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Abstract
The analytical investigation of bifurcations is a very chal-

lenging task for many applied scientists and engineers. Often,
numerical simulations cannot clarify the complicated dynamics
of mechanical systems, in this cases, preprogrammed softwares
can be of valid help during the investigation. Also, in the liter-
ature, methodology to study bifurcations are presented for most
of the cases. However, the presented procedures, are often very
hard to be understood from applied scientists with low math-
ematical background. In this paper we present in details the
typical procedure to analyze single and double Neimark-Sacker
bifurcations. Especially regarding the double Neimark-Sacker
bifurcations of maps, very few sources can be found in the liter-
ature, although this kind of bifurcation is very common in many
dynamical systems.
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1 Introduction
In the last decades, several authors [2, 4, 5, 9, 11] presented

methodologies and practical procedures to analytically investi-
gate bifurcations. The typical approach, to analyze a Neimark-
Sacker (NS) bifurcation, consists in reducing the order of the
system through a center manifold reduction, and then to trans-
form the system into its normal form, in order to analyze the type
of motions occurring. This procedure is well known and it has
been implemented in several softwares for automatic computa-
tion of the bifurcation structure. Nevertheless, in the procedure
presented in the literature, many passages are hidden and can
be hardly understood from a reader with a weak mathematical
background. Especially regarding the double Neimark-Sacker
bifurcation, up to our knowledge, the only analytical procedure
shown in the literature is in [6], where, although the analysis
is considering most of the existing features of a double NS bi-
furcation and proofs are provided, many basic passages are not
explicit and the procedure can be very hard to be understood by
engineers or applied scientists.

The aim of this paper is to provide a practical guide for in-
vestigating single and double NS bifurcations, according to the
most typical approach used in the literature. In the first part of
the paper, we present the procedure to investigate a single NS bi-
furcation, highlighting the passages between the different steps
of the analysis that are: transformation to Jordan normal form,
center manifold reduction, elimination of nonlinearities through
a near identity transformation and transformation to an ampli-
tude map. An analysis of the amplitude map gives information
about the behavior of the original system.

In the second part of the paper, we present a procedure to
investigate a double NS bifurcation. The main steps are analo-
gous to those of the first part, but the increased dimension of the
system makes the procedure much more lengthy. Especially the
analysis of the normal form, in case of a double NS bifurcation,
can be very complex and very hard to be generalized.
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2 Neimark-Sacker bifurcation
2.1 Mathematical model
We consider a generic map

x j+1 = f(x j; p) (1)

where f = [ f1(x; p) ... fn(x; p)]T , x = [x1 ... xn]T , p is a scalar real
number and n ≥ 2. The trivial solution x0 = [0 ... 0]T satisfies
the equation

x0 = f(x0; p). (2)

We consider the case for which the trivial solution x0 of (1) is
stable for p < pcr, while it is unstable for p > pcr. We call p the
control parameter of the bifurcation occurring at p = pcr.

Assuming that f1..., fn are sufficiently smooth, we expand
them in their Taylor series around 0, with respect to x1, ..., xn

up to the third order, so we can rewrite Eq. (1) as

x j+1 = A(p)x j + b(x j) (3)

where the vector b(x) contains all the nonlinear terms. The sta-
bility of the trivial solution depends on the eigenvalues of A(p):
the solution is asymptotically stable if and only if all the eigen-
values of A are inside the unite circle of the complex plane, i.e.
|µi| < 1 for i = 1, ..., n. We consider that

for p < pcr |µi| < 0 ∀ i = 1, ..., n
for p = pcr |µ1| = |µ2| = 1 µ1 = µ̄2 , ±1

d|µ1,2 |

dp |p=pcr > 0
|µi| < 0 ∀ i = 3, ..., n.

(4)

If the conditions in Eq. (4) are satisfied, according to Floquet
theory, a Neimark-Sacker bifurcation is occurring for p = pcr

[2].

2.2 Jordan normal form
Following the procedure indicated in basic textbooks, it is

possible to reduce the system to its Jordan normal form, i.e. to
reorganize the linear part of the system, in order to decouple the
variables related to the bifurcation from the others.

We call H = A|p=pcr and si, i = 1, ..., n the eigenvectors related
to the eigenvalues µi of H. In the case the eigenvalues µ3,...,n are
real and have algebraic multiplicity equal to 1, we can define the
transformation matrix

T =

 R(s1) I(s1) s3 · · · sn

 . (5)

It can be easily verified that

T−1HT =



R(µ1) I(µ1) 0 · · · 0
I(µ2) R(µ2) 0 · · · 0

0 0 µ3 · · ·
...

...
...

. . . 0
0 0 · · · 0 µn


. (6)

Applying the transformation

x = Ty, y = [y1 ... yn]T = T−1x (7)

we can rewrite the map in Eq. (3) in Jordan normal form

y j+1 = T−1HTy j + T−1b(y j). (8)

If the eigenvalues µ3−n are not real or have algebraic multi-
plicity larger than 1, the procedure to obtain the Jordan normal
form is slightly different, we refer to [8] for these cases. The
matrix T−1HT controlling the linear part will still be a block
diagonal matrix.

In Eq. (8), the two variables related to the bifurcation are y1

and y2, and are linearly decoupled from the other variables.

2.3 Center manifold reduction
Following the procedure outlined in [2] and [11], we want to

reduce the dynamics of the system to its center manifold, i.e. to
the two variables related to the bifurcation, y1 and y2. Of course,
if the system is already two dimensional, this passage can be
skipped.

We define the local center manifold in the form
y3, j
...

yn, j

 = t(y1, j, y2, j) =


g320y2

1, j + g311y1, jy2, j + g302y2
2, j

...

gn20y2
1, j + gn11y1, jy2, j + gn02y2

2, j

 ,
(9)

where t satisfies Eq. (8) only for small values of y1 and y2. The
cubic terms are neglected, since, after the transformation, they
would produce terms higher than the third order.

