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Abstract

Cell-free DNA fragments are shed into the bloodstream by tumor cells. The analysis of 

circulating tumor DNA (ctDNA), commonly known as liquid biopsy, can be exploited for a 

variety of clinical applications. ctDNA is being used to genotype solid cancers non-

invasively, to track tumor dynamics and to detect the emergence of drug resistance. In a 

few settings, liquid biopsies have already entered clinical practice. For example, ctDNA is 

used to guide treatment in a subset of lung cancers. In this review, we discuss how recent 

improvements in the sensitivity and accuracy of ctDNA analyses have led to unprecedented 

advances in this research field. We further consider what is required for the routine 

deployment of liquid biopsies in the clinical diagnostic space. We pinpoint technical hurdles 

that liquid biopsies have yet to overcome, including pre-analytical and analytical challenges. 

We foresee how liquid biopsies will transform clinical practice: by complementing (or 

replacing) imaging to monitor treatment response and by detecting minimal residual disease 

after surgery with curative intent.
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Key message:
A few liquid biopsy-based, circulating tumor DNA (ctDNA) analysis have already entered 

clinical practice. Improvements in the sensitivity and accuracy of ctDNA analyses led to 

unprecedented advances in this research field. We foresee that liquid biopsies could 

transform clinical practice by complementing imaging to monitor treatment response and by 

detecting minimal residual disease after surgery.

Introduction

Cancer represents the second leading cause of death worldwide [1, 2]. Tumor molecular 

profiling is essential to optimize treatment in clinical practice [3]. Diagnostic strategies 

currently employ tissue samples to assess specific biomarkers.  Genotyping tumor tissue 

requires invasive procedures with inherent risks [4]. Up to 25% of lung cancer biopsies fail 
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to obtain enough tissue for assessment [5]. Moreover, it has been shown that the genomic 

profiles of primary tumors and metastases are not always concordant owing to intrinsic 

molecular cancer heterogeneity [3, 6-8]. Furthermore, the genomic landscape can change 

during the course of therapy [3]. For all these reasons, tissue biopsies cannot be used to 

provide up-to-date profiles of the inherent evolving nature of individuals with solid cancers. 

To overcome these limitations, many groups have successfully used analysis of circulating 

tumor DNA (ctDNA), a procedure known as liquid biopsy [9-15]. The latter involves the study 

of body fluids (primarily blood but also saliva, urine and cerebrospinal fluid) which have been 

found to carry nucleic acid fragments originating from cancer cells. Liquid biopsies allow for 

repeat sampling due to their minimally-invasive nature. A tissue biopsy can be compared to 

a ‘snapshot’ of the cancer, whereas the analysis of circulating tumor DNA is a ‘screenshot’ 

of the primary and metastatic tumor [16] and longitudinal LBs can be viewed as a ‘motion 

picture’ of tumor evolution. Indeed, liquid biopsies can interrogate clonally divergent, distant 

lesions without sampling bias, thus allowing longitudinal monitoring of patients during 

treatment [17]. It is also true that in some instances, liquid biopsies can fail to detect gene 

alterations which can be otherwise identified in tumor tissue, as it might happen in early 

stage patients due to a very small amount of circulating tumor material which presently 

restricts sensitivity.  

The biology of circulating tumor DNA 

Historically, liquid biopsies can be traced back to 1948, when Mandel and Métais described 

the existence of circulating cell-free DNA (cfDNA) in the blood of healthy individuals [18]. 

But it was only in 1977 that the presence of differential levels of cfDNA, with increased levels 

in the blood of patients with various types of cancer, was demonstrated [19]. In 1994, the 

clinical potential of cfDNA was recognized as a result of the detection of mutated RAS gene 

fragments in the blood of cancer patients [20, 21]. It should be noted that the term cfDNA 

refers to both encapsulated (from circulating vesicles) and non-encapsulated free DNA in 

the bloodstream or other body fluids and the fraction of cfDNA originated from tumor cells is 

named cell-free circulating tumor DNA (ctDNA) [11]. 

The precise mechanism of cfDNA release from non-cancer cells into the peripheral blood 

and other body fluids, as well as its biological properties remains unclear. ctDNA may 

originate from tumor cells through multiple mechanisms, including apoptosis, necrosis and 
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active secretion from extracellular vesicle and circulating tumor cells (CTCs) [22-24]. The 

latter carries the same genetic and epigenetic alterations of the primary tumor or metastases 

and also provides an opportunity for a non-invasive evaluation of cancer. However, only a 

subset of cancers shed significant number of CTCs in the circulation [25, 26]. Virtually all 

molecular alterations present in cancer cells can be detected in ctDNA including both coding 

and non-coding regions, microsatellite loci, loss of heterozygosis (LOH), mutations, 

polymorphisms, methylation and copy number variations [27, 28].

