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Abstract  

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy, characterized by a 

high metastatic burden, already at the time of diagnosis. The metastatic potential of PDAC is one of 

the main reasons for the poor outcome next to lack of significant improvement in effective 

treatments in the last decade. Key mutated driver genes, such as activating KRAS mutations, are 

concordantly expressed in primary and metastatic tumors. However, the biology behind the 

metastatic potential of PDAC is not fully understood. Recently, large-scale omic approaches have 

revealed new mechanisms by which PDAC cells gain their metastatic potency. In particular, genomic 

studies have shown that multiple heterogeneous subclones reside in the primary tumor with 

different metastatic potential. The development of metastases may be correlated to a more 

mesenchymal transcriptomic subtype. However, for cancer cells to survive in a distant organ, 

metastatic sites need to be modulated into pre-metastatic niches. Proteomic studies identified the 

influence of exosomes on the Kuppfer cells in the liver, which could function to prepare this tissue for 

metastatic colonization. Phosphoproteomics adds an extra layer to the established omic techniques 

by unravelling key functional signalling. Future studies integrating results from these large-scale omic 

approaches will hopefully improve PDAC prognosis through identification of new therapeutic targets 

and patient selection tools. In this article, we will review the current knowledge on the biology of 

PDAC metastasis unravelled by large scale multi-omic approaches.  
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Introduction 

The ability to spread and adapt to a hostile environment is one of the most dangerous characteristics 

cancer cells can acquire. This invasive feature encompasses multiple progression steps which start by 

acquiring the ability to migrate through and out of primary tissue, followed by invading and surviving 

in blood or lymphatic vessels, and finally establishing a new tumor microenvironment in the hostile 

receiver tissue1. Multiple mechanisms, e.g genetic instability and/or clonal expansion, explain the 

genetic evolution that tumors undergo to develop from a localized carcinoma into aggressive 

metastatic disease. Once these aggressive features are obtained, the survival of these patients 

reduces exponentially, and this is independent of the origin of the primary tumor.  Metastases can 

develop very late after diagnosis implying a slow adaptation of a single cell in the distant 

microenvironment, but in some tumors,  metastases develop synchronously during growth of the 

primary tumor2. This quick progression to metastatic disease is a key feature in pancreatic ductal 

adenocarcinoma (PDAC) patients, who often succumb from advanced local disease with widespread 

metastatic burden early after diagnosis3.  

Patients suffering from PDAC have a 5-year survival of 7.7%4. This disease is the fourth leading cause 

of cancer-related deaths in the USA and is projected to be the second cause of cancer-related deaths 

by 20305 due to an increasing incidence, lack of effective treatments, and a high metastatic 

propensity. The metastatic risk is highlighted by the fact that 91% of PDAC patients are diagnosed 

with (regional) metastatic disease4. This quick progression warrants new studies to understand the 

key processes that drive metastatic behavior. 

Several studies investigated the effect of localization and size of metastases and the timing of 

migration. Rapid autopsy programs revealed that the majority of metastases are located in the liver 

(76-94%), peritoneum (41-56%), abdominal lymph nodes (LN) (41%) and the lungs (45-48%)3,6–8 

(Figure 1A). Moreover, these programs revealed the extent of metastatic disease in these patients, 

with on average 2.9 distant organs involved. Additionally, metastases occur mostly in a widespread 

fashion, with some patients harboring over 1000 metastases7. The size and the growth rate of 

metastases is inversely correlated to survival3.  

PDAC is characterized by an interactive microenvironment with up to 90% of the primary tumor 

consisting of a stromal compartment9 (Figure 1B). Interestingly, liver metastases harbor pathological 

resemblance to the primary PDAC tumor with similar extracellular matrix (ECM) components10. Data 

suggest that PDAC cells can recruit local stromal cells and create an extracellular environment similar 
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to the primary tumor upon colonization of the receiving organ10. Using a fluorescent lineage tracing 

mouse model, Aiello et al.11 showed that there is a correlation between the size of the liver 

metastasis and the recruitment of stroma. This model was previously used to show that epithelial-

mesenchymal transition (EMT) proceeds metastasis and that PDAC cells retain their EMT state in 

circulation12.To allow growth of the metastasis, PDAC cells need to return to their epithelial 

morphology after their previous mesenchymal state (Figure 1C).  Upon multiplication of tumor cells, 

as early as in nano-metastases (2-10 cells), myofibroblasts were found to be in contact with tumor 

cells and ECM composition recapitulated that of the primary tumor11. This highlights the complex 

biology of PDAC and its metastatic features. 

Large-scale omics have been performed in order to understand the biology of PDAC’s aggressive 

behavior. Emerging insights from these studies can be used to elucidate the rapid progression to 

metastatic disease. In the following sections research involving genomic, transcriptomic and 

proteomic studies of PDAC and its metastases are reviewed. 

Genetic events and clonal evolution of PDAC 

Multiple genetic events are thought to occur before metastatic spread is initiated. Four commonly 

mutated genes characterize PDAC. The KRAS driver mutation is identified in more than 90% of the 

PDAC tumors13. Mutations at codon 12 (G12D or G12V) are most abundant and result in aberrant, 

persistent activation of the KRAS pathway. Inactivating mutations in TP53, CDKN2A and SMAD4 

(DPC4) are also very common, occurring in 74%, 35% and 31% of all PDAC patients respectively14. 

However, the presence of these somatic common mutations in the primary tumor does not clearly 

correlate to patients with a very long survival (more than ten years after resection) 15. Yachida et 

al.6,16 performed comparative analysis of primary tumors with matched metastatic tissue and showed 

that over 90% of tissues had concordant driver gene mutations between matched primary and 

metastatic material, indicating that these mutations are early events in PDAC tumorigenesis.  These 

results were recently confirmed in another study, which showed low genetic heterogeneity between 

metastases and the primary tumor17. In contrast to very long survival times, the number of 

mutational driver genes in a tumor is correlated to the metastatic burden of the patients and disease 

free survival (DFS)6.  Especially, mutations of TP53 and SMAD4 are associated with a higher 

metastatic burden and poor prognosis of PDAC patients,6,7,10, compared to KRAS or CDKN2A 

mutations, which are associated with oligometastases.  The correlation of driver gene mutations with 

metastatic burden was independent of tumor stage or grade. Of note, in 37% of the patients 

analyzed all four driver genes were mutated6.  This indicates that some PDAC tumors do not follow 

the original progression model of sequential mutations in the four known driver genes during the 
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development from Pancreatic Intraepithelial Neoplasia (PanIN) precursor lesions to PDAC19. Most 

likely, a subset of tumors acquire mutations in a different order and do not need all four mutations 

for tumorigenesis.  This finding was further highlighted by Notta et al.20 who showed by whole 

genome sequencing that complex rearrangements in the genome of the tumors can take place by 

chromothripsis, where genomic rearrangements are clustered on a small number of chromosomes, 

and that 67% of analyzed tumors showed a non-conventional mutagenesis resulting in quick tumor 

progression and mutation of driver genes. This particular genetic rearrangement was also identified 

by Waddell et al.14 and the mechanisms and its contributions to PDAC will need to be further 

explored. 