In order to define the coefficients gihk, we substitute the n − 2
equations of (9) into the first two equations of (8). Then, we
substitute these two new equations and the equations in (9) into
the remaining n − 2 equations of (8). Collecting terms with the
same power order, we obtain 3(n − 2) equations in the 3(n − 2)
unknowns gihk. These equations are organized in a linear system
that can be solved in closed form. If now we substitute again the
equations in (9) (where gihk are now known) into the first two
equations of (8), we obtain

 y1, j+1

y2, j+1

 =  R(µ1) I(µ1)
I(µ2) R(µ2)

  y1, j

y2, j

+ ∑
h+k=2,3 ahkyh

1, jy
k
2, j∑

h+k=2,3 bhkyh
1, jy

k
2, j

 + h.o.t. (10)

that is the system in Eq. (8), limited to its center manifold, i.e.
a two dimensional surface in the n dimensional space. Terms
higher than the third order, are generated during the transfor-
mation and can be neglected. The dynamics of the system in
Eq. (10), for small values of y1 and y2, is the same of the sys-
tem in Eq. (8).
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2.4 Elimination of nonlinear terms
In order to transform the system into its normal form, we fol-

low the steps outlined in [11] and [4]. First of all, we rewrite
Eq. (10) in complex form

z j+1 = νz j + α20z2
j + α11z jz̄ j + α02z̄2

j+

α30z3
j + α21z2

j z̄ j + α12z jz̄2
j + α03z̄3

j (11)

where

z = y1 + iy2

z̄ = y1 − iy2
→

y1 =
z+z̄
2

y2 =
z−z̄
2i

(12)

and ν, αi j ∈ C.
Substituting the variables y1 and y2, as expressed in Eq. (12),

into Eq. (10), the coefficients ν and αi j can be easily defined as
follows

ν = µ2 (13)

α20 =
1
4

(a20 − a02 + b11)+

+ i
1
4

(−a11 + b20 − b02) (14)

α11 =
1
2

(a20 + a02) + i
1
2

(b20 + b02) (15)

α02 =
1
4

(a20 − a02 − b11)+

+ i
1
4

(a11 + b20 − b02) (16)

α30 =
1
8

(a30 − a12 + b21 − b03)+

+ i
1
8

(−a21 + a03 + b30 − b12) (17)

α21 =
1
8

(3a30 + a12 + b21 + 3b03)+

+
1
8

(−a21 − 3a03 + 3b30 + b12) (18)

α12 =
1
8

(3a30 + a12 − b21 − 3b03)+

+ i
1
8

(a21 + 3a03 + 3b30 + b12) (19)

α03 =
1
8

(a30 − a12 − b21 + b03)+

+ i
1
8

(a21 − a03 + b30 − b12) (20)

The next step consists of eliminating all the nonlinear terms
not related to internal resonances. This can be done through the
near identity transformation. In order to eliminate the second
order terms, we apply the transformation

z j = v j + h1(v j, v̄ j) (21)

to Eq. (11), where

h1(v j, v̄ j) = c20v2
j + c11v jv̄ j + c02v̄2

j , (22)

hence we obtain

v j+1 + c20v2
j+1 + c11v j+1v̄ j+1 + c02v̄2

j+1 =

µ2(v j + c20v2
j + c11v jv̄ j + c02v̄2

j )+
α20(v j + c20v2

j + c11v jv̄ j + c02v̄2
j )

2+

α11(v j + c20v2
j + c11v jv̄ j + c02v̄2

j )
(v̄ j + c̄20v̄2

j + c̄11v jv̄ j + c̄02v2
j )+

α02(v̄ j + c̄20v̄2
j + c̄11v jv̄ j + c̄02v2

j )
2+

α30v3
j + α21v2

j v̄
2
j + α12v jv̄2

j + α03v̄3
j + h.o.t.

(23)

where h.o.t. indicates terms higher than the third order. Since
we want to eliminate the second order terms, we impose that

v j+1 = µ2v j + α̂30v3
j + α̂21v2

j v̄
2
j + α̂12v jv̄2

j + α̂03v̄3
j (24)

where the α̂i j are the coefficient of the third order terms, after
the effect of the transformation in Eq. (21). So we obtain

v j+1 + c20µ
2
2v2

j + c11µ2µ̄2v jv̄ j + c02µ̄
2
2v̄2

j =

µ2(v j + c20v2
j + c11v jv̄ j + c02v̄2

j )+
α20(v j + c20v2

j + c11v jv̄ j + c02v̄2
j )

2+

α11(v j + c20v2
j + c11v jv̄ j + c02v̄2

j )
(v̄ j + c̄20v̄2

j + c̄11v jv̄ j + c̄02v2
j )+

α02(v̄ j + c̄20v̄2
j + c̄11v jv̄ j + c̄02v2

j )
2+

α30v3
j + α21v2

j v̄
2
j + α12v jv̄2

j + α03v̄3
j + h.o.t.

