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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

With the aim to perform sensor monitoring of tool conditions in drilling of stacks made of two carbon fiber reinforced plastic (CFRP) laminates, 
a machine learning procedure based on the acquisition and processing of thrust force, torque, acoustic emission and vibration sensor signals 
during drilling is developed. From the acquired sensor signals, multiple sensorial features are extracted to feed artificial neural network-based 
machine learning paradigms, and an advanced feature extraction methodology based on Principal Component Analysis (PCA) is implemented to 
decrease the dimensionality of sensorial features via linear projection of the original features into a new space. By feeding artificial neural 
networks with the PCA features, the diagnosis of tool flank wear is accurately carried out. 
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1. Introduction 

Drilling of carbon fibre reinforced plastic (CFRP) materials 
is an increasingly common process in manufacturing industry, 
particularly in the aeronautical sector [1–3].  

The main challenges of this process are related to the rapid 
tool wear due to the abrasiveness of the carbon fibres and the 
high risk of producing severe material damages such as 
delamination, especially when the tool gets worn out [3–5]. 

In this context, tool condition monitoring plays an essential 
role for a timely tool replacement strategy based on the actual 
tool wear state, allowing to optimally exploit the tool life [6–9].  

With the aim to perform sensor monitoring of tool conditions 
during drilling of stacks made of two CFRP laminates, a 

machine learning procedure based on the acquisition and 
processing of thrust force, torque, acoustic emission and 
vibration sensor signals is developed in this research work.  

From the acquired sensor signals, multiple sensorial features 
are extracted to feed artificial neural network-based machine 
learning paradigms, and an advanced feature extraction 
methodology based on Principal Component Analysis (PCA) is 
implemented to perform sensorial features dimensionality 
reduction. In this way, a smaller number of q features, the 
principal component scores, able to describe the variance of the 
sensorial data, are obtained via linear projection of the original 
d features into a new space with reduced dimensionality q. By 
feeding artificial neural networks with the PCA features, an 
accurate diagnosis of tool flank wear is carried out. 
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2. Experimental tests 

Experimental tests of CFRP/CFRP stack drilling were 
carried out with the objective to reproduce the industrial setup 
employed during the aeronautical drilling process. The setup 
including CNC machine tool, multiple sensor monitoring 
system, workpiece, tool and parameters is described hereafter. 

2.1. CNC machine tool and multiple sensor monitoring system 

The machine tool selected to carry out the drilling tests is a 
vertical CNC drill press equipped with a multiple sensor 
monitoring system which is composed of: 
 Kistler 9257A piezoelectric dynamometer to acquire the 

thrust force along the vertical direction, Fz. 
 Kistler 9277A25 piezoelectric dynamometer to acquire the 

cutting torque along the vertical axis, T. 
 Montronix BV100 sensor to acquire the acoustic emission, 

AERMS, and the vibration acceleration, V. 
The analog signals were amplified and sent to a NI USB-

6361 DAQ board for digitalization at 10 kS/s sampling rate. 

2.2. Workpiece details 

The workpiece employed is represented by CFRP/CFRP 
stacks commonly used in the aircraft fuselage assembly. In 
order to reproduce the industrial operating conditions, each 
stack is composed of two superimposed laminates to be drilled 
together. Each laminate has a thickness of 5 mm and is made 
up of 26 prepreg unidirectional plies arranged according the 
following stacking sequence [±452/0/904/0/90/02]s, with a 
lightweight 0°/90° fiberglass/epoxy fabric on the laminate top 
and bottom. The prepreg plies are made of Toray T300 carbon 
fibres and CYCOM 977-2 epoxy matrix. The laminates display 
two differently finished surfaces because they were produced 
using vacuum bag moulding and autoclave curing, so the 
surface on the bag side is very irregular. The two CFRP 
laminates of a stack were placed with their bag sides in contact.  

2.3. Tool details 

The tool selected for the experimental tests is commonly 
employed in the aircraft industry for CFRP drilling. It is a 2-
flute twist drill bit with 4.85 mm diameter, 120° point angle 
and 30° helix angle made of tungsten carbide (WC). Based on 
the tool geometry and according to the literature, tool flank 
wear is expected due to the effect of the fiber cutting and the 
cobalt loss which is softer than the base material and suffers the 
abrasive effect of the carbon fibers [10]. 

2.4. Cutting parameters 

During the experimental tests different cutting parameters 
were adopted with the aim to study the drilling process 
behavior under diverse cutting conditions. Two parameter 
combinations were proposed by the industrial partner, 2700 
rpm - 0.11 mm/rev and 6000 rpm - 0.20 mm/rev. The other 
combinations were proposed considering that on the one hand, 
increasing the spindle speed helps increase the productivity, on 

the other hand, decreasing the feed reduces the thrust force 
exerted on the laminate and the related delamination damage. 

2.5. Tool wear measurement 

The mechanisms of tool wear can occur on different parts of 
a drill bit, but the most widely employed parameter used for 
tool wear monitoring with these tool geometries is flank wear, 
expressed in terms of VB and VBmax values in mm [11–13]. 

To measure flank wear of the drill bits during the 
experimental drilling tests, a Tesa Visio V-200 optical 
measuring machine was employed. The drill bits were notched 
to identify the left and right side and clamped in a fixture to 
make the measuring process repeatable. 