To further elucidate the genetic aberrations driving this aggressive tumor, multiple other sequencing 

analyses of primary PDAC tumors have been performed. Jones et al.21 sequenced protein-coding 

exon DNA from 24 tumors and showed an average of 63 mutations per tumor.  Despite the 

identification of multiple mutations in this PDAC cohort, identical mutations in more than one patient 

were sparse. However, pathway analysis of this heterogeneous mutational landscape identified 12 

aberrant pathways affected in PDAC tumorigenesis, which were altered in 67-100% of the tumors. 

Gene expression analysis confirmed differential expression of these pathways in tumors compared to 

normal epithelial pancreatic duct cells. These pathways include known driver pathways, such as KRAS 

signaling, but also highlighted pathways that function in tumor-stroma crosstalk like Hedgehog, TGF-

β, integrin and WNT-NOTCH signaling.  

Exome sequencing and copy number analysis established additional frequently mutated genes in the 

core affected pathways, and axon guidance was identified as a new aberrant pathway22,23.  The 

importance of this pathway in PDAC biology was underlined by epigenetic genome-wide methylation 

analysis of 167 tumors, where axon guidance was identified as one of the most significant epigenetic 

deregulated pathway with the promotor regions of SLIT/ROBO signaling being hypermethylated24. 

The identification of axon guidance as a key pathway in PDAC is supportive of the fact that peri-

neural invasion is a poor prognostic factor in PDAC25. Moreover, peri-neural growth and interaction 

of tumor cells with the nervous microenvironment has been shown to stimulate the migration of 

PDAC cells26,27. When surgical margins are clear, cell migration in the peri-pancreatic nerve system 

can indeed be a source for later recurrence and metastases25.   

The genomes of PDAC tumors contain certain types of chromosomal rearrangements. In a 

comparative analysis of primary tumor and metastatic tissue, genomic instability was shown to be 

very heterogeneous between patients. Intra-chromosomal rearrangements were more common than 

deviations between chromosomes. Interestingly, fold-back inversions were commonly present in 
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tumors28. Other genomic variation screens identified similar trends favoring intra-chromosomal 

rearrangements29.14. Four different genomic subtypes were identified, of which the locally rearranged 

type showed foci in possible target oncogenes, however with low penetrance in the whole patient 

group, and the unstable subtype was identified by wide-spread genomic instability, most likely due to 

DNA repair dysfunction30.  Another study based on the mutational signatures also identified four 

subtypes, of which the DNA repair dysfunction signature was correlated with increased tumor 

immune response31 (Figure 2A). The clinical value of these genomic subtypes still needs to be further 

explored. However, the genetic rearrangement seems to be relatively stable between the primary 

and metastatic tissue of patients, for example, fold-back inversions are identified in matched 

samples, indicating an early event in tumorigenesis28,31.  

The moment of dissemination of PDAC cells during tumorigenesis remains a point of discussion. The 

genetic and clonal evolutions, which are needed for the PDAC cells to gain metastatic capabilities, 

can be explained by multiple mechanisms. Campbell et al.28 showed that most genetic structural 

aberrations of the primary tumor were present in metastases in their cohort of 13 PDAC patients, 

however, some patients showed genetic variations between different metastases. This proves that 

multiple subclones in the primary PDAC can establish different distant metastases. In particular, 

some mutations and rearrangements can enhance the metastatic capabilities of a clone to colonize a 

specific organ site. For example, two patients harboring lung metastases showed a more extensive 

evolution from the primary tumor than abdominal metastases, and contained MYC and CCNE1 

mutations, possibly enhancing the lung-seeding capacity of these cells. Interestingly, in the study of 

Witkiewicz et al.32, MYC amplification was correlated to poor survival, a correlation that will need to 

be further investigated in the perspective of metastasis.  

By Sanger sequencing, Yachida et al.16 recognized that mutations in metastases are most likely clonal, 

and that the genetic heterogeneity in different metastases results from subclones from the primary 

tumor.  By computational modeling they estimated the average time of development from 

carcinoma in situ to gain of metastatic competence to be 6.8 years16. Another mathematical model 

based on clinical progression and autopsies, predicted metastasis most likely to be present at time of 

diagnosis. This risk is correlated to the size of the primary tumor, underlining the need for early 

detection and improved therapeutic options3. New models evaluating the genetically diverse 

subclones and their metastatic capability are needed to shed light on the exact timing of 

dissemination during carcinogenesis. 

The clonal progression of these tumors has recently been further evaluated by a mouse model with 

confetti lineage labeling of tumorigenic cells33. By following the fluorescent cells, subclonal 
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heterogeneity of primary mouse PDAC tumors can be tracked in the metastatic sites. Interestingly, 

the majority of the abdominal metastases were polychromatic, indicating that they resulted from 

multiple subclones of the primary tumor. This polyclonality was mostly a result of two founder cells. 

Functional experiments validated that most likely, these metastases were formed from cell clusters 

rather than from seeding of multiple single cells. Remarkably, larger lung and liver metastases 

consisted mostly of monoclonal cells. This monoclonality was directly correlated to the size of the 

metastases, indicating a genetic advantage of a subclone after establishment of the distant tumor. 

This clonal progression from polyclonality to monoclonality in liver and lung metastases could be an 

explanation for the genetic heterogeneity found in some previous genomic studies16, since upon 

monoclonality there is reduced resemblance to the primary tumor with multiple subclones.    

 

Transcriptomics and gene expression of metastases 

Although deep sequencing of the genome has identified multiple aberrantly regulated pathways  

contributing to pancreatic cancer, the mutational status does not explain the full spectrum of the 

aggressive PDAC phenotype. Since multiple cellular processes can influence gene expression, for 

example epigenetics, regulation by transcription factors, and cell-extrinsic factors, screening of 

differential expressed transcripts can deepen the understanding of tumor biology. 