(25)

Collecting terms with the same power order, we obtain

v2
j → c20µ

2
2 = c20µ2 + α20

v jv̄ j → c11µ2µ̄2 = c11µ2v jv̄ j + α11

v̄2
j → c02µ̄

2
2 = c02µ2v̄2

j + α02

so, in order to eliminate the second order terms, we must impose

c20 = −
α20

µ2 − µ
2
2

,

c11 = −
α11

µ2 − µ2µ̄2
,

c02 = −
α02

µ2 − µ̄
2
2

. (26)

Then, collecting the coefficients of the third order terms, we
obtain

v3
j → α̂30 = α30 −

ᾱ20α11

µ̄2 − µ
2
2

−
2α2

20

µ2 − µ
2
2

(27)

v2
j v̄ j → α̂21 = α21 +

α20α11(1 − 2µ2)
µ2

2 − µ2
+

|α11|
2

1 − µ̄2
+

2 |α02|
2

µ2
2 − µ̄2

(28)

v jv̄2
j → α̂12 = α12 −

2α02ᾱ11

µ̄2 − 1
−
α11ᾱ20

µ̄2 − µ̄
2
2

−

α2
11

µ2 − 1
−

2α20α02

µ2 − µ̄
2
2

(29)

v̄3
j → α̂03 = α03 −

2ᾱ20α02

µ̄2 − µ̄
2
2

−
α11α02

µ2 − µ̄
2
2

(30)
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we remind that µ̄2 = µ1 and µ2µ1 = 1, so the previous equa-
tions can be slightly simplified. The transformation in Eq. (21)
modifies also the higher order terms, that can be neglected in
this procedure. After the transformation, Eq. (11) will become

v j+1 = µ2v j + α̂30v3
j + α̂21v2

j v̄
2
j + α̂12v jv̄2

j + α̂03v̄3
j . (31)

With a similar procedure, we can eliminate most of the third
order terms. We apply the transformation

v j = w j + h2(w j, w̄ j) (32)

to Eq. (31), where

h2(w j, w̄ j) = c30w3
j + c21w2

j w̄ j + c12w jw̄2
j + c03w̄3

j . (33)

Neglecting terms higher than the third order, we obtain

w j+1 + c30µ
3
2w3

j + c21µ
2
2µ̄2w2

j w̄ j + c12µ2µ̄
2
2w jw̄2

j + c03µ̄
3
2w̄3

j =

µ2(w j + c30w3
j + c21w2

j w̄ j + c12w jw̄2
j + c03w̄3

j )+
α̂30w3

j + α̂21w2
j w̄ j + α̂12w jw̄2

j + α̂03w̄3
j + h.o.t.

(34)

Collecting terms with the same power order, we have

w3
j → c30µ

3
2 = µ2c30 + α̂30

w2
j w̄ j → c21µ

2
2µ̄2 = µ2c21 + α̂21

w jw̄2
j → c12µ2µ̄

2
2 = µ2c12 + α̂12

w̄3
j → c03µ̄

3
2 = µ2c03 + α̂03.

In order to eliminate the third order terms, we must impose

c30 = −
α̂30

µ2 − µ
3
2

,

c12 = −
α̂12

µ2 − µ2µ̄
2
2

,

c03 = −
α̂03

µ2 − µ̄
3
2

(35)

while, to eliminate the term related to w2
j w̄ j, we should have

c21 = −α̂21/(µ2 − µ
2
2µ̄2) that has no mathematical sense, since

µ2 −µ
2
2µ̄2 = 0, so c21 → ∞. This is due to the internal resonance

between the terms µ2w j and α̂21w2
j w̄ j. So we let c21 = 0.

It is possible to generalize the value of the coefficients used
for the near identity transformation. While eliminating the sec-
ond order terms, we had

chk = −
αhk

µ2 − µ
h
2µ̄

k
2

(36)

where in case of the third order terms, αhk is substituted by α̂hk.
After the transformation in Eq. (32), Eq. (31) becomes

w j+1 = µ2w j + α̂21w2
j w̄ j. (37)

For the sake of simplicity, from now on we substitute the nota-
tion � j+1 = f (� j) with � 7→ f (�).

Fig. 1. Typical bifurcation diagrams of a supercritical (left) and a subcritical
(right) NS bifurcation.

2.5 Reduction to an amplitude map
We now introduce the parameter k, where

k = |µ2| − 1 (38)

so, in the vicinity of the bifurcation, Eq. (37) can be approxi-
mated with the map

w 7→ w(1 + k)eiφ + α̂21w|w|2 (39)

where eiφ = µ2. In order to simplify the calculation, k can be
linearized in the following way

k =
d|µ2|

dp
(p − pcr). (40)

The next step consists of reducing Eq. (39) to an amplitude map.
To do so, we introduce the polar coordinates (r, ψ) ∈ R, where

w = reiψ (41)

which gives us the following

reiψ 7→ r(1 + k)ei(ψ+φ) + α̂21r3eiψ (42)

or
rei(ψ−φ) 7→ reiψ[(1 + k) + α̂21e−iφr2]. (43)

Selecting the absolute value of the map, considering that r ≥
0, we obtain

r 7→ r
√(

(1 + k) + r2R(α̂21e−iφ)
)2
+

(
r2I(α̂21e−iφ)

)2 (44)

then, expanding in Taylor series the square root, we have

r 7→ (1 + k)r + ρr3 + h.o.t. (45)

where
ρ = R(α̂21e−iφ). (46)

Instead, selecting the phase of Eq. (43), we have

ψ − φ 7→ ψ + arctan
(

r2I(α̂21e−iφ)
(1 + k) + r2R(α̂21e−iφ)

)
(47)

and expanding the arctangent in its Taylor series we have

ψ 7→ φ + ψ +

(
I(α̂21e−iφ)

1 + k
r2

)
+ h.o.t. (48)

Eq. (45) is the normal form of the NS bifurcation.
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2.6 Bifurcation diagram
The analysis of the bifurcation, is reduced to the analysis of

the amplitude map in Eq. (45). The trivial solution of Eq. (45),
corresponds to the trivial solution of Eq. (1), while nontrivial
solutions of Eq. (45), correspond to periodic solutions of Eq.
(1). We remind that k > 0 for p > pcr, while k < 0 for p < pcr.