The realization that cancer patients had greater levels of plasma cfDNA than tumor-free 

controls [19, 29] led to the clinical applications of liquid biopsies. However, high levels of 

cfDNA are not specific to cancer as they are also observed in several other pathologies, 

including pro-inflammatory diseases and autoimmune disorders, such as liver cirrhosis, 

hepatitis, systemic lupus erythematous or rheumatoid arthritis, as well as pregnancy and 

intense physical exercise [30, 31]. 

The size of DNA fragments circulating in blood is relevant and related to its biology. The 

length of cfDNA and its highly fragmented status was previously revealed by gel 

electrophoresis in plasma from pancreatic cancer patients and healthy controls [32]. 

Massively parallel sequencing has shown that ctDNA has a size distribution of 130–170 bp 

(predominant peak around 166 bp and a series of smaller peaks occurring at 10 bp 

periodicity at sizes of approximately 143 bp and shorter) [33-36], which is equivalent to the 

size of nuclease-cleaved nucleosomes. This size distribution suggests that a significant 

amount of this DNA likely originates from apoptotic processes [32]. In addition, 

DNA molecules larger than 10.000 bp have also been described, suggesting other release 

mechanisms such as necrosis or phagocytosis of necrotic tumor cells by macrophages [23, 

37]. 

ctDNA levels are also influenced by disease burden and many other factors such as tumor 

location, vascularity and cellular turnover [15, 23, 38]. In this regard, Bettegowda and 

colleagues reported how ctDNA detectability varies among different tumor types [15]. 

Indeed, most patients with stage III and metastatic cancer of the liver, ovaries, colon, 

stomach, breast, esophagus, pancreas, bladder, and head and neck as well as patients with 

neuroblastoma and melanoma, harbor detectable ctDNA levels. In contrast, tumors 

localized in the central nervous system or those with mucinous features (like prostate and 
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thyroid) frequently show low or undetectable ctDNA levels [15, 39]. Notably, in the case of 

brain tumors, including brain metastatic lesions, ctDNA can be found in the cerebrospinal 

fluid providing an alternative source for liquid biopsies [40, 41]. ctDNA has a variable half-

life in the circulation, with a reported average around 15 min [11], due to rapid clearance by 

lymphatic circulation via the kidneys, liver and spleen [42]. Tumors are often comprised of 

multiple cell clones (which account for intra-tumor heterogeneity) and normal/healthy cells, 

such as hematopoietic and stromal cells. Thus, during tumor progression and turnover both 

tumor-derived and wild-type (normal) cfDNA can be released into the blood. 

Accordingly, the proportion of ctDNA that originates from individual cancer lesions depends 

on the anatomic location and size of the tumor; It has been estimated that, for a patient with 

a tumor of 100 g in weigh (3 × 1010 tumor cells), 3.3% of its DNA can be released in the 

blood circulation every day [43]. Also, the presence of CTCs and metastatic lesions can 

contribute to ctDNA yields [44].

Technical challenges associated with the collection and processing of ctDNA 

Although cancer patients have higher cfDNA levels than healthy donors, the concentrations 

of overall cfDNA vary considerably [45, 46]. Multiple studies have shown that cfDNA ranges 

between 0 and >1,000 ng per mL of blood, with an average of 180 ng of cfDNA per mL [11, 

47-50]. This amount would, however, represent only a tiny fraction of the total cell turnover 

per day in the human body. By comparison, in healthy subjects the concentration of plasma 

cfDNA ranges from less than 10 ng/ml to more than 100 ng/ml, with an average of 30 ng per 

mL cfDNA [11]. Therefore, in patients with cancer, ctDNA represents a small proportion of 

total cfDNA, varying from less than 0.1% to over 10% depending on disease burden, stage, 

cellular turnover, and treatment response [38]. However, the quantification of cfDNA 

concentrations alone cannot be exploited for diagnostic purposes owing to the overlapping 

