking, a few
ters are estimated via a LS fit of the dependence funetipn - “moments” of a distribution may not provide the same infor-
using the values of the global parameters already estimateghation as of the distribution itself. As an obvious alternative,
(i.e., onIyZl.(l) is minimized). If{S;,S;)} is a pair-cluster, we might suggest to use in the fits some multivariate equiv-
then all the estimates of the local parameters associated withlents of the bivariate Pickands’ dependence functifak(
S; andS; are kept; otherwise, only those associated \Wjth and Reiss2005, but the research in this area is still in its
are stored. This latter strategy can easily deal with sets of stainfancy, and it is not yet clear how to proceed.
tions of any size: in fact, only two stations at a time are con-  Again, it is worth pointing out that, if the model involves
sidered for estimating the local parameters. In other wordsglobal parameters, and these can be estimated a priori via
a global estimate is necessary only if the global parametersther techniques, then the local parameters (if any) can be

cannot be estimated otherwise. calculated as follows. For each stati§n the family 7; is
identified, and the local parameters are estimated via a LS fit
3.2 The cluster approach of ¢g), using the values of the global parameters already es-

timated. If 7; is a closed cluster, then all the estimates of the

The 1-MEV approach adopted in the previous Section On|ylocal parameters associated with the stationg;imre kept;
exploited the information drawn by a single station. This Otherwise, only those associated wihare stored. Thus,
strategy can be generalized: in fact, a full cluster of com-@ global estimate is necessary only if the global parameters
panion gauge stations (instead of just one) may be chofannot be estimated otherwise.

sen as a source of information. Clearly, the cluster can be

fixed according to specific physio-geomorphological condi-3.3 The all-pairs approach

tions and/or hydrological constraints (e.g., by identifying a

homogeneous region, or a basin of influence). A further approach to the estimate of the parameters may
Let S; be thei-th station, and le€,) be a cluster ofy; sta- rely upon the use of all thé(d — 1)/2 bivariate margins, by
tions “pertinent” toS;, with 1 <m; <d. Clearly, the choice  simultaneously considering the dependence structures of all
of m;, as well as the selection of the set of relevant companthe pairs of stations. The strategy is to fix all the parameters
ion stations belonging td,ﬁ{?, can be made dependent upon in such a way that the Pickands’ dependence functign's
specific basin characteristics, and changed when considebest fit (in the LS sense) the corresponding empirical ones.
ing different stationss;’s. Evidently, the case:; =1 for all From a practical point of view, this approach provides the
i's corresponds to the 1-MEV approach. Here the idea is toclosest “bivariate” approximation to a global fit: mathemati-
estimate the parameters by exploiting suitable multivariatecally speaking, it is a “combinatorial” strategy. Clearly,das
measures of associatiqbﬁ) calculated over the families of gets larger and larger, the calculations required may become

stationsF; = {S; UC,SB}, with i =1,....d. For instance, any Ccomputationally demanding.

of the five measures outlined in Eq5)4(9) could be used. The LS objective function to be minimized is given by
The procedure is as follows. First, for each statipnan -1 d nei

estimate@ of.¢((:’) is c_alculated over the clustef;. Then, z®» :Z Z Z|Ai’<i(xk)_gi’j(xk)|2’ (21)

the LS objective function i=1j=i+1k=1

L) _ Xd:Zm _ Xd:‘d)g) _ai 2 yieldiqg the LS estimates of the parameters of interest. We
_ i _ call this method p-MEV approach.
i=1 i=1 By exploiting the same strategy, a faster alternative would
is minimized, yielding the LS estimates of the parameters ofbe to calculate the parameters by simultaneously fitting all
interest. Note that, if; is a closed cluster (i.e., if the station the bivariate Kendall'sr, or Spearman’, or Blomqvist's
S;e C,Si,.), thenF; = F;), then the contribution of the cluster g coefficients (or any other measure of association): essen-
can be calculated only once: this may reduce the computatially, this corresponds to a Method of Moments procedure.
tional burden. Essentially, the cluster approach (hereafterHowever, while the use of Pickands’ function involves the
c-MEV) exploits the relationships of th&’s with suitable  full functional form of the dependence structure (which is

(20)
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Table 1. (Upper triangula) Inter-station distances (in km).D{-
agona) Labels of the nearest neighbor statiohoWer triangular
Empirical estimates of the Kendallisfor all the pairs of the four
8500 stations, with thep-values in parentheses — see text.