Efforts identifying prognostic important subtypes in PDAC resulted in multiple transcriptomic 

classifiers (Figure 2A); however, different approaches to the heterocellular consistency of PDAC have 

been used. Collisson et al.34 were the first to describe three subtypes in PDAC, each with a different 

biology and prognosis. Their dataset consisted of 27 microdissected tumors to enrich for the 

epithelial compartment of PDAC. Of the three subtypes identified (quasi-mesenchymal (QM), 

exocrine and classical), the QM subtype was associated with the poorest prognosis, while patients 

identified retrospectively with the classical subtype showed relative good overall survival. The 

relatively higher expression of mesenchymal genes in the QM subtype  very likely contributes to a 

higher occurrence of EMT and thus the ability to metastasize, leading to poor prognosis. However, 

the need for elaborate microdissection and extensive genetic analyses will hamper the clinical 

applicability of their classifier. A more feasible approach recently was suggested in a study which 

identified immunohistochemical classification markers (KRT81 and HNF1A). Interestingly, in this 

study the exocrine subtype was more resistant to paclitaxel treatment and tyrosine kinase inhibitors 

due to cytochrome P450 3A5 expression35. These results indicate that subtyping can have clinical 

applications. Another way to overcome the problem of microdissection, is bulk tumor analysis of high 

percentage epithelial tumors. Bailey et al.23 identified four stable subtypes on an initial patient 
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dataset (n=96) consisting of tumors with minimally 40% epithelial cellularity. These subtypes were 

validated on a larger cohort with a more natural distribution of the stromal compartment. Their poor 

survival “squamous” subtype resembled the QM subtype previously described. Other subtypes 

identified were “pancreatic progenitor”, “immunogenic” and “aberrantly differentiated endocrine 

exocrine”, which partly overlapped with the previous classical and exocrine subtypes34. 

To account for the interaction between stromal and epithelial compartments and reduce the 

selection bias for only high epithelial tumors in analyses, Moffitt et al.36 explored bioinformatics tools 

to dissect gene expression profiles of both. They identified two stromal subtypes, “activated” and 

“normal” stroma.  These stromal subtypes were correlated to prognosis of PDAC patients, however 

their implication in metastases was not described and has not yet been further investigated. 

Interestingly, the stroma subtypes were relatively underrepresented in the metastases in their 

dataset, indicating less stroma signatures in metastases. This study also identified two prognostic 

PDAC tumor subgroups, basal-like and classical, which resemble in part two of the Collison subtypes 

(Figure 2A). The basal-like subtype was specifically enriched in metastatic tissue, implicating that 

transformation to a basal-like state is necessary for dissemination, or that some PDAC subtypes are 

more prone to metastasize. Interestingly, upon differential analysis of their classifier transcripts from 

matched primary and metastatic tissues, low heterogeneity was identified providing evidence that 

subtype specific gene expression is preserved in metastatic tissue.  

Even though the computational dissection of bulk tumor identified plausible subtypes, consensus of 

all the different subtyping efforts is needed to further evaluate clinical relevance and utility. A large-

scale laser microdissected dataset to experimentally prove gene expression profiles from different 

compartments of bulk tumor will help to improve subtyping these tumors and define consensus 

subtypes. The QM subtype was concordantly identified so far in the large-scale studies and is 

consistently correlated to poor outcome and increased metastatic potential. This finding is in line 

with transcriptomic analysis of other tumor types where the mesenchymal classification is the most 

aggressive subtype37–39.  

Gene expression profiling has been used to identify important genes and pathways in metastases. In 

a comparative analysis, genes with functions in cell proliferation, cell cycle regulation, were 

overexpressed in tumors with lymph node metastases. Moreover, apoptosis and cell motility were 

down regulated40.  Stratford et al.41 compared tissue from primary tumors with and without 

metastases and identified 6 genes related to metastases (FosB, KLF6, NFKBIZ, ATP4A, GSG1, 

SIGLEC11). These genes were prognostic for survival. Interestingly, another study with matched 

metastatic tissue from multiple locations did not show evident differential gene expression42. This 
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could be explained by the hypothesis that the primary tumor already acquired the metastatic abilities 

and that the majority of gene expression does not show substantial heterogeneity from the primary 

tumor. Finally, a recent study explored the metabolic differential expression of PDAC and its 

metastatic tumors. Compared to normal pancreatic tissue there was enrichment of aerobic glycolytic 

genes.  The majority of metabolic genes were comparable between tumor sites. Specifically, glucose 

transporter (GLUT1) was overexpressed in all tumor sites. SLC2A2 was overexpressed in liver 

metastases and IDH3 was overexpressed in lung and lymph node metastases, indicating some 

differential energy acquiring process in different metastatic locations43. Since the RNA technology is 

advancing with increasing depth of analysis, future studies will define more differential gene 

expression profiles of subtypes and prognostic profiles for metastatic disease. This hopefully will lead 

to better patient staging  and clinical management for subgroups of patients.  

Another important regulatory player in gene expression are microRNAs (miRNAs). These small non-

coding RNAs, consisting of 20-23 nucleotides, regulate gene expression in the posttranslational phase 

by degrading their target messenger RNA (mRNA). This regulatory network is often deregulated in 

cancer, which results in aberrant expression of miRNAs that target oncogenes and tumor suppressor 

genes44. Many miRNAs have been correlated to poor prognosis45,46 and metastatic potential47–49 in 

PDAC. In a meta-analysis, Frampton et al.46 analyzed combined data from differential expression 

profiles and validated onco-miRNA-21 as a prognostic marker in PDAC. MiRNAs can also be used 

predictive biomarkers. A panel of miRNAs were able to predict sensitivity of metastatic patients for 

lapatinib treatment. Onco-miRNA-221 was shown to influence sensitivity of PDAC cells in vitro50. 

Integrative analysis combining mRNA and miRNA profiles can highlight their regulatory network. This 

was shown in a cohort of nine patients, where 3 miRNAs (miR-21, miR-23a, miR-27a) were identified 

as regulators for multiple known tumor suppressors51. Future large-scale efforts combining RNAseq 

and small RNAseq of primary and matched metastatic tumors will further deepen our knowledge of 

this regulatory network and its importance in metastases of PDAC. 

Proteomics applied to PDAC to identify new biomarkers and protein subtypes 

As outline above, PDAC is caused by alterations in DNA that yield altered gene products that make 

cells grow in an uncontrolled way and spread throughout the body. Comprehensive analysis of the 

alterations in each tumor’s complete set of functionally relevant proteins, the proteome, can add a 

complementary layer of information that is expected to increase our understanding of how 

molecular changes interact to drive the disease.  

In recent years, the field of proteomics has evolved from limited protein inventories to in-depth 

(close to) proteome-wide discovery due to massive improvements in mass spectrometry (MS) 
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technology and (bio)informatics tools. Together with robust relative protein quantitation based on 

label-free or stable isotope labeling, proteomics studies are increasingly being used in cancer 

research. Moreover, the integration of proteomic and genomic data by which MS/MS data is 

searched against customized databases of individual matched DNA/RNA sequence data, referred to 

as proteogenomics, has enabled a more comprehensive view of the molecular determinants that 

drive cancer than genomic analysis alone and may help to identify the most important targets for 

cancer detection and intervention. This was recently shown for colon, breast and ovarian 

cancer52,53,54. Importantly, from these studies it also became apparent that proteome profiling data 

can outperform transcriptome profiling data for co-expression based gene function55, underlining the 

importance of proteomics in gene function and human disease studies. 