DNA concentrations that are found in healthy individuals with those in patients with 

malignant disease and the fact that exercise and inflammation are known to modulate cfDNA 

concentration levels. Some studies linked higher cfDNA concentration with shorter overall 

survival (OS) of patients with breast [51], ovarian [52], lung [53], gastric [54] and colorectal 

cancer [38], but the clinical value of this information remains to be confirmed.
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The clinical deployment of liquid biopsies requires overcoming several challenges regarding 

ctDNA detection and analysis. For example, routine liquid biopsy application in clinical 

practice is presently limited by the lack of standardization and absence of broadly accepted 

standard operating procedures (SOPs) for ctDNA assessments procedures [55]. Due to the 

low concentration of ctDNA in patient-derived biological samples, analytical specificity and 

sensitivity are necessary to generate reproducible results [56]. Improvement in DNA 

isolation technologies, detection and analysis have recently allowed reproducible detection 

of low ctDNA levels from a background signal of wild-type DNA released in the circulation 

by healthy tissues [57]. Preanalytical variables must be accurately controlled.  For example, 

during blood collection and processing it is essential to avoid white blood cell lysis which 

increases dilution of tumor circulating fragments from genomic DNA derived from white 

blood cells. Plasma is the preferred source for ctDNA compared to serum due to greater cell 

lysis that occurs during the clotting process [58]. Preanalytical procedures such as blood 

collection, transportation, processing and storage temperature are also critical as they affect 

leukocytes stability and ctDNA degradation. Analytical and post-analytical variants may 

affect ctDNA quantitation as well, especially since ctDNA has a short half-life and there are 

time-dependent changes in DNA in blood collection tubes [59], due to white blood cells lysis. 

While a consensus on the procedures to preserve DNA integrity has not yet been achieved, 

most investigators agree that it is critical to isolate plasma within an hour after blood draw 

to avoid cfDNA degradation due to DNase activity [60]. Purposely designed blood collection 

tubes for cfDNA are available from multiple providers which minimize cell lysis and stabilize 

the total cfDNA pool by the inclusion of various additives and preservatives. 

As discussed above, tumor DNA in the circulation is highly fragmented and often present in 

low amount. Accordingly, several protocols require as an initial step PCR-based 

amplification strategies, which increases the risk of artifacts due to the intrinsic error rate of 

the DNA polymerases and represents a limitation in many assays [11, 61]. The relevance 

and challenges of analytical validation of methods for liquid biopsy are not the focus of the 

present review and have recently been described in details elsewhere [62]. We underline 

that a major barrier is the current lack of comparability between existing approaches, as it 

was highlighted in a recent European Quality Assurance (EQA) scheme undertaken by the 

European Molecular Genetics Quality Network (EMQN), which assessed ctDNA detection 

approaches. This analysis emphasized how multiple pre-analytical and analytical 

techniques generate variable results [63]. International European initiatives based on 

consortium of several groups from different countries, such as CANCER-ID 
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(https://www.cancer-id.eu/) and SPIDIA4P (http://www.spidia.eu/) are presently establishing 

standards for analytical and pre-analytical procedures, respectively. The analytical process 

to obtain ctDNA can strongly affect the standardization. A large variability in cfDNA yield 

and/or fragment size was reported, mainly due to the type of cfDNA extractions [64]. For 

example, methods based on phenol-chloroform were shown to provide higher yield, but 

lower DNA purity than magnetic-based techniques [65]. Multiple reports point to the silica-

based membranes as the preferred approach for a high cfDNA recovery (82%–92%) [66], 

though this leads to loss of DNA fragments smaller than 150 bp [67].  

Methodologies to genotype ctDNA 

It is now generally accepted that tumors are genetically and phenotypically diverse (intra- 

and interpatient heterogeneity). ctDNA analyses allow longitudinal tracking of tumor 

dynamics during treatment [3, 12]. For example, longitudinal measurements with liquid 

biopsies can monitor disease progression, sub-clone evolution and patient response in real 

time during therapy [6, 68].

Two approaches were developed to study tumor's DNA in the blood. The first involves 

querying tumor-specific mutations or predefined genomic regions (targeted ctDNA strategy). 

This type of analysis is based on the use of very sensitive technique including PCR-based 

assays such as droplet digital PCR (ddPCR), Q-PCR, ARMS and BEAMing-PCR, as well 

as (Next Generation Sequencing) NGS-based methods such as Safe-SeqS, CAPP-Seq, 

and TAmSeq. PCR-based methods interrogate a limited number of known mutations, have 

acceptable sensitivity and high specificity. These platforms are utilized to detect EGFR 

activating mutations as well as resistance mutations in NSCLC patients who progress on 

EGFR TKIs [69].  NGS-based assays like TAM-Seq and CAPP-Seq, designed to detect 

multiple classes of mutations, including indels, rearrangements, and copy number 

alterations have also shown high sensitivity and specificity. Overall, this candidate-based 

strategy requires prior information on the tumor genome and allows detection of mutations 

at an allele frequency of 0.01% with high specificity. The second approach (untargeted 

strategy) aims to provide exome or genome-wide analysis of mutations and copy number 

aberrations (CNAs) by whole exome sequencing (WES) or whole-genome sequencing 

(WGS). Untargeted methods, which are based on the use of next generation sequencing 