Analyzing Eq. (45), it is clear that the trivial solution exists
for each value of k and ρ, while it is stable only for k < 0, i.e.
for p < pcr. At the same time, to have nontrivial solution, we
must have

r∗ = (1 + k)r∗ + ρr∗3 −→ r∗ =

√
−

k
ρ
. (49)

Nontrivial solutions of Eq. (45) exist, if and only if k/ρ < 0. So
there are two different possibilities:

ρ < 0⇒ r∗ ∃ for k > 0 → supercritical bifurcation

ρ > 0⇒ r∗ ∃ for k < 0 → subcritical bifurcation

The stability of the nontrivial solution can be analyzed consid-
ering the first derivate of Eq. (45) for r = r∗

J|r=r∗ < 1 ⇐⇒ (1 + k) + 3ρr∗ = 1 − 2k < 1 ⇐⇒ k > 0 (50)

so, the solution is stable for k > 0 and unstable for k < 0, as
expected according to standard bifurcation theory. As a prac-
tical consequence, we would like to point out that subcritical
bifurcations limit the basin of attraction of the trivial solution
in the stable region, compromising its robustness and causing
unexpected motions, if not properly analyzed.

For a direct use of the steps just outlined, in order to define
the type of bifurcation occurring, after the center manifold re-
duction, it is enough to collect the coefficients ahk and bhk in
Eq. (10) and apply Eqs. (14)-(20), (28) and (46), that allow to
directly derive ρ. Case studies for this kind of bifurcation are
presented in [10] and [3].

3 Double Neimark-Sacker bifurcation
A double Neimark-Sacker bifurcation is a codimension-2 bi-

furcation of a fixed point of a discrete time dynamical system,
i.e. a fixed point of a map. It occurs in a two dimensional pa-
rameter space, when two branches of NS bifurcations are inter-
secting, as shown in Fig. 2. In correspondence of a double NS
bifurcation, two pairs of complex conjugate eigenvalues are on
the unit circle of the complex plain, while the other eigenvalues
are inside the unit circle. As Fig. 2 shows, in order to have a
double NS bifurcation to occur, two parameters should be tuned
to the critical value at the same time, this event has zero proba-
bility to occur, so our analysis is concentrated in studying what
happens in the vicinity of the bifurcation point, where the two
NS bifurcations are interacting with each other. Being a finite
region of space, it is possible to set the two parameters to be in
this region, also in real applications.

Fig. 2. Typical stability diagram in correspondence of a double Neimark-
Sacker bifurcation.

3.1 Mathematical model
Similarly to the previous section, we consider the generic map

x j+1 = f(x j; p1, p2) (51)

where f = [ f1(x; p1, p2) ... fn(x; p1, p2)]T , x = [x1 ... xn]T , p1

and p2 are scalar real numbers and n ≥ 4. The trivial solution
x0 = [0 ... 0]T satisfies the equation

x0 = f(x0; p1, p2). (52)

We consider that the stability properties of the trivial solution of
the system, are analogous to those shown in Fig. 2. p1 and p2

are the control parameters of the bifurcation under study.
The first steps of our analysis are analogous to the ones re-

ferred to the single NS bifurcation, we repeat them in this sec-
tion in order to let the procedure be more understandable.

Assuming that f1..., fn are sufficiently smooth, we expand
them in their Taylor series around 0, with respect to x1, ..., xn

up to the third order, so we can rewrite Eq. (51) as

x j+1 = A2(p1, p2)x j + b2(x j) (53)

where the vector b2(x) contains all the nonlinear terms. In some
cases, it may be needed to expand the Taylor series up to the
fifth order and keep, during all the procedure, terms up to the
fifth order, as explained in [6]. We will come back later to this
point, during the analysis of the normal form.

The stability of the trivial solution depends on the eigenvalues
of A2(p1, p2): the solution is stable and hyperbolic if and only if
all the eigenvalues of A2 are inside the unite circle of the com-
plex plane, i.e. |µi| < 1 for i = 1, ..., n, otherwise it is unstable or
nonhyperbolic. We consider that

for
p1 = p1cr

p2 = p2cr



|µ1| = |µ2| = 1 µ1 = µ̄2 , ±1
d|µ1,2 |

dp1
|(p1,p2)=(p1cr ,p2cr) , 0

|µ3| = |µ4| = 1 µ3 = µ̄4 , ±1
d|µ3,4 |

dp1
|(p1,p2)=(p1cr ,p2cr) , 0

|µi| < 0 ∀ i = 5, ..., n.

(54)

If the conditions in (54) are satisfied, a double NS bifurcation is
occurring for (p1, p2) = (p1cr, p2cr) [4].
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3.2 Jordan normal form
As we did in the previous section, we reduce the system to its

Jordan normal form, in order to linearly decouple the part of the
system related to the bifurcation from the rest of the system.

We call H2 = A2|(p1,p2)=(p1cr ,p2cr) and si, i = 1, ..., n the eigen-
vectors related to the eigenvalues µi of H2. In the case the eigen-
values µ5−n are real and have algebraic multiplicity equal to 1,
we can define the transformation matrix

T2 =

 R(s1) I(s1) R(s3) I(s3) s5 · · · sn

 . (55)

It can be easily verified that

T−1
2 H2T2 =



J1 0 0 · · · 0
0 J2 0 · · · 0

0 0 µ5 · · ·
...

...
...

. . . 0
0 0 · · · 0 µn


(56)

where

J1 =

 R(µ1) I(µ1)
I(µ2) R(µ2)

 and J2 =

 R(µ3) I(µ3)
I(µ4) R(µ4)

 . (57)

Applying the transformation

x = T2y, y = [y1 ... yn]T = T−1
2 x (58)

we can rewrite the map in Eq. (53) in Jordan normal form

y j+1 = T−1
2 H2T2y j + T−1

2 b2(y j). (59)

As in the previous section, if the eigenvalues µ5−n are not real
or have algebraic multiplicity larger than 1, the procedure to ob-
tain the Jordan normal form is slightly different (see [8]), but the
matrix T−1

2 H2T2, controlling the linear part, will still be a block
diagonal matrix. In Eq. (59), the variables related to the bifurca-
tion are (y1, y2, y3, y4), and are linearly decoupled from the other
variables.