Mass spectrometry based identification of proteins in complex biological samples such as tissues and 

biofluids has been performed to develop multiple cancer diagnostic applications. To identify protein 

biomarkers for non-invasive applications, proximal fluids that contain relatively high levels of tumor 

secreted proteins are an appealing biomarker source since they do not contain high levels of albumin 

that will mask low abundant biomarkers in blood-based screens. Another option to facilitate 

biomarker identification is to remove highly abundant proteins from blood. In PDAC, multiple studies 

have been performed in the recent years applying these techniques. A summary of the studies is 

described in Table 156–80. We will describe some of the different approaches in more detail below.  

Kosonam et al.75 analyzed ascites from patients suffering from peritoneal metastases as proximal 

fluid. A total of 456 proteins were commonly identified in 3 patients. To further select possible PDAC 

specific biomarkers, this list was compared to known secreted PDAC proteins and previous ascites 

proteome analyses.  This yielded a final possible new biomarker list of 12 proteins. Another study 

used the secreted proteins of PDAC cell lines to find common secreted proteins for early diagnostic 

possibilities81 In an attempt to facilitate non-invasive biomarker screening, Radon et al.65 screened 

urine of PDAC patients and patients suffering from chronic pancreatitis and healthy controls. By LC-

MS/MS they identified multiple differentially secreted proteins. Interestingly, gender differences 

were significant and had to be taken into account in further analysis. Upon selection based on fold 

change and known PDAC expression, they reduced their list to 3 proteins (LYVE1, REG1A, and TFF1). 

These proteins showed very good sensitivity and specificity as a panel in a validation cohort of over 

300 patients.  These studies prove that multiple biofluids can be a source for protein biomarker 

identification. Future validation is needed to establish these proteins for clinical use.  

Another way to implement protein biomarkers is to classify subtypes previously established by 

transcriptomics. Kuhlmann et al.59 made use of primary cells lines representing three Collison 
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transcriptomic subtypes to detect subtype-specific protein biomarkers. Interestingly, in their cohort 

only the exocrine subtype had differential protein expression detectable on their cell surface or as 

secreted proteins. Further proteomic studies are needed to validate the transcriptomic subtypes in 

PDAC and their value or to establish whether proteome data may yield a different classification 

system. For the latter purpose, large-scale proteome profiling of clinical samples is needed as 

recently performed for other tumor types82. 

Identification of prognostic and metastatic protein markers in PDAC 

To understand the variability in survival of PDAC patients, several studies have explored differential 

proteome landscapes of long versus short survival or metastatic versus non-metastatic disease. 

Matched formalin-fixed paraffin-embedded (FFPE) tissues from very long (more than ten year 

survival post-surgery) and short surviving patients were screened to understand the different 

underlying biology. In the short survival group, proteins associated with the cytoskeleton were 

increased as well as RNA processing / protein biosynthesis. This can point to higher motility and 

metastatic capability. Interestingly, one of the upregulated proteins identified was galectin-1 

(LGALS1) which is mainly expressed in cancer-associated fibroblasts (CAF) in PDAC83. Knockdown of 

this gene reduced their ability to migrate and therefore to stimulate PDAC cells84.   

In another approach to understand the basic principles of metastatic capability, Naidoo et al.85 

analyzed seven primary PDAC samples and their LN metastases. This yielded 856 commonly 

expressed proteins, of which the majority clustered in the biological functions of cell proliferation 

and growth, cell death and cellular movement. Only a small subset of proteins was differentially 

regulated, implying again that malignant epithelial cells in LN metastases are not very different from 

primary tumor cells. One of the proteins differentially expressed was S100P, which was validated by 

IHC. This protein was previously identified as an important player in trans-endothelial migration of 

PDAC cells and upon knockdown, less migration into the vasculature and less metastases were seen 

in a fluorescent zebrafish model86. These results show that this protein could be an interesting target 

to inhibit migration of tumor cells, and moreover, that differential protein expression can lead to 

new targets and understanding of cancer biology.  

Another factor thought to contribute to metastatic disease, is the population of cancer stem cells 

(CSC). These cells have, or have regained,  the ability to self-renew and are recognized as important 

modulators of metastatic capabilities and chemoresistance87. In an effort to elucidate their biology, 

Brandi and collaborators58,88 profiled the proteome and the secreted proteins of a CSC subpopulation 

in the PDAC cell line PANC1. These analyses showed that CSCs upregulated multiple metabolomic 

pathways. Moreover, CSC  were relatively sensitive to metabolic inhibition by existing drugs89. Similar 
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metabolomics pathways were dysregulated in the secretome of CSCs90. Interestingly, the secreted 

proteins could be identified by ELISA assays in blood sample of PDAC patients, indicating their 

possible use as biomarkers (Table 1). 

Exosome protein content and establishment of the metastatic niche 

In recent years, we have come to understand that migration of cancer cells into the vasculature or 

lymph vessels by itself is not enough to establish metastasis. The hostile environment of the distant 

site requires certain changes that enable tumor cells to attach and thrive. Exosomes can be a player 

at the metastatic site to assist adhesion and growth of a tumor. Exosomes are small extracellular 

vesicles of endosomal origin that can carry nucleic acids and proteins, and have been shown to be 

able to influence the migratory capacity of tumor cells91. To further investigate how exosomes can 

influence the metastatic capability of tumor cells, Hoshino et al.92 analyzed the organotropic 

preference of tumor exosomes. PDAC are known to migrate primarily to the liver, and indeed, 

exosomes from PDAC cell lines were tracked and located preferentially in the liver. Next to the 

uptake of PDAC exosomes in the liver, exosomes were shown to create a “metastatic niche”, which 

modulates the local microenvironment to enhance metastatic capabilities of tumor cells. To further 

understand why exosomes of certain tumor types have a partiality to specific distant sites, proteomic 

analysis showed differential integrin expression which could explain the organotropism. Integrin beta 

5 and integrin alpha V were highly abundant in PDAC exosomes (Figure 1D). Knockdown or inhibition 

of this specific integrin complex resulted in reduced exosome uptake and less liver metastases. This 

shows that exosomes carrying specific protein content can modulate the metastatic capacity of PDAC 

cells. Studies have shown that PDAC exosomes are taken up by Kupffer cells in the liver 

predominantly92,93. Gene expression analysis of these cells after exposure to PDAC exosomes showed 

overexpression of the liver fibrosis pathway, indicating that by exosome interaction, fibrosis of the 

metastatic niche can be induced93. Moreover, upregulation of S100P was seen in Kupffer cells after 

treatment with PDAC exosomes, which as discussed previously, plays a role in transendothelial 

migration92. Further proteomic analysis of pancreatic cell line exosomes showed high expression of 

macrophage migration inhibitory factor (MIF) (Figure 1D). Knockdown of this protein in PDAC 

exosomes resulted in reduced metastatic burden in mice. Importantly, expression of this factor in 

exosomes could already be identified in early PanIn lesions in a genetic engineered mouse model of 

PDAC93. These studies indicate that preparation of the metastatic niche might already occur early 

during tumorigenesis. Another study extracting exosomes from human PDAC serum showed 

increased metastatic and EMT related proteins compared to healthy control exosomes. These PDAC 

exosomes stimulated migration of PDAC cells in vitro, supporting their pro-metastatic function57.  