Station So S6 S9 S0

S, Sg 617 191 240
- Ss 006  Si9 436 37.9

| | (0.62)
Sy 025 034 S;p 6.0
- 8000 (0.03) (4e-3)

Sio 043 029 054 Sg
(2e-4) (0.01) (3e-6)

\ \
2500 3000 3500

Fig. 1. Map of the Spey catchment. The black circles indicate the a 1—a
four gauge stations of interest — see text. H(u) = Gg(U%) x Gy (Uu™™%)
= G¢ (u’il, ugz,u?, ui“)

specific for every copula), the coefficients mentioned above
may not distinguish between different copulas. For this rea-
son, we neither suggest nor investigate this alternative. with Gumbel parameters, x > 1, and “extra-parameters”
ai1,az,as,aq €|, which represents a 4-variate generalization
of the well known Gumbel copul&y (Nelsen(2006; Sal-
vadori et al.(2007)

For the sake of illustration, here we consider the same data 4 1/6
and copulas as used 8alvadori and De Michel€010, to Go(u) =exp] — [Z(_lnui)0:| (23)
i=1

1-a 1-a 1-a 1-a
Gy (uy Muy Puy Cuy ), (22)

4 Case study

which we make reference for further details: a short sum-
mary is reported below. Also, in the following, the use of the
Euclidean distance as a criterion for choosing the stations ofvith parametes > 1. Note that the Gumbel copu, rep-
interest is motivated by illustrative purposes only. resents a sort of “standard” MEV model in hydrology (see,
The data are maximum annual flood measurements cole.g.,Yue (2000ab); Zhang and Sing(2007), and references
lected in the Spey catchment (northern Highlands of Scottherein). A straightforward interpretation of the parameters
land). The basin is equipped with a network of 17 flow gaugea:’s is as follows. Suppose that=1: then,H =G;. Con-
stations, and is managed by tBeottish Environment Protec- versely, should it ba= 0, thenH =G, . For other values of
tion Agency(2009. Further details can be found @ilvear @, H is a sort of “mixture” betwee; andG,: in particular,
(2004 andBlack and Fadipg€2009. In this study we con- thea;’s play the role of “local” mixing parameters.
sider four gauge stations located in the middle and lower part The generic bivariate dependence function of H is
of the Spey catchment (see FIg: three on the main stream O L/x
(i.e., Sz, S10, andSs), and one on Dulnain tributary (i.659).  Aij () = {[(1—a) Q=)  +[(1—a;)]"}
The available observations amount to 37 quadruples of £ £
maximum annual floods. Evidently, from a statistical point +{[ai(1_’)] +[aji] ] ’

of view, the sample size |sverysmallforlnvestlgatlngamul-i.e' a non-linear, possibly asymmetric, function, able to

tivariate problem: unfortunately, this is a typical situation | non-exchangeable variables (an important issue in ap-
when extreme data bases are considered. However, here ”ﬂ)‘ﬁcations not shared b@, — see, e.g., the discussion in

target is not to provide an ultimate extreme flood model, andGrimaldi and Serinaldi200§. From a practical point of

no practical project of hydrological works is undertaken. In- view, this latter feature may provide a consistent model of the

stead, our pomt is only tp show, in a relatively smple Casfe’asymmetric relationship between upstream and downstream
how the techniques outlined above can be used in practic&; o stations. viz. the upstream stations may “i

in oth ds. this | hodological influence” the
In other words, this s a methodological paper. downstream ones, but the converse may be difficult to prove.