3.3 Center manifold reduction
If the dimension of the system is larger than 4 (n > 4), we

can reduce it to 4 through the center manifold reduction, as we
showed in the case of a single Neimark-Sacker bifurcation. The
procedure to be used in the case of a double NS bifurcation is
very similar to the one already shown, with the difference that
the center manifold is now a 4 dimensional subspace of the n
dimensional space, so it has much more coefficients than in the
previous case. The general form of the center manifold, approx-

imated to the second order terms, is as follows
y5, j
...

yn, j

 = t(y1, j, y2, j, y3, j, y4, j) =



g52000y2
1, j + g50200y2

2, j + g50020y2
3, j + g50002y2

4, j

+g51100y1, jy2, j + g51010y1, jy3, j + g51001y1, jy4, j

+g50110y2, jy3, j + g50101y2, jy4, j + g50011y3, jy4, j
...

gn2000y2
1, j + gn0200y2

2, j + gn0020y2
3, j + gn0002y2

4, j

+gn1100y1, jy2, j + gn1010y1, jy3, j + gn1001y1, jy4, j

+gn0110y2, jy3, j + gn0101y2, jy4, j + gn0011y3, jy4, j


.

(60)

In order to define the 10(n−4) coefficients we substitute the n−4
equations of (60) into the first four equations of (59). Then, we
substitute these four new equations and the equations in (60)
into the remaining n − 4 equations of (59). Collecting terms
with the same power order, we obtain 10(n − 4) equations in the
10(n − 4) unknowns gihklm. These equations are organized in a
linear system that can be solved in closed form. Substituting
again the equations in (60) into the first four equations of (59),
we obtain

y1, j+1

y2, j+1

y3, j+1

y4, j+1

 =

R(µ1) I(µ1) 0 0
I(µ2) R(µ2) 0 0

0 0 R(µ3) I(µ3)
0 0 I(µ4) R(µ4)




y1, j

y2, j

y3, j

y4, j


+


∑

h+k+l+m=2,3 ahklmyh
1, jy

k
2, jy

l
3, jy

m
4, j∑

h+k+l+m=2,3 bhklmyh
1, jy

k
2, jy

l
3, jy

m
4, j∑

h+k+l+m=2,3 chklmyh
1, jy

k
2, jy

l
3, jy

m
4, j∑

h+k+l+m=2,3 dhklmyh
1, jy

k
2, jy

l
3, jy

m
4, j

 + h.o.t. (61)

that is the system under study, limited to its center manifold. The
dynamics of the system in Eq. (61) is the same of the system
in Eq. (51), for small values of (y1, y2, y3, y4). As we did in
the previous section, from now on we substitute the notation
� j+1 = f (� j) with � 7→ f (�).

3.4 Elimination of nonlinear terms
Similarly to the case of a single NS bifurcation, we rewrite the

system in complex form, according to the change of variables

z1 = y1 + iy2

z̄1 = y1 − iy2
→

y1 =
z1+z̄1

2

y2 =
z1−z̄1

2i

z2 = y3 + iy4

z̄2 = y3 − iy4
→

y3 =
z2+z̄2

2

y4 =
z2−z̄2

2i

(62)

the system in Eq. (61) becomes z1

z2

 7→  µ2z1 +
∑

h+k+l+m=2,3 αhklmzh
1z̄k

1zl
2z̄m

2

µ4z2 +
∑

h+k+l+m=2,3 βhklmzh
1z̄k

1zl
2z̄m

2

 (63)

where αhklm, βhklm ∈ C.
Substituting the variables (y1, y2, y3, y4), as expressed in

Eq. (62), into Eq. (61) we can define the values of the
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coefficients αhklm and βhklm. For the second order terms we
have the coefficients

α2000 =
1
4

(−a0200 + ia1100 + a2000

− ib0200 − b1100 + ib2000) (64)

α0200 =
1
4

(−a0200 − ia1100 + a2000

− ib0200 + b1100 + ib2000) (65)

α0020 =
1
4

(−a0002 + ia0011 + a0020−

− ib0002 − b0011 + ib0020) (66)

α0002 =
1
4

(−a0002 − ia0011 + a0020−

− ib0002 + b0011 + ib0020) (67)

α1100 =
1
2

(a0200 + a2000 + i (b0200+

+ b2000)) (68)

α1010 =
1
4

(−a0101 + ia0110 + ia1001−

− a1010 − ib0101 + b0110 + b1001 + ib1010) (69)

α1001 =
1
4

(a0101 + ia0110 − ia1001 + a1010+

+ ib0101 − b0110 + b1001 + ib1010) (70)

α0110 =
1
4

(a0101 − ia0110 + ia1001 + a1010+

+ ib0101 + b0110 − b1001 + ib1010) (71)

α0101 =
1
4

(−a0101 + i (−a0110 − a1001 − ia1010−

− b0101 − ib0110 − ib1001 + b1010)) (72)

α0011 =
1
2

(a0002 + a0020 + i (b0002 + b0020)) (73)

while, for the βhklm coefficients, it is enough to substitute in (64)-
(73) a with c and b with d. Regarding the coefficients of the third
order terms, we write here only those that will not be eliminated
in the next passages, i.e. α2100, α1011, β0021 and β1110. These are

α2100 =
1
8

(a1200 + 3a3000 − 3b0300 − b2100

+ i(3a0300 + a2100 + b1200 + 3b3000)) (74)

α1011 =
1
4

(a1002 + a1020 − b0102

+ i(a0102 + b1002 + b1020)) (75)

β0021 =
1
8

(c0012 + 3c0030 − 3d0003 − d0021

+ i(3c0003 + c0021 + d0012 + 3d0030)) (76)