Interestingly, several exosome proteins identified served as predictive biomarkers for treatment 



13 
 

response. However, the regulation of molecular cargo of cancer-associated exosomes to influence 

metastatic capability is not fully understood. Recently, the protein myoferin was identified as a 

possible regulatory protein for the composition of the exosomal proteome94. Upon silencing of 

expression of myoferin in PDAC cancer cells, their exosomes were inhibited in their potency to 

initiate migration and proliferation. Quantitative proteomic analysis validated its role by showing 

down regulation of vesicle mediated transport proteins upon silencing. Interestingly, exosomes that 

influence tumor growth and metastasis can also be microenvironment derived. By analyzing the 

proteome and interactome of the stromal compartment of three PDAC tumors, Leca et al.60 

identified 11 cytoplasmic vesicle related proteins of which three (ANXA, LRP1 and TSP1) formed a 

complex in exosomes from CAFs. Functional validation proved these proteins to be important for 

tumor progression and liver metastasis.  These studies show that exosomes from PDAC cells and its 

microenvironment can influence the metastatic niche with their protein content. Future proteomic 

studies will increase our understanding of the specific proteins important for this metastatic function 

of PDAC exosomes. 

Phosphoproteomics to unravel pathways and the aggressive behavior of PDAC 

Aberrantly activated pathways are common in cancer, and even though differential protein 

expression can identify a certain degree of pathway regulation, it cannot directly reveal inter- and 

intracellular signaling. Signaling is regulated via reversible phosphorylation of tyrosine, serine and 

theorine amino acids of proteins by kinases. Global phosphoproteomics can be used as a read-out for 

these phosphorylation events and give insight in the actual activation state of kinases in the cancer 

cell95,96. Britton et al.97 compared the phosphoproteome of 12 PDAC tumors to normal pancreatic 

tissue. With this approach, they identified 2,101 phosphorylated proteins of which 152 were 

differentially phosphorylated. One of their top differential identified proteins was Mucin-1, a known 

PDAC oncoprotein involved in proliferation and metastases98. Moreover, pathways for tight junction, 

adherence junction, and focal adhesion signaling were significantly differentially phosphorylated in 

the cancer samples, which could explain the increase motility and intercellular communication. 

Finally, they identified multiple differential phosphorylated kinases, which could be possible drug 

targets. Upstream kinases in canonical cell signaling often harbor specific tyrosine phosphorylated 

residues. This trait can be exploited by enrichment of tyrosine phosphorylated proteins before 

MS/MS analysis. Harsha et al.99 performed tyrosine phosphoproteomics on a hyperphosphorylated 

primary PDAC cell line and compared the identified phosphosites to an immortalized non-malignant 

pancreatic ductal cell line. They identified epithelial growth factor receptor as a target in this 

particular cell line. Functional validation by inhibition with tyrosine kinase inhibitor erlotinib showed 

significant inhibition of growth in their xenograft model. Similarly, a large-scale tyrosine 
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phosphoproteomic effort analyzed commercially available as well as primary cell lines, and identified 

different subtypes based on phosphorylation. One hyperphosphorylated subtype was identified, 

harboring deviant phosphorylation of multiple receptor tyrosine kinases. This subgroup was more 

sensitive to erlotinib treatment than the other subtypes100. However, erlotinib in clinical trials did not 

show significant survival benefit in unselected patient groups with advanced gemcitabine resistant 

disease101, which possibly underlines that selection based on phosphorylation of marker proteins is 

needed. Remarkably, the phosphorylation subtypes identified did not correlate to known 

transcriptomic PDAC subtypes100, emphasizing the complexity and non-linear cellular regulations 

from DNA, RNA , proteins and signaling. Moreover, as discussed before, PDAC is a tumor with 

multiple clones in the primary tumor and metastatic sites in which different kinases can be activated. 

Kim et al.102 analyzed three primary cell lines of one patients’ metastatic sites. In the normal 

proteome of these cell lines, 58% of the protein expression was similar. However, the 

phosphoproteome was highly variable between the different metastatic cell lines. This can indicate a 

dynamic state of phosphorylation, or differential aberrant activations after clonal evolution. It was 

found that AXL was phosphorylated in liver and lung metastatic cells, but not in peritoneal 

metastasis. This phosphorylation status was correlated to sensitivity of AXL inhibitors, proving this 

approach for treatment selection. On a side note, the finding of phosphotyrosine heterogeneity 

complicates a single drug regimen selection for these patients and underlines the difficulty of 

targeting this disease. 

The phosphoproteomic approach can be used for identification of signaling that can explain some of 

the aggressive PDAC traits. By identifying an aberrant phosphosite of the kinase SGK223 via tyrosine 

screening, Tactatan et al.103 explored the function of this kinase, which turned out important for 

STAT3 transcription and invasion and migration. Importantly, as discussed before, PDAC is a 

multicellular disease with interaction of stromal cells and tumor cells, which influences signaling. 

Tape et al.104 have expanded our knowledge of this interaction by analyzing different signaling events 

upon co-cultures. They identified that only 7% of the tumor signaling is regulated by KRAS activation. 

Interestingly, the phosphoproteome was influenced on a similar level by CAF interaction as by KRAS, 

highlighting the influence of the microenvironment on PDAC. One of these stimulatory events is 

activation of the IGF1R/AXL-AKT axis. This crosstalk signaling can stimulate the tumor cells on a 

different level than tumor-tumor interaction. Future research of multi-cellular systems or whole 

tumors will elucidate the importance of activated pathways by the microenvironment and will guide 

towards new targeted therapies. 