(NGS) techniques, do not require prior knowledge of the genome of the primary tumors and 

D
ow

nloaded from
 https://academ

ic.oup.com
/annonc/advance-article-abstract/doi/10.1093/annonc/m

dz227/5542945 by N
ottingham

 Trent U
niversity user on 03 August 2019



allow identification of novel changes occurring during tumor treatment, but can be less 

sensitive (1-5%) and generally rely on high amounts of ctDNA. Among NGS approaches, 

deep-sequencing allows detection of variants at 0.2% low allele-frequency and identification 

of the mutations reported in tumor tissue with potential 100% sensitivity, although with a 

limited specificity (about 80%) [68, 70]. Its main advantage is the ability to investigate 

simultaneously multiple cancer specific variants. In the future, it is likely that increasing the 

number of tumor-specific variants that can be assessed simultaneously will improve both 

sensitivity and specificity. Importantly, NGS of ctDNA is affected by an error rate between 

0.1% and 1%, which presently limits this approach. To overcome this, several protocols 

have been modified in order to improve the identification of those variants [71].  Several 

bioinformatic algorithms are now available for cfDNA analyses [26, 72, 73]. Ultimately, the 

quality of NGS reads is highly relevant and deeply affects downstream analysis. As 

sequencing costs drop, NGS-based untargeted strategies will become clinically feasible, 

coupled with new generations of computational strategies.

Clinical applications of liquid biopsies

ctDNA holds promise in many clinical applications including genotyping cancer at diagnosis, 

detection of minimal residual disease after surgery, monitoring treatment response, early 

detection and profiling of resistance to therapy. These aspects are discussed in separate 

paragraphs below and summarized in Figure 1. 

Genotyping cfDNA for somatic genomic alterations found in tumors.
Many studies have shown that genetic variations in ctDNA reflect the mutational landscape 

of the corresponding tumor tissue. Although specificity among detection methods can 

approach 100%, sensitivity is generally lower and depends on the DNA alteration type [74]. 

A high concordance (often about 80% or more) has been reported between the mutational 

profile of driver oncogenes (KRAS, NRAS, PIK3CA, BRAF, and EGFR) in ctDNA and tumor 

tissue of colorectal [15, 75], lung [76] and breast [15] cancer patients. In 2014 NSCLC 

patients were the first to benefit from an approved liquid biopsy FDA test (Real-time PCR-

based cobas® EGFR Mutation Test v2) to detect EGFR mutations associated with sensitivity 

to erlotinib or osimertinib. Meta-analyses assessed the performance of ctDNA compared to 

tissue to detect EGFR mutations in NSCLC, demonstrating a sensitivity of 61% to 67% and 

a specificity of 90% to 95.9% [77]. These data should be interpreted with caution since they 

D
ow

nloaded from
 https://academ

ic.oup.com
/annonc/advance-article-abstract/doi/10.1093/annonc/m

dz227/5542945 by N
ottingham

 Trent U
niversity user on 03 August 2019



were obtained with different platforms. The EURTAC trial [78], comparing first-line erlotinib 

and chemotherapy in advanced NSCLC, proposed that patients with ctDNA negative for the 

EGFR p.T790M mutation underwent a further tissue biopsy to rule out the event of false 

negatives, generally due to non-shedding tumors rather than a failure of the testing 

platforms. On the other hand, plasma positive testing in presence of tissue negativity may 

be due to the failure of tissue biopsy to detect tumor heterogeneity. The need for dual 

tissue/plasma testing in NSCLC seems to be confirmed also by recent results [79]. 

Detecting minimal residual disease and monitoring treatment response 
Two areas are emerging in which liquid biopsies are poised to radically transform clinical 

practice in oncology: The first is signaling the presence of an already (molecular) metastatic 

status in an otherwise phenotypically local disease and the second is forecasting the 

outcome of systemic therapy in metastatic disease. In both clinical settings, ctDNA acts as 

synthetic proxy of the tumor biology: in the first case by heralding an inherent resistance to 

therapy and in in the latter by foreshadowing metastatic spread, signaled by the persistence 

of minimal residual disease (MRD) after surgery, that distinguishes between indolent and 

aggressive, metastatic prone tumors.

 

Detecting the presence of minimal residual disease
The liquid biopsy applications in this area are far reaching and could potentially parallel the 

studies that have led to changes in the management of leukemias and other blood cancers. 