β1110 =
1
4

(c0210 + c2010 − d0201 − d2001

+ i(c0201 + c2001 + d0210 + d2010)) (77)

The next step consist in eliminating all the nonlinear terms not
related with internal resonances. We apply the following near

identity transformation

z1 = v1 + h1(v1, v̄1, v2, v̄2)

z2 = v2 + h2(v1, v̄1, v2, v̄2) (78)

to Eq. (63), where

h1 =
∑

h+k+l+m=2

ehklmvh
1v̄k

1vl
2v̄m

2

h2 =
∑

h+k+l+m=2

fhklmvh
1v̄k

1vl
2v̄m

2 . (79)

As in the case of a single NS bifurcation, choosing properly the
values of the coefficients ehklm and fhklm, all the second order
terms can be eliminated. Of course, this procedure will modify
the terms higher than the second order. The procedure is similar
to the one shown in the previous section, but in this case it is
much more lengthy due to the higher dimension of the system.
For this reason, we skip this passage and we write directly the
values of the coefficients, which follow the same rule of Eq. (36),
i.e.

ehklm = −
αhklm

µ2 − µ
h
2µ̄

k
2µ

l
4µ̄

m
4

(80)

fhklm = −
βhklm

µ4 − µ
h
2µ̄

k
2µ

l
4µ̄

m
4

. (81)

As a result of this transformation we will obtain the system v1

v2

 7→  µ2v1 +
∑

h+k+l+m=3 α̂hklmvh
1v̄k

1vl
2v̄m

2

µ4v2 +
∑

h+k+l+m=3 β̂hklmvh
1v̄k

1vl
2v̄m

2

 + h.o.t. (82)

As we did before, we write only the values of the coefficients
related to the bifurcation, that are

α̂2100 = α2100 −
|α1100|

2

µ̄2 − 1
−

2α1100α2000

µ2 − 1
−

2|α0200|
2

µ̄2 − µ
2
2

−
α1100α2000

µ2 − µ
2
2

−
α1001β̄1100

µ̄4 − 1
−
α0101β̄0200

µ̄4 − µ
2
2

−
α1010β1100

µ4 − 1

−
α0110β2000

µ4 − µ
2
2

(83)

α̂1011 = α1011 −
ᾱ0011α1100

µ̄2 − 1
−

2α0011α2000

µ2 − 1
−
α1001β̄0011

µ̄4 − 1

−
α1001α1010

µ2 − µ2µ̄4
−
α1010β0011

µ4 − 1
−

2α0020β1001

µ4 − µ2µ̄4
−

α2
0110

µ2 − µ̄2µ4

−
|α0101|

2

µ̄2 − µ2µ4
−
α1001α1010

µ2 − µ2µ4
−

2α0002β̄0101

µ̄4 − µ2µ4

−
α0011β̄0110

µ̄4 − µ2µ̄4
−
α0011β1010

µ4 − µ2µ4
(84)

β̂0021 = β0021 −
ᾱ0011β0110

µ̄2 − 1
−
α0011β1010

µ2 − 1
−

2β0011β0020

µ4 − 1

−
ᾱ0002β0101

µ̄2 − µ
2
4

−
α0020β1001

µ2 − µ
2
4

−
2|β0002|

2

µ̄4 − µ
2
4

(85)

β̂1110 = β1110 −
ᾱ1100β0110

µ̄2 − 1
−
α1100β1010

µ2 − 1
−

2β0020β1100

µ4 − 1

−
ᾱ1001β1100

µ̄2 − µ̄2µ4
−

2α0110β2000

µ2 − µ̄2µ4
−
|β1001|

2

µ̄4 − µ̄2µ4
−
β0110β1010

µ4 − µ̄2µ4

−
2ᾱ0101β0200

µ̄2 − µ2µ4
−
α1010β1100

µ2 − µ2µ4
−
|β0101|

2

µ̄4 − µ2µ4
−
β0110β1010

µ4 − µ2µ4
. (86)
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With an analogous transformation, we eliminate the third order
terms not related to internal resonances, i.e. we apply the trans-
formation

v1 = w1 + h3(w1, w̄1,w2, w̄2)

v2 = w2 + h4(w1, w̄1,w2, w̄2) (87)

to Eq. (82), where

h3 =
∑

h+k+l+m=3

ehklmwh
1w̄k

1wl
2w̄m

2

h4 =
∑

h+k+l+m=3

fhklmwh
1w̄k

1wl
2w̄m

2 . (88)

The values of the coefficients in the transformation are

ehklm = −
α̂hklm

µ2 − µ
h
2µ̄

k
2µ

l
4µ̄

m
4

(89)

fhklm = −
β̂hklm

µ4 − µ
h
2µ̄

k
2µ

l
4µ̄

m
4

. (90)

This procedure allow us to eliminate all the third order terms,
except the ones related to w2

1w̄1 and w1w2w̄2 in the first equation
of (82), and related to w2

2w̄2 and w1w̄1w2 in the second equation
of (82). These terms are related to internal resonances and can-
not be eliminated. From Eqs. (89)-(90) we can easily identify
the terms related with internal resonances, in fact, to eliminate
those terms, the coefficient ehklm should tend to infinit. For ex-
ample, to eliminate the term related to w1w2w̄2, we should have

e1011 = −
α̂1011

µ2 − µ2µ4µ̄4
= −

α̂1011

µ2 − µ2
→ ∞. (91)

After this lengthy procedure, and considering that ww̄ = |w|2,
we obtain the following system w1

w2

 7→  w1

(
µ2 + α̂2100|w1|

2 + α̂1011|w2|
2
)

w2

(
µ4 + β̂1110|w1|

2 + β̂0021|w2|
2
)  + h.o.t. (92)

3.5 Reduction to an amplitude map
We introduce two parameters

k1 = |µ2| − 1, k2 = |µ4| − 1 (93)

so, in the vicinity of the bifurcation, Eq. (92) can be approxi-
mated with  w1

w2

 7→  w1(1 + k1)eiφ2

w2(1 + k2)eiφ4

+ w1

(
α̂2100|w1|

2 + α̂1011|w2|
2
)

w2

(
β̂1110|w1|

2 + β̂0021|w2|
2
)  + h.o.t.