Future perspectives and concluding remarks 
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During the last decade, large-scale omic approaches have greatly expanded our knowledge of PDAC 

genetics and the resulting tumor biology. Subtyping at the transcriptome level has identified poor 

prognosis subtypes characterized by the expression of mesenchymal genes and other programs that 

contribute to poor outcome23,34,36. Whole genome analyses of these tumors have proven that 

carcinogenesis is not always a sequential progression of mutations20. Even though numerous 

mutations have been revealed by whole-exome sequencing, no commonly mutated genes other than 

the known four driver genes (KRAS, P53, CDKN2A, SMAD4) have been identified, but the mutational 

status of PDAC does seem to cluster around certain pathways21,22. Future analyses identifying the 

concordance of these pathways in metastases and new studies targeting these pathways are needed 

to validate the importance of these findings. Hopefully, this will result in clinical translation and 

applications. This can be in the form of new therapeutic targets and/or stratification tools that could 

be used to improve the use of currently available treatment modalities.  

Following our understanding of the genomic rearrangements and gene expression that drive these 

tumors, analyses at the protein level are a logical next step to help understand the disease and 

improve survival of these patients.  Proteome analysis adds another level to known genomic and 

transcriptomic data since it identifies the functional players in cell biology. For example, 

phosphoproteomics can give detailed insight in key signaling pathways that drive growth of tumors 

that might appear similar at the genetic level (Figure 2B). Large-scale profiling studies of well-

characterized clinical cohorts  are needed to reveal the proteome landscape of PDAC and exploit this 

functionally relevant information in a more comprehensive way than was possible to date. 

At this moment, an integrated analysis of all levels of molecular profiling data is called for to improve 

our understanding of how they interact to contribute to the disease, and clinically compatible assays 

need to be developed in order to capitalize on these findings. For example, although transcriptomic 

subtypes show survival differences, the transition to clinical practice is not easy.. This is partly due to 

the number of genes in a classifier. Adding a proteomic analysis to matched samples of subtypes 

could identify the most differential proteins, which can be evaluated by standardized 

immunohistochemical techniques in pathology laboratories.  Additionally, even though many 

analyses were performed with one particular technique, all the levels of these omics approaches are 

interwoven and influence each other. The connectivity of these data should be used to create multi-

level biological networks that explain the acquired aggressive capacities more faithfully (Figure 2B).   

So far, treatment of PDAC patients with advanced disease still relies on cytotoxic agents105. Some 

survival improvement has been established during the last decade. Especially, neoadjuvant therapy 

can possibly make a difference in the treatment of this disease. Preliminary retrospective studies 



16 
 

show improved survival upon multi-regimen treatment preoperatively106. This improvement is in line 

with a computational analysis that calculated the effect of inhibition of proliferation to have a bigger 

impact on survival than just tumor bulk reduction by surgery3. One of the presumed mechanisms 

underlying the benefit of the neoadjuvant approach is the avoidance of development of genetic 

heterogeneity of subclones and its associated resistance, with progression of the cancer and 

dissemination of different metastases. Large randomized clinical trials are needed to show the 

survival benefit of neoadjuvant treatment, preferably in collaboration with biomarker discovery 

studies to understand resistance and improve patient selection. 

Another future treatment perspective will be immunotherapy. As discussed before, exosomes can 

influence the metastatic niche and influence local immune response against PDAC cells93. PDAC has 

immune-evasive capacities but certain genetic subtypes do initiate a more immunogenic response, 

which is translated from the primary site to the metastatic tumor31. Interestingly, Steele et al107 

identified CXCR2 as an immune modulator which after inhibition induced an enhanced T-cell 

response and reduced metastatic burden. The promising data of patients with mismatch-repair 

deficient colorectal cancer responding to immunotherapy might also be relevant for a small number 

of patients with pancreatic cancer108. These studies indicate that next to tumor targeting, the 

microenvironment and immune response of primary, as well as metastatic PDAC, will need to be 

further explored to change the prognosis of these patients. 

Future studies, including proteomics studies, should also identify novel biomarkers in order to select 

the group of patients who may gain the most benefit of cancer immunotherapy, as well as 

implement the design of novel clinical trials designs that allow tumor sample collection in order to 

understand the mechanism of action and resistance of PDAC (and its metastasis) to 

(immune)therapy. Biomarker-based selective clinical trials for targeted therapy are indeed 

incorporated into many ongoing trials, raising hope that future studies and treatments can be given 

more efficiently. A new clinical study by the Pancreatic Cancer Action Network will make use of 

molecular profiling of PDAC patients to select patients for specific tracks in their clinical trial109. 

Moreover, in the near future readout of aberrantly activated kinases identified by 

phosphoproteomics will hopefully aid in the stratification of patients for targeted therapy.  

Finally, in a possible and desirable future, with the availability of genome/proteome-wide screening 

platforms at reasonable costs, a thorough omic analysis of both the tumor and the metastastic 

specimens in conjunction with user-friendly computational tools will help clinicians to identify the 

most appropriate drug regimen to be administered to the patient. Hopefully, this approach will 
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become a strategic companion for patient stratification and optimization of currently available 

cytotoxic treatments as well as novel anticancer drugs in clinical development. 
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Figures Legends 

Figure 1: PDAC, its microenvironment and its route of metastasis 

Figure 1A: Common metastatic localizations of PDAC. PDAC has some preferential metastatic 

localizations. Liver and peritoneal metastases are most common. The data from this figure is adapted 

from studies based on rapid autopsy programs3,6–8. 

Figure 1B: PDAC and its microenvironment. Pancreatic ductal adenocarcinoma (PDAC) arises from 

the pancreas. This tumor is characterized by a dense stromal reaction, consisting of a desmoplastic 

reaction with extra-cellular matrix (ECM), cancer-associated fibroblast (CAF), tumor cells and immune 

cells. Both PDAC and CAFs can release exosomes. 

Figure 1C: Multiclonal PDAC, clonal expansion and EMT. The primary tumor of PDAC exists of 

multiple subclones. Not all subclones are capable of dissemination. Upon acquirement of genetic 

aberrations and epithelial-mesenchymal-transition (EMT), PDAC cells start to migrate into the 

vasculature. Dissemination mainly occurs polyclonal and while intravascular, these PDAC cells remain 

the mesenchymal state. Upon establishment of metastases, PDAC cells return towards their 

epithelial state and recruit local myofibroblast to gain a stromal reaction. Depending on their 

location, multiple metastatic clones will grow, or one of the subclones will take over and reduce 

polyclonality upon growth of the metastasis, like for example in the liver. 

Figure 1D: Metastatic niche development in the liver. Exosomes released by PDAC cells can enter 

the vessels. Due to specific integrin complex expression (Integrin beta 5 and Integrin alpha V), they 

preferentially locate into the liver. There, they are taken up by Kuppfer cells, which in turn react by 

increased TGF-β signaling, and upon release of macrophage migratory inhibitory factor (MIF) by the 

exosomes, an immune-evasive response is initiated. This modeling of the liver results in creation of a 

metastatic niche and can be followed by liver metastases.  