The rate limiting step to applying blood-based MRD tests in solid cancer is technical. To 

detect residual tumor DNA, highly sensitive tests are necessary. While innovative 

approaches to detect ctDNA with high sensitivity are being developed, proof of concept 

studies have been performed. Several analyses have shown that ctDNA levels can be used 

to monitor MRD following surgery or other curative treatment in colorectal, breast and other 

cancer types. In a landmark study, Diehl and colleagues were first to show that in colorectal 

cancer (CRC) patients who received surgery, those with MRD detected generally in cfDNA 

had disease relapse within 1 year of localized surgery. More recently, Tie and colleagues 

reported a prospective trial evaluating the relationship of postoperative ctDNA levels with 

tumor recurrence in patients with stage II CRC. The authors observed that recurrence rates 

were >10-fold higher in patients with detectable postoperative ctDNA than those in whom 

ctDNA was undetectable, suggesting that ctDNA analysis could be used as predictive 

biomarker. In parallel studies performed in breast cancers, PIK3CA mutations were detected 

in DNA from plasma samples obtained before surgery in 93% of patients with localized 
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tumors and a limited tumor burden [80].  Given the short half-life of ctDNA and the possibility 

of minimally invasive repeat sampling, liquid biopsies can enable real-time monitoring of 

disease during therapy, as its assessment can be performed more often than imaging. 

Studies monitoring patients during treatment have shown that ctDNA dynamics correlates 

with treatment response, and may identify response earlier than clinical detection [38, 75, 

81-86]. 

Forecasting the outcome of systemic therapy in metastatic disease
A number of studies have employed ctDNA as biomarkers of metastatic disease, to monitor 

disease response and to assess overall disease burden. Levels of ctDNA decrease after 

surgery and/or chemotherapy. In a study, an increase in ctDNA correlated with disease 

progression in 89% of metastatic breast cancer patients, with an average of 5 months prior 

to radiological progression [82], and with increased accuracy as compared to standard 

serum markers such as CA153 and CA15-3 (MUC1). In ovarian cancer, pre-treatment 

ctDNA levels and the extent of ctDNA decrease after chemotherapy initiation were 

significantly associated with time to progression, and were more informative than CA125 

levels [87]. The same applies to NSCLC; one study reported that its levels were significantly 

correlated with overall tumor volume and could differentiate between residual disease and 

treatment-related imaging modifications [84]. Another study [88] demonstrated that in 

patients with EGFR mutation-positive ctDNA at baseline, ctDNA dynamic changes are 

associated with treatment outcomes. Similar studies in other cancer types, including 

metastatic melanoma undergoing immune checkpoint blockade, metastatic colorectal 

cancer (mCRC), and primary gynecological malignancies, reached similar conclusions [89-

91]. Data suggest that these changes can occur rapidly, with ctDNA variations at two-weeks 

being predictive of subsequent radiographic results in restaging studies at two-months [91]. 

These studies reported that while ctDNA analysis cannot yet fully replace imaging, it can be 

used in combination with radiological assessments and may provide a more rapid 

assessment of tumor response than traditional imaging assessment. 

The role of ctDNA to anticipate response to systemic therapy has been also evaluated. In 

2015, 53 mCRC patients receiving 1st-line chemotherapy had their ctDNA levels monitored 

using SafeSeq [91]. In this prospective study, blood ctDNA samples were collected before 

treatment, 3 days after treatment and before cycle 2. Results indicated that 92% of patients 

had positive ctDNA at baseline and those with a reduction in ctDNA just prior to cycle 2 also 

had a radiological-confirmed response 8 to 10 weeks later. However, this study could not 

define whether ctDNA is able to predict disease progression as only 1 case relapsed on the 
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8–10 week CT scan. More recently, the results reported in the PLACOL study confirmed 

Tie’s data: changes in ctDNA concentrations among first, second and third chemotherapy 

cycles were assessed and found to discriminate responding patients [92]. The prognostic 

role of baseline ctDNA levels has also been confirmed in pretreated mCRC as reported by 

the CORRECT study [93], a large phase 3 trial whose results demonstrated the clinical 

benefit of regorafenib in chemo-refractory patients. An early spike in ctDNA levels may also 

predict response, as suggested by a recent study which assessed allele fractions of BRAF 

mutations in the first week following the initiation of immunotherapy in melanoma patients 

[94]. This behavior likely reflects a transient ctDNA increase due to massive cell death

In ER+, HER2- metastatic breast cancer, the ongoing PADA-1 study [95] included 803 

patients receiving palbociclib combined with an aromatase inhibitor as standard of care. 