As a erendence m|0d?|’ h((ejre V\(/je-nussel thg multlg)arame- In Tablel (upper triangular) we show the inter-station dis-
ter 4-variate MEV copulad introduced inSalvadori and De tancesA’s. It is then immediate to identify, for each site,

Michele (2010: the nearest neighbor station: namefy, < Sg, S < S10,

(24)

Hydrol. Earth Syst. Sci., 15, 14150, 2011 www.hydrol-earth-syst-sci.net/15/141/2011/



G. Salvadori and C. De Michele: Estimating strategies for MEV copulas 147

(8,8) (S,8)
< == ) e — 1 . :
o0 .
. o N3
0.9 i - 0.9 \,\\
R e RS,
08 0. o
< <
07 0.7
0.6 =—o— Empirical 0.6 =—o— Empirical
LML ML
- = -1-MEV - = -1-MEV
—— p-MEV ——p-MEV
== c-MEV == c-MEV
05 0.5
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t
(5,5, (54S)
T T 1 T T
Q Y
4
0.9 Ny i 0.9 N
5
~ S .
s 5 #
0.8| SO I et 4 0.
N : S g ~
< <
N . i
N .
0.7 Sl Tt 0.7
0.6| =—o— Empirical 0.6 =—o— Empirical
ML ML
- = -1-MEV - = -1-MEV
—— p-MEV ——p-MEV
== c-MEV == c-MEV
05 05
° 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t
(84S (8,59
T T T T T T 1 T T T T T T
0.9 NS T 0.9
T
0.8 - 0.8
< <
.. S
0.7 0.7 S i S
0.6| —o— Empirical 0.6| =—o— Empirical
ML ML
- = -1-MEV - = -1-MEV
—— p-MEV ——p-MEV
== c-MEV == c-MEV
05 05
® 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

t t

Fig. 2. Plots of empirical and fitted Pickands’ dependence functions for all the pairs of stations and the models of interest — see text.

Sg <> 810, i.€. the latter two stations form a pair-cluster (see eters fitted via different methods. The estimates are reported
Table 1 — diagonal). In Tabld (lower triangular) we show in Table2. The six parameters dfi have been estimated
the empirical estimates of the bivariate Kendatisfor all in Salvadori and De Michel€2010 via ML (see the first

the pairs of the four stations of interest here. It is inter- row of Table2): this will give us the possibility to compare
esting to note that the coefficient is very small for the two and discuss the results of fitting techniques different from
farthest station$S», Sg}: this means that the association be- the standard one. The estimates of the same parameters ac-
tween the two is negligible, as confirmed by the correspond-cording to, respectively, the 1-MEV, the c-MEV, and the p-
ing p-values, though this does not imply that the stations areMEV strategies are also reported in TaBleFor illustrative
statistically independent (as, instead, is commonly misinterpurposes, the c-MEV approach is run using as multivariate
preted). On the contrary, the analysis of he&alues shows measure of association the Spearman/s — see Eq. §),

that the estimates of the coefficients for all the other pairs areand considering the following four clusters of stations, hav-
statistically significantly different from zero: this means that ing different sizesF» = {S2, Sg, S10}, F6 = {S6, S9, S10}, and

the corresponding stations are definitely dependent. Fo=Fr10={So, S10}. As a variant (not shown), also the mul-

Below we shall statistically compare the performances oftivariate Blomqvist'sp, — see Eq.§ — was used, but the
the copula model provided by E®32), using sets of param-  'esults did not significantly change. It is interesting to note
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Table 2. Estimates of the parameters of the 4-variate copulsing Table 3. Values of the Kendall's for all the pairs of the four sta-
different fitting techniques — see text. Also shown arejhealues tions — see text:ypper triangula) estimates using the 1-MEV strat-

of the corresponding models. egy; (ower triangular) estimates using the p-MEV strategy.
Method & X a1 da a3 das p-. Staton S  S¢  Sg S
ML 155 11.04 097 036 0.78 0.89 0.40 S 1 0.12 0.37 0.55
1-MEV 2.73 11.03 0.99 0.12 048 0.79 0.78 S 0.12 1 060 0.32
c-MEV 169 1191 100 0.02 0.60 0.75 0.38 S 0.39 0.39 1 0.57
p-MEV 199 11.03 1.00 0.15 0.71 0.82 0.67 S10 043 029 054 1

that, independently of the fitting procedu@; ~ 14 —the ~ Should be accepted, since thevalues are much larger than
copula of independence — see E8), - whereaG, ~M, 5% It is worth mentioning that the-values should only be

— the copula of full dependence — see E4). (Thus, as al-  used to reject a copula, according to some standard criterion
ready mentioned, the extra-parametrized coptils a sort  (like, e.9., a value smaller than 1%). It is a common error
of “mixture” betweenIT; andMy, ruled by the “local” mix-  t0 consider as “better” those models yielding the highest

ing parameters;’s. values: mathematically speaking, this is generally false.