 Figure 2: Multilayer omic approaches in PDAC 

Figure 2A: Subtyping in PDAC. Multiple genomic and transcriptomic analyses have been performed 

to define subtypes in PDAC. Two studies looked at genomic subtypes, of which only the unstable 

subtype and mismatch repair (MMR) / double stranded break repair (DSB) group overlap partly. 

Transcriptomic studies recognized some similarities, especially in a mesenchymal subtype. Future 

consensus subtyping is needed to establish the subtypes relevant for clinicians. 

Figure 2B: The multi omics approach. Multiple layers of the cell can be investigated into depth by 

genomic sequencing, RNAseq, proteomics and phosphoproteomics. These different layers all have 
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their own advantage. The big data acquired from genomic studies is more extensive with genomic 

analysis than proteomics. However, phosphoproteomics and other post-translational modifications 

can create very large datasets with over 200 000 different modifications. Integrated analaysis will 

help to identify the most important aberrant pathways and networks that are important for PDAC.  
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Table 1: PDAC biomarker discovery by proteomics 

Abbreviations in Table 1: Cancer stem cell (CSC), Enzyme-linked immunosorbent assay (ELISA), Endoscopic retrograde cholangiopancreaticography (ERCP), 

Intraductal papillary mucinous neoplasm (IPMN), Isobaric tag for relative and absolute quantitation (iTRAQ), Liquid chromatography tandem mass 

spectrometry (LC-MS/MS), Mucinous cystic neoplasm (MCN), Multiple reaction monitoring (MRM), Pancreatic intraepithelial neoplasia (PanIN), Pancreatic 

ductal adenocarcinoma (PDAC), Reverse phase protein lysate microarray (RPPA), Serous cystic neoplasm (SCN), Selected reaction monitoring (SRM), Tandem 

mass tagged (TMT), not applicable (NA) 
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confoundin
g factor  

                    

PEDF, 
CAD21, 
PGRP2, 
TTHY, AFAM, 
JADE2, 
CBPB2   

Lukic et 
al. [70] 

20
13 

Biochimica 
et 
Biophysica 
Acta 

Diagnosti
c  

iTRAQ 
LC-
MS/MS 

LTQ 
Orbitrap 
velos from 
Thermo 
Electron 
(San Jose, 
CA) Bile PDAC (n=1) 

Wester
n Blot PDAC (n=4) 

RAC1, 
OLFM4, 
SDCB2  

104 
proteins 
were 
differentiall
y secreted 
in bile 

          

1318 
proteins 
were 
identified, 
796 were 
identified 
with at 
least 2 
peptides   

Cholangiocarcino
ma (n=1)   

Cholangiocar
cinoma (n=4)   

Three 
proteins 
were 
further 
evaluated 
and could 
be 
validated by 
western 
blot 
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Chronic 
pancreatitis 
(n=3)     

                  

Benign 
stenosis 
(n=2)     

                        

Porterfie
ld et al. 
[71] 

20
13 

Journal of 
Proteome 
Research 

Diagnosti
c  of 
(pre)mali
gnant 
tumors 

Label-
free LC-
MS/MS 

)LTQ 
Orbitrap 
XL 
instrument 
(Thermo 
Fisher 
Scientific) 

Pancreatic 
juice PDAC (n=3) 

Wester
n Blot Unknown 

AMYP, 
PRSS1, 
REG1A, 
REG3A, 
REG1B 

Several 
proteins 
were 
differentiall
y expressed 

          

368 unique 
proteins 
were 
identified 
by 1995 
correspon
ding 
peptides    

Chronic 
pancreatitis (n=3)     

CCDC132
, 
phosphol
ipase A2, 
and 
elastase 
2B 

Further 
validation is 
needed to 
identify the 
value of 
these new 
possible 
biomarkers 

              

Premalignant 
lesion, IPMN 
(n=3)         

              Healthy (n=3)         

                        

Kosana
m et al. 
[72] 

20
13 

Molecular 
and 
Cellular 
Proteomics 

Diagnosti
c  

Label-
free LC-
MS/MS 

LTQ-
Orbitrap 
XL mass 
spectrome
ter 
(Thermo 

PDAC 
tissue & 
ascites 

PDAC and 
adjacent benign 
tissue (n=4) ELISA PDAC (n=20) 

DSP, 
LAMC2, 
GP73, 
DSG2, 
TSPAN1, 

16 possible 
protein 
biomarkers 
were 
identified 
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Fisher 
Scientific) 

MSLN, 
ALPPL 

          

2190 
nonredund
ant 
proteins 
identified   

Ascites (n = 
unknown)   

Benigne 
disease 
(n=20) 

CDH17, 
MUC13, 
S100A14, 
FXYD3, 
AF6, 
CLEC13B 

2 were 
validated 
significantly 
different 
(LAMC2 and 
DSP)  

                    

TSPAN8, 
TPBG, 
MUC4 

LAMC2 
showed 
best 
diagnostic 
potential in 
combinatio
n with 
CA19.9 

                        

                        

Wehr et 
al. [73] 

20
12 

Journal of 
Proteome 
Research 

Diagnosti
c  

LC-
MRM/M
S 

TSQ 
Vantage 
triple stage 
quadrupol
e mass 
spectrome
ter 
(Thermo 
Scientific) 

Serum 
depleted 
from the 
14 highest 
abundant 
proteins PDAC (n=20)     

Cystatin 
M, Vilin-
2, IGFB7 

72 proteins 
were 
quantified, 
of which 
three were 
differentiall
y expressed 

              
Healthy control 
(n=20)         
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Cuoghi 
et al. 
[74] 

20
11 

Journal of 
Proteome 
Research 

Diagnosti
c  for 
(pre)mali
gnant 
tumors 

Label-
free LC-
MS/MS 

LTQ 
Orbitrap 
mass 
spectrome
ter 
(Thermo 
Electron) 

Immunode
pleted cyst 
fluid MCN (n=2) 

Wester
n blot NA 

MUC18, 
OLFM4 

29 proteins 
were 
differentiall
y expressed 
in 
premaligna
nt versus 
no-
malignancy 
related 
cysts 

          

220 to 727 
proteins 
identified 
per sample   SCN (n=2)       

2 proteins 
were 
validated to 
be present 
in the cysts 
by IHC 

              pseudocyst (n=1)         

              IPMN (n=1)         

              
Neuroendocrine 
tumor (n=2)         

Kosana
m et al. 
[75] 