Within this trial, circulating levels of mutant ESR1 were detected prior to therapy in 17 cases, 

and were associated with prior use of aromatase inhibitor in the adjuvant setting.  Of note, 

in most case where circulating ESR1 mutated alleles were identified prior to therapy, their 

levels became undetectable one month after combinatorial treatment initiation, suggesting 

that this combination may retain early antitumor efficacy.

Using ctDNA to understand secondary drug resistance 
The utility of liquid biopsies to detect mechanisms of primary and acquired resistance to 

treatments has been extensively investigated alongside with ctDNA application to direct 

additional lines of therapies and to guide rechallenge protocols.  ctDNA can be exploited to 

monitor clonal evolution and identify heterogeneous resistance mechanisms to drug 

exposure [13, 69, 75, 96-98]. In NSCLC, ctDNA has been used to identify several actionable 

mutations for targeted treatments such as in EGFR, ALK, ROS1, RET rearrangements, 

ERBB2 and MET alterations, as well as monitoring acquired resistance mutations (i.e. 

T790M mutation, amplification of the MET receptor tyrosine kinase or ERBB2, and mutations 

in PIK3CA, BRAF, STAT3, or AXL amplifications) [99]. In CRC, liquid biopsy analysis in 503 

cases confirmed the capability of detecting the continuous dynamic change of KRAS, BRAF, 

and PIK3CA mutations in ctDNA on regorafenib treatment [93]. Therefore, ctDNA detection 

can be used to nominate mechanisms of tumor resistance and guide earlier selection of 

appropriate follow up therapies that may improve clinical outcome. In 2012, two independent 

groups uncovered KRAS alterations as mechanisms of emerging resistance to anti-EGFR 

therapy in CRC with ctDNA analysis [13, 14]. Of note, it was revealed that ctDNA anticipated 
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the emergence of KRAS resistant subclones as early as 10 months prior to radiographic 

progression. Subsequent data demonstrated that withdrawal of EGFR blockade drugs after 

progression leads to further clonal evolution which can be exploited pharmacologically [75, 

100]: ctDNA analysis showed that mutated KRAS alleles detected at progression start 

declining when anti-EGFR blockade is withdrawn suggesting a potential role for anti-EGFR 

re-challenge.  ctDNA analyses were also pivotal in showing that a subset of CRC patients 

acquire EGFR extracellular domain (ECD) mutations as mechanisms of resistance to EGFR 

blockade with the anti-EGFR antibodies cetuximab and panitumumab. Patients with EGFR 

ECD mutations had greater and longer responses to anti-EGFR therapy as compared to 

those acquiring RAS mutations [101]. In a separate, recent study [102], genetic mechanisms 

of primary and acquired resistance to double HER2 blockade in a cohort of ERBB2-amplified 

metastatic colorectal cancer was uncovered by ctDNA analysis.  Blood samples were 

collected prior to initiation of treatment (baseline), every 15 days during therapy, and at 

radiological progression or at the end of treatment. NGS analysis was performed using a 

targeted NGS panel. Alterations in KRAS, NRAS, BRAF, PIK3CA, MAP2K1, ERBB2, EGFR, 

and MET mutations and/or copy number changes, while ERBB2 copy number alteration was 

confirmed in plasma with a sensitivity of 97.9% and a positive predictive value of 100% [102]. 

These findings highlighted the relevance of the HER-RAS-MAPK pathway as key mediator 

of resistance to anti-HER2 therapies and suggested an involvement of PI3K-AKT signaling 

in the acquisition of resistance to dual HER2 blockade. 

Ongoing ctDNA-driven clinical trials.

A large number of clinical trials have either been completed or are ongoing to evaluate 

application of ctDNA in cancer precision medicine. These can be broadly divided into 

observational trials that attempt to prospectively or retrospectively correlate ctDNA findings 

with clinical outcome, or interventional trials in which ctDNA results prompts therapeutic 

actions. Many of the observational trials have demonstrated a prognostic role for ctDNA in 

the MRD setting across different histology, where the detection of ctDNA typically precedes 

clinical or radiological relapse by a median lead-time of 3-5 months [103-105]. Observational 

studies in the metastatic setting have likewise shown that the presence or absence of 

specific ctDNA clones, or their dynamics early on in the treatment course, can prognosticate 

clinical outcome [93, 106]. In the immuno-oncology field, blood tumor mutational burden 

(bTMB) is actively being investigated for its value as a predictive biomarker for response to 

checkpoint inhibitors. The B-F1RST trial (A Study of Atezolizumab as First-line Monotherapy 
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for Advanced or Metastatic Non-Small Cell Lung Cancer, NCT02848651) is a single-arm 

phase II trial with a planned enrollment of 150 patients. Its primary biomarker objective is to 

prospectively collect and retrospectively measure bTMB in all patients to evaluate whether 

it can predict for progression-free survival (PFS) in this population. Interim analysis of bTMB 

in 58 biomarker-evaluable patients in the B-F1RST trial, using a pre-specified cut-off score 

of 16 mutations per coding sequence, has demonstrated a trend to longer PFS in bTMB 

high versus low subgroups (9.5 months versus 2.8 months, hazard ratio = 0.51, 90% C.I. 