(94)

where eiφ2 = µ2 and eiφ4 = µ4. In order to simplify the fol-
lowing calculation and have a direct relationship between k1, k2

and the bifurcation parameters p1, p2, we linearize k1, k2 in the
following way

k1 =
d|µ2 |

dp1
(p1 − p1cr) +

d|µ2 |

dp2
(p2 − p2cr)

k2 =
d|µ4 |

dp1
(p1 − p1cr) +

d|µ4 |

dp2
(p2 − p2cr).

(95)

It is possible to reduce the map in Eq. (94) to an amplitude map.
To do so, we introduce the polar coordinates (r1, r2, ψ1, ψ2) ∈ R,
where

w1 = r1eiψ1 , w2 = r2eiψ2 . (96)

Applying the transformation in Eq. (96) to Eq. (94), we have r1ei(ψ1−φ2)

r2ei(ψ2−φ4)

 7→ r1eiψ1
[
(1 + k1) + α̂2100e−iφ2 r2

1 + α̂1011e−iφ2 r2
2

]
r2eiψ2

[
(1 + k2) + β̂1110e−iφ4 r2

1 + β̂0021e−iφ4 r2
2

]  . (97)

Separating the absolute value from the phase, considering that
r1, r2 > 0, we have r1

r2

 7→

r1

[ (
(1 + k1) + R(α̂2100e−iφ2 )r2

1 + R(α̂1011e−iφ2 )r2
2

)2

+
(
I(α̂2100e−iφ2 )r2

1 + I(α̂1011e−iφ2 )r2
2

)2
]1/2

r2

[ (
(1 + k2) + R(β̂1110e−iφ4 )r2

1 + R(β̂0021e−iφ4 )r2
2

)2

+
(
I(β̂1110e−iφ4 )r2

1 + I(β̂0021e−iφ4 )r2
2

)2
]1/2


(98)

expanding the square roots in Taylor series we obtain r1

r2

 7→  r1

(
1 + k1 + a11r2

1 + a12r2
2

)
r2

(
1 + k2 + a21r2

1 + a22r2
2

)  + h.o.t. (99)

where

a11 = R(e−iφ2α2100), a12 = R(e−iφ2α1011) (100)

a21 = R(e−iφ4β1110), a22 = R(e−iφ4β0021). (101)

We now consider the phase of the map in Eq. (97), so we have ψ1 − φ2

ψ2 − φ4

 7→ ψ1 + arctan
(

I(α̂2100e−iφ2 )r2
1+I(α̂1011e−iφ2 )r2

2
1+k1+R(α̂2100e−iφ2 )r2

1+R(α̂1011e−iφ2 )r2
2

)
ψ2 + arctan

(
I(β̂1110e−iφ4 )r2

1+I(β̂0021e−iφ4 )r2
2

1+k2+R(β̂1110e−iφ4 )r2
1+R(β̂0021e−iφ4 )r2

2

)  ,
(102)

expanding the arctangent in its Taylor series we obtain ψ1

ψ2

 7→  φ2 + ψ1 +
(
b11r2

1 + b12r2
2

)
φ4 + ψ2 +

(
b21r2

1 + b22r2
2

)  + h.o.t. (103)

where

b11 =
I(e−iφ2 α̂2100)

1 + k1
(104)

b12 =
I(e−iφ2 α̂1011)

1 + k1
(105)

b21 =
I(e−iφ4 β̂1110)

1 + k2
(106)

b22 =
I(e−iφ4 β̂0021)

1 + k2
. (107)
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3.6 Analysis of the normal form
It is possible to investigate the effect of the double NS bifur-

cation, analyzing the fixed points of Eq. (99). If there are fixed
points different from the trivial solution, the map in Eq. (51)
admits periodic solutions. If the fixed point is semitrivial, i.e. it
lays on one axis, the map in Eq. (51) will show a periodic mo-
tion, while, if the fixed point is nontrivial, the map in Eq. (51)
will show a quasiperiodic motion. According to the scheme:

fixed point (r̃1, 0)→
periodic motion with amplitude r̃1

and frequency depending on Eq. (1031)

fixed point (0, r̃2)→
periodic motion with amplitude r̃2

and frequency depending on Eq. (1032)

fixed point (r∗1, r
∗
2)→

quasiperiodic motion given by two
periodic motions with amplitudes r∗1
and r∗2 and frequencies depending on
Eq. (103)

The stability properties of these motions are analogous to the
stability properties of the fixed points of Eq. (99).

There exists a fixed point on the r1 axis (r̃1, 0) for

r̃1 = r̃1 + k1r̃1 + a11r̃3
1 ⇔ r̃1 =

√
−

k1

a11
, (108)

so, in order to have a fixed point on the r1 axis, we must have
k1/a11 < 0.

The semitrivial fixed point is stable if and only if the eigen-
values of the Jacobian matrix have absolute value less than 1,
i.e.

J|r̃1 =

 1 + k1 + 3a11r̃2
1 0

0 1 + k2 + a21r̃2
1

 = 1 − 2k1 0
0 1 + k2 −

a21
a11

k1

 . (109)

(r̃1, 0) is stable ⇐⇒

 k1 > 0
k2 −

a21
a11

k1 < 0
. (110)

If only one of the two inequalities is verified, the fixed point
is a saddle, if both are not verified it is totally unstable. Con-
sidering that r̃1 =

√
−k1/a11 and the conditions for stability in

Eq. (110), if a11 > 0, this semitrivial fixed point is necessarily
unstable, otherwise its stability depends also on a21 and k1.