In Fig. 2 we plot the empirical and fitted Pickands’ func- A further issue of interest concerns the investigation of the
tions A’s for all the pairs of stations and the models of inter- Kéndall's return period: this is a fundamental point in ap-
est. The graphs allow for a preliminary visual analysis of thePlications, since it provides crucial information of practical
different performances: clearly, being just low-dimensional Utility. In principle, it might be possible to use the estimates
bivariate slices of the four-dimensional copttla they can- of the multivariate return period function in order to choose
not (and should not) be used to judge the overall fitting abil-P€tween models fitted via different strategies. In Rigve
ity of the different models — see below. Furthermore, it mustSNOW the empirical and the fitted Kendall’s return periods for
be stressed that the empirical estimates of the true (but un@!l the four stations and the models of interest: the plot shows
known) dependence functions do not generally respect thdhe return periods associated V\{Ith all critical prqbablllty Iev_-
convexity constraint, i.e. they are not intrinsic estimators —€/S? €1. Note that, due to the limited sample size, the esti-

see also the discussion@enest and Sege2009, and ref- mates of the largest empirical return periods are spoiled (as
erences therein. ' is well evident in Fig.3). Visually, both the ML and the p-

Apparently, none of the ML, 1-MEV, and c-MEV strate- MEV fits are valuable, whereas the 1-MEV and c-MEV ones

gies seem to provide uniformly consistent fits, whereas theapparently fail to provide a consistent approximation: this

p-MEV method overall provides valuable approximations. may not be surprising, since these latter strategies either use

However, the lacks of fit are more apparent than real: in fact,the Ieast. a”.“’“"“ of mform_auqn, or rely upon measures of
ssociation instead of full distributional functions.

due to the small sample size, the confidence bands are e ! . . .
. L : As illustrated and discussed Balvadori and De Michele
ite large. M interestingly, th I L )
pected to be quite large. Most interestingly, the copidla (2010, these multivariate return periods are generally much

fitted via the “local” strategies is able to match the asymme-I roer than the on lculated via the formul IIv found
tries shown by the empirical functions, and may adapt itself, 2r9€" tnan the ones caiculated via the formuias usuay Tou

to the “in situ” behaviors of the data. Furthermore, the “de- literature — see Eq.1@), — and the ensuing discussion).

gree of dependence”, as measured via the Kendalianges Clearly, _the underestlmqtes provided by the standard ap-
proach, i.e. a return period much smaller than the correct

from ~ 0.1 to ~ 0.6 (see Table, reporting the estimates for h abl Instead. following th
the 1-MEV and p-MEYV strategies), whereas the correspond-one’ may have sizable consequences. Instead, following fhe

ing values fitted via ML only range fromy 0.2 to~ 0.4 (see Kenlda!ls meEsure fapprogch illustrated here, a correct risk
Salvadori and De Miche|€010. analysis can be pertormed.

However, when the problem is multivariate, what should
always be analyzed is the full dependence structure, and its Conclusions
global ability to fit the actual data. For this purpose, we ex-
ploit some robust Goodness-of-Fit tests for multivariate cop-In order to properly assess the risk, MEV models are funda-
ulas Genest et aJ2009. These tests use Cr@mvon-Mises  mental in all areas of geophysics. This paper is of method-
statistics, and acceptance or rejection of a model is based oological nature, and introduces new estimation techniques
the p-values calculated via bootstrap techniques: small onegor dealing with extremes. In particular, we outline several
suggest to discard the corresponding copula, whereas larggtrategies in order to estimate the parameters of MEV cop-
ones support its suitability. In our case, thevalues are as ulas according to different criteria: we use either a “com-
reported in Table. In turn, all the models investigated here panion” station/cluster approach, or exploit all the pair-wise
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