0.24-1.08, p = 0.1315) [107]. Similarly, several non-small cell lung cancer studies with 

checkpoint inhibitors have retrospectively analyzed their efficacy outcome in relationship to 

bTMB [108] and demonstrated positive correlations, but validation is needed before these 

results can be extrapolated to other tumor types. 

Interventional studies are emerging to assess the role of ctDNA as a predictive biomarker, 

building on the hypothesis that clearance of ctDNA or alteration of its dynamics with 

therapeutically active agents can change clinical outcome. One example of an interventional 

ctDNA-based trial in the MRD setting is the c-TRAK TN study in patients with moderate- and 

high-risk early stage triple negative breast cancer (TNBC) (NCT03145961). The framework 

of this trial is based on a “marker by treatment interaction design” (Figure 2). In this study, 

patients undergo blinded serial ctDNA screening post standard primary treatment for TNBC. 

Those (n = 200 patients) who have a positive ctDNA result on or before the 12-month time 

point will be informed and randomized in a 2:1 ratio to pembrolizumab versus observation. 

Primary endpoints of c-TRAK TN include proportion of patients with positive ctDNA detection 

at 12 and 24 months, and the absence of detectable ctDNA or disease recurrence 12 months 

after commencing pembrolizumab. Disease-free survival events are collected in all 

treatment arms to correlate with ctDNA findings. Other examples are the DYNAMIC II and 

III trials (ACTRN1261500 and 0381583), respectively, in stage II and III colon cancer. The 

former randomizes 450 stage II patients in a 2:1 ratio either to be treated according to ctDNA 

result (Arm A), or blinded to ctDNA result and managed as per standard clinical criteria at 

the discretion of the treating physician (Arm B). Patients in Arm A who have positive ctDNA 

result will receive adjuvant chemotherapy whereas those with negative ctDNA result will not 

receive chemotherapy.  In the DYNAMIC III trial, 1000 patients will be randomized 1:1 to be 

treated according to ctDNA results after surgical removal of their bowel cancer or per 

standard of care. For the ctDNA–informed group, patients with a positive test will be treated 

with stronger chemotherapy than routine treatment.  Patients with a negative test result will 
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receive milder chemotherapy or a shorter duration of routine treatment. The framework of 

the DYNAMIC studies is based on “marker-based strategy design” (Figure 2).

In the advanced disease setting, interventional ctDNA-based clinical trials focus primarily on 

guidance to specific therapy to optimize outcome. One such liquid biopsy-based precision 

oncology trial is BFAST (A Study to Evaluate Efficacy and Safety of Multiple Targeted 

Therapies as Treatments for Participants with Non-Small Cell Lung Cancer, NCT03178552), 

which uses ctDNA genotyping results to match patients to specific agents. Patients with 

translocations in anaplastic lymphoma kinase (ALK) and rearranged during transfection 

(RET) are offered alectinib, those with ROS1 fusions are matched to entrectinib, and those 

with positive bTMB are randomized to atezolizumab versus platinum-based chemotherapy. 

Additional BFAST cohorts that evaluate other molecular aberrations may be included in the 

future. The ongoing CHRONOS trial (Rechallenge with Panitumumab Driven by RAS 

Dynamic of Resistance, NCT03227926) is an interventional ctDNA-driven study in advanced 

colorectal cancer. It is based on the finding that in patients with RAS/BRAF wild-type 

metastatic colorectal cancer who have progressed on anti-epidermal growth factor receptor 

(anti-EGFR) therapy, acquired RAS mutant clones decay exponentially after drug 

withdrawal [75, 109], rendering these tumors potentially sensitive again to these agents. 

This open-label, single arm, phase II study will enroll 129 patients with RAS/BRAF wild-type 

metastatic colorectal cancer aims to evaluate the efficacy of panitumumab re-administration 

when RAS mutational load decreases by greater than 50% compared to basal mutational 

load after initial progression on anti-EGFR therapy. It is important to underscore that the 

clinical utility of ctDNA in these studies relies not only on technical aspects such as assay 

validity and performance, but is also contingent on the therapeutic efficacy of the 

intervention.