We now verify the existence of semitrivial fixed points on the
r2 axis (0, r̃2). There exists a semitrivial fixed point on the r2

axis for

r̃2 = r̃2 + k2r̃2 + a22r̃3
2 ⇔ r̃2 =

√
−

k2

a22
, (111)

similarly to the previous case, in order to have the semitrivial
fixed point, we must have k2/a22 < 0.

The Jacobian matrix in correspondence of (0, r̃2) is

J|r̃2 =

 1 + k2 + a12r̃2
2 0

0 1 + k2 + 3a22r̃2
2

 = 1 + k1 −
a12
a22

k2 0
0 1 − 2k2

 , (112)

so

(0, r̃2) is stable ⇐⇒

 k2 > 0
k1 −

a12
a22

k2 < 0
. (113)

If only one of the two inequalities is verified, the fixed point is
a saddle, if both are not verified it is totally unstable. As in the
previous case, considering that r̃2 =

√
−k2/a22 and the condi-

tions for stability in Eq. (??), if a22 > 0, this semitrivial fixed
point is necessarily unstable, otherwise its stability depends also
on a12 and k2.

There exists a general fixed point (r∗1, r
∗
2) for r∗1 = r∗1 + k1r∗1 + a11r∗31 + a12r∗1r∗22

r∗2 = r∗2 + k2r∗2 + a21r∗21 r∗2 + a22r∗32

→ a11r∗21 + a12r∗22 = −k1

a21r∗21 + a22r∗22 = −k2
, (114)

whose solution is

r∗21 =
k1a22 − k2a12

a21a12 − a11a22

r∗22 =
k2a11 − k1a21

a21a12 − a11a22
. (115)

In order to have real solution we must have r∗21 > 0 and r∗22 > 0.
To analyze the stability of this fixed point, we have to study the
eigenvalues of the Jacobian matrix

J|r∗1r∗2 =


1 + k1 + 3a11r∗21 + a12r∗22 2a12r∗1r∗2

2a21r∗1r∗2 1+
k2 + a21r∗21 + 3a22r∗22

 = 1 + k1 + A 2a12B
2a21B 1 + k2 +C

 (116)

where

A =
k1(3a11a22 − a21a12) − 2a11a12k2

a21a12 − a11a22

B =

√
(k1a22 − k2a12)(k2a11 − k1a21)

a21a12 − a11a22

C =
k2(3a11a22 − a21a12) − 2a21a22k1

a21a12 − a11a22
.

If both the eigenvalues are inside the unit circle of the com-
plex plane, the nontrivial fixed point is stable, and it corresponds
to a stable quasiperiodic motion of the map in Eq. (51). If only
one eigenvalue is out of the unit circle, the nontrivial fixed point
is a saddle, so the corresponding quasiperiodic motion of the
map in Eq. (51) is unstable. If both the eigenvalues are out of
the unit circle, the fixed point is a repellor. As better explained
in [6], the nontrivial solution (r∗1, r

∗
2) arises from a pitchfork bi-

furcation of one of the two semitrivial solutions (r̃1, 0) or (0, r̃2).

In Fig. 3, we show an example of a possible bifurcations struc-
ture in the vicinity of a double NS bifurcation. In the figure, the
two single NS bifurcations are both supercritical. In regions B
and F there is no interaction between the two bifurcations. In
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Fig. 3. One possible bifurcation diagram of a double NS bifurcation, in the
case of supercritical bifurcations. The letters from A to F indicate regions with
different behaviors. The shaded area indicates stability of the trivial solution.

regions C and E there are two coexisting periodic solutions, one
stable and one unstable, while in region D, the interaction be-
tween the two bifurcations generates an unstable quasiperiodic
solution ((r∗1, r

∗
2) is a saddle in this case), which coexists with

two stable periodic solutions. A similar bifurcation structure has
been obtained in [1] in correspondence of a double Hopf bifur-
cation (of a continuous time system). The possible bifurcation
structures are several and it is out of the scope of this paper to
exhaustively show all of them in details. For more details we
address the readers to [6] and [7].

In case of instability of the nontrivial fixed point (r∗1, r
∗
2), it

is important to analyze the values of the eigenvalues. If they
are complex conjugate, the fixed point undergoes a NS bifurca-
tion, adding one more period of vibration to the quasiperiodic
motion of the map in Eq. (51), which will have three periods
of vibration. In order to analyze this quasiperiodic motion with
three periods, it is necessary to include in the analysis terms up
to the fifth order, starting from the Taylor expansion in Eq. (53).
In this case, the procedure is extremely lengthy. More details,
about this very special case, are given in [6].

The dynamics occurring in the case of a double NS bifurca-
tion can be very complex, for this reason it is very hard to gen-
eralize the analysis of its normal form. Anyway, the guidelines
given in this section, show how a map, undergoing a NS bifurca-
tion, can be transformed into its normal form. After substituting
the actual parameter values of a specific case study, even a reader
with low experience in bifurcation, may be able to analyze the
occurring bifurcation.

4 Conclusions
In this paper, we presented in details the typical analytical

procedure to investigate single and double Neimark-Sacker bi-
furcations. We showed most of the common features of this kind
of bifurcations, that typically appear in discrete time dynamical
systems. The shown procedure is not exhaustive regarding all
the possible motions that the system can assume during such

bifurcations, neither it can be applied to any dynamical system
(described with a map) which undergoes a Neimark-Sacker bi-
furcation. Also, similar procedures have been already presented
by other authors, especially regarding a single Neimark-Sacker
bifurcation. Nevertheless, in the procedure presented in this pa-
per, some passages, which are not explicit in other textbooks,
are clarified, allowing a larger number of scientists to directly
investigate such bifurcations with an analytical approach, with-
out any need of specific softwares.
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