20
11 Proteomics 

Diagnosti
c    

Multiple 
fraction
ation 
followe
d  

LTQ-
Orbitrap 
XL mass 
spectrome
ter 
(Thermo 
Fisher 
Scientific) Ascites PDAC (n=3) 

In Silico 
datamin
ing NA 

POSTN, 
APOL1, 
LUM, 
DSP, 
NRP1, 
HSPG2, 
LAMC1 

After 
comparison 
to publicly 
available 
datasets, 20 
proteins 
were 
identified 
as possible 
biomarkers 



50 
 

        

by label-
free LC-
MS/MS 

816 
proteins 
were 
identified          

TCN1, 
SAA2, 
MMP2, 
PRSS2, 
GC, SPP1, 
NCAM1, 
CSF1R 

Future 
validation is 
necessary 

                    

JUP, 
TPI1, 
ECMM1, 
PLA2G7, 
STMN1   

                        

                        

Makawit
a et al. 
[76] 

20
11 

Molecular 
and 
Cellular 
Proteomics 

Diagnosti
c  

Label-
free LC-
MS/MS 

LTQ-
Orbitrap 
XL hybrid 
mass spec- 
trometer 
(Thermo 
Fisher 
Scientific) 

Secretome 
cell lines 

PDAC cell lines 
(n=6) 

ELISA 
plasma PDAC (n=20) 

CPA1, 
PRSS1, 
CPA1, 
CPA2, 
GP2, 
REG1A, 
CTRC, 
CPB1 

15 proteins 
were 
identified 
commonly 
in the 
secretome 
and 
pancreatic 
juice 

          

3479 non-
redundant 
proteins 
were 
identified 

Pancreatic 
juice 

Healthy control 
cell line (n=1)   

Healthy 
Control 
(n=20) 

GP2, 
PNLIP, 
SYCN, 
REG1B, 
CLPS, 
SPINK1, 
PLA2G1B 

5 proteins 
were 
validated as 
possible 
biomarkers 
in plasma 
(AGR2, 
OLFM4, 
SYCN, 
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COL6A1, 
PIGR) 

              
Pancreatic juice 
(n=6)       

Combinatio
n of either 
of these 
proteins 
with CA19.9 
improves its 
discriminati
ve potential 

                        

                        

Matsuba
ra et al. 
[77] 

20
11 

Cancer 
Epidemiolo
gy, 
Biomarkers 
& 
Prevention 

Diagnosti
c  

Label-
free LC-
MS / 2-
DICAL 

(ESI-Q-
TOF) mass 
spectrome
ter (Q-Tof 
Ultima) 

Plasma 
depleted of 
high-
molecular 
weight 
proteins PDAC (n=21) 

Wester
n Blot 

PDAC 
(n=140) CXCL7 

10 proteins 
were 
differentiall
y expressed 

          

53,009 
independe
nt MS 
peaks 
were 
identified   

Healthy control 
(n=21) 

RPPA 
microar
ray 

Healthy 
control 
(n=87)   

CXCL7 was 
downregula
ted in 
cancer 
patients 
and 
patients 
with 
chronic 
pancreatitis 

                  

Chronic 
pancreatitis 
(n=10)   

Combinatio
n with 
CA19.9 
improved 
sensitivity 
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and 
specificity 

                        

                        

Pan et 
al. [78] 

20
11 

Journal of 
Proteome 
Research 

Diagnosti
c  

Labelled 
LC-
MS/MS 

LTQ-
Orbitrap 
hybrid 
mass 
spectrome
ter 
(Thermo 
Fisher 
Scientific) 

Pooled 
plasma 
depleted of 
7 highest 
abundant 
proteins PDAC (n=5) 

ELISA 
serum Unknown 

APOE, 
C4BPB, 
CCL14, 
CCL5, 
CD14, 
DEFA1, 
FCGR3A 

23 proteins 
were 
identified 
differential 
in the 
analysis 
PDAC vs 
chronic 
pancreatits 
or benign 

          

A total of 
1423241 
and 
1023439 
MS/MS 
spectra 
were 
identified   

Chronic 
pancreatitis (n=5)     

FCGR3B, 
ICAM1, 
IGF2, 
LBP, LPA, 
LRG1, 
LTBP2, 
MBL2 

TIMP1, 
ICAM1, 
THBS1, 
CCL5, LBP 
and PPBP 
were 
evaluated 
as possible 
biomarkers 

              
Healthy control 
(n=5)     

PF4, 
PF4V1, 
PPBP, 
SHBG, 
SPINK1, 
TFPI, 
THBS1, 
VCAM1 

TIMP1 and 
ICAM1 
showed 
promising 
results 

                      
AZGP1 
might be 
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possible 
discriminati
ng 
biomarker 
for chronic 
pancreatitis 

                        

Chen et 
al. [79] 

20
10 

Molecular 
Cancer 

Diagnosti
c  

iTRAQ 
LC-
MS/MS 

Platform 
not stated 

Pancreatic 
juice 

Benign disease 
pooled sample 
(n=5) 

Wester
n Blot PDAC (n=8) 

AGR2, 
HIST1H2
B, LYZ, 
MUC5AC, 
CA2, 
KLK1, 
ANXA5 

20 proteins 
were 
differentiall
y secreted 
in high-
grade 
premaligna
nt lesions 

              PanIN 3 (n=3) ELISA 

Benign 
disease 
(n=18) 

ACTB, 
SERPINA
1, KRT8, 
PRSS1, 
YWHAE, 
PPIA, 
PSIP1 

AGR2 was 
validated as 
possible 
biomarker 
in 
pancreatic 
juice for 
(pre)malign
ant lesions 

                  

Premalignant 
disease 
(n=25) 

AKR1B10
, CLIC1, 
C2, 
HNRNPA
2B1 

Interestingl
y, the 
secreted 
protein 
levels in 
pancreatic 
juice did 
not 
correlate to 
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serum 
levels 

                        

                        

                        

Matsuba
ra et al. 
[80] 

20
10 

Molecular 
and 
Cellular 
Proteomics Predictive  

Label-
free LC-
MS / 2-
DICAL 

Electrospra
y 
ionization 
quadrupol
e time-of- 
flight mass 
spectrome
ter (Q-Tof 
Ultima) 

Serum and 
plasma 

PDAC poor 
survival (n=29) 

RPPA 
microar
ray 

PDAC 
(n=304) 

AAT, 
AACT 

2 MS peaks 
were 
differentiall
y identified 
(alpha1-
antitrypsin 
& alpha1-
antichymot
rypsin) 

              
PDAC long 
survivial (n=31)       

These 
proteins 
were 
validated as 
prognostic 
biomarkers 
of survival 

                      

However, 
they were 
not 
predictive 
in this 
cohort for 
gemcitabin
e efficiency 

 

 