Other clinical settings where liquid biopsies could change clinical practice. 

In additional to the aforementioned clinical trials, ctDNA-based investigations may help to 

address uncertainties in other clinical settings with the potential of altering treatment 

practice.  A dilemma that clinicians frequently face is the optimal duration of adjuvant 

therapy, especially with targeted therapy or immunotherapy. In the metastatic setting, the 

duration of these agents is also unclear for patients who have achieved complete response, 

sustained partial response, or prolonged disease stabilization. For instance, many 

immunotherapy trials advocate treatment duration of one to two years for adjuvant therapy 
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or for maintenance of objective response, without clear biological justifications for the 

proposed timeframe. A prospective clinical trial in such patients who have positive ctDNA 

result, comparing an investigational approach of treatment until confirmed ctDNA clearance 

versus a control arm of standard treatment duration, would be appealing.  For those with 

negative ctDNA results, the comparison can be that of shortened treatment duration versus 

standard treatment duration. If ctDNA is proven useful in these scenarios, treatment-related 

costs and patient exposure to unnecessary drug-related toxicities can be minimized. 

Another scenario in which liquid biopsy may be of relevance is to rule out true progression 

from pseudoprogression in the clinical setting, the latter being reported at a 5-10% frequency 

with immuno-oncology agents in solid tumors [110, 111].  A recent report highlighted the 

application of ctDNA to differentiate between true progression and pseudoprogression in a 

cohort of 29 patients with melanoma treated with anti-PD-1 antibodies with sensitivity of 90% 

and specificity of 100% [112]. These data support suggest that the use of liquid biopsies in 

this setting could reduce prolonged treatment in patients who are not benefitting from 

checkpoint blockade.

Another exciting area where ctDNA analysis might be successfully exploited is screening of 

asymptomatic individuals for early cancer diagnostics. However, these types of screenings 

are at present limited by several factors [113]. First, analogously to monitoring of MRD, early 

cancer detection is affected by the limit of detection of current technologies. Second, 

minimizing false positives to achieve high specificity is of paramount importance in 

screening. Presence of somatic mutations in cfDNA derived from non-cancer cells can 

confound analysis and result in false positive results leading to unnecessary follow-ups 

[116].  For example, it is known that aging can lead to development of somatic mutations 

(clonal hematopoiesis of indeterminant potential- CHIP) [114, 115]. Recent studies [116-

118] are trying to address these issues. However, well-designed prospective studies will be 

necessary to provide real-world evidence for the applicability of early detection.

Conclusions

Liquid biopsy-based, ctDNA analyses have rapidly emerged as an effective strategy for non-

invasive cancer assessments in many stages of patients’ monitoring. The next step of this 

exciting field of research is the execution of prospective clinical trials ultimately leading to 

practice changing protocols. To this end, standardization of laboratory procedures to ensure 

high reproducibility of the results is key. Larger studies should be performed on the utility of 
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ctDNA in combination with standard blood markers and radiological imaging, to better select 

and stratify cancer patients and to guide therapy. The improvement of liquid biopsy 

technologies and their increased sensitivity will allow detection of minimal residual disease 

and ultimately early cancer detection in asymptomatic populations.

Figure legends
Figure 1: Clinical application of liquid biopsy with ctDNA analysis. 

Figure 2: Clinical trial designs to evaluate ctDNA using predictive marker validation 

frameworks. 

A) Marker by Treatment Interaction: in this design, it is assumed that ctDNA testing will 

split the population in two groups. Patients in each ctDNA status are randomly 

assigned to two different treatment strategies (in this case: treatment or active 

surveillance), and the testing plan determines whether one strategy is superior to 

the other within each ctDNA marker group. 

B) Marker-based strategy design: after ctDNA determination, each patient is 

randomized to receive therapy either independently of ctDNA status (2) or assigned 

by ctDNA status (1).
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Clinical application of liquid biopsy with ctDNA analysis. 
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Clinical trial designs to evaluate ctDNA using predictive marker validation frameworks. 
A) Marker by Treatment Interaction: in this design it is assumed that ctDNA testing will split the population 
in two groups. Patients in each ctDNA status are randomly assigned to two different treatment strategies (in 

this case: treatment or active surveillance), and the testing plan determines whether one strategy is 
superior to the other within each ctDNA marker group. 

B) Marker-based strategy design: after ctDNA determination, each patient is randomized to receive therapy 
either independently of ctDNA status (2) or assigned by ctDNA status (1). 
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