In order to evaluate the tool wear, after every 10 consecutive 
drilled holes the flank wear (VB) was measured. The VB (mm) 
was evaluated according to the reference proposed by [14,15] 
and calculated for both left and right cutting edges as in Fig. 1. 

For each drilling condition, 6 VB values were obtained both 
on the left and the right tool side, then the average was 
calculated, and a third order interpolation curve was built to 
describe the entire tool wear development (Fig. 2). 

Table 1. Experimental testing conditions. 

Test no. T1 T2 T3 T4 

Spindle speed (rpm) 2700 6000 6000 7500 

Feed (mm/rev) 0.11 0.15 0.20 0.20 

 

 

Fig. 1. a) Operational definition of VB and VBmax b) Experimental 
procedure for VB measurement. 

 

Fig. 2. Measured flank wear values and interpolated flank wear curves. 
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3. Signal processing and analysis 

3.1. Signal segmentation 

The acquired sensor signals comprise a transient portion, 
located at the beginning and at the end of the signals, related to 
the movement of the tool before and after the actual machining.  

In order to perform sensor signal features extraction, the first 
step consists in the isolation of the relevant machining portion 
of the signal. The segmentation procedure is based on the 
identification of the start and end machining points by 
analyzing the thrust force signals. The acquired sensor signals 
have high frequency oscillations which make the identification 
of the significant points hard (Fig. 3) so the thrust force signal 
was filtered using a moving average based on 150 points (Fig. 
4). Based on the start and end points of the filtered thrust force 
signal, the original acquired thrust force, torque, acoustic 
emission and vibration signals were segmented (Fig. 5). 

3.2. Sensor signal features extraction 

With the aim to find correlations between the sensor signals 
and the tool wear, a conventional statistical analysis in the time 
domain was performed to extract, from each sensor signal, 
these 5 features: average, variance, skewness, kurtosis, energy. 

Accordingly, a total number of 5 × 4 = 20 features were 
extracted for each drilled hole, making up a feature set of n = 
60 feature vectors (where n = 60 is the number of holes) in a 
20-dimensional space (d = 20 features for each hole) for each 
experimental test of Table 1. 

 

 

Fig. 3. Acquired thrust force signal. 2700 rpm - 0.11 rev/min, hole no. 1. 

 

Fig. 4. Filtered thrust force signal. 2700 rpm - 0.11 rev/min, hole no. 1. 

 

Fig. 5. Segmented thrust force signal. 2700 rpm - 0.11 rev/min, hole no. 1. 

 

Fig. 6. Thrust force average values (Fz,avg) vs. hole number for all the 
experimental testing conditions. 

4. Feature dimensionality reduction 

In machine learning, it is essential to reduce the feature set 
dimensionality to simplify modelling, decrease the problem 
complexity and shorten the training time. Simpler models are 
also more robust on small datasets and are less affected by 
variance due to noise or outliers [16,17].  

However, to avoid loss of information, suitable techniques 
of feature selection (to select a subset of significant features) 
and feature extraction (to generate a lower number of new 
features from the initial ones) are required [16,17].  

In this work, feature set dimensionality reduction was 
performed on the sensor signal features by using an initial 
supervised feature selection method to cut off irrelevant 
features followed by an unsupervised feature extraction method 
based on linear projection via Principal Components Analysis 
(PCA) to combine the relevant features into fewer new features. 

4.1. Features selection based on Spearman’s correlation 

A filter method for feature selection based on the 
Spearman’s correlation coefficient, rs, was employed to isolate 
the relevant features by evaluating the correlation between the 
features and the output tool wear values. For each feature x, the 
correlation with the measured tool wear y was evaluated by 
calculating rs, able to identify three correlation classes: if 0 < rs 
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< 0.3, correlation between variables is weak, if 0.3 < rs < 0.7, 
correlation is moderate, if 0.7 < rs < 1, correlation is strong. 

Based on this coefficient, the features showing the highest 
correlation with tool wear were selected: thrust force average, 
Fz,avg, torque average, Tavg, thrust force variance, Fz,var, torque 
variance, Tvar, acoustic emission variance, AERMS,var, torque 
skewness, Tske, acoustic emission skewness, AERMS,sk, acoustic 
emission kurtosis, AERMS,kur. 

The identified correlations are also confirmed by graphical 
analysis: as an example, the thrust force average shows a rising 
trend with increasing hole number (Fig. 6) confirming good 
agreement with tool wear progression (Fig. 2). 

Using the filter method for feature selection, the number of 
features was initially cut from 20 to 8 features by removing 
those which did not exhibit a robust correlation with tool wear.  

4.2. Features extraction via Principal Component Analysis 

With the aim to further decrease the number of features and 
hence reduce the feature set dimensionality without going 
through any loss of information, a feature extraction method 
based on linear projection via Principal Components Analysis 
(PCA) was adopted [16–18]. PCA consists in an unsupervised 
linear projection allowing to perform a mapping from the input 
vectors x in the original d-dimensional space to new vectors z 
in the q-dimensional space (with q < d), with minimum loss of 
information. In practice, PCA identifies new variables along 
new directions, namely the principal components, that are 
linear combinations of the original variables. PCA is an 
unsupervised technique since it does not utilize the output data.  

The criterion to be maximized is the variance. The principal 
components are computed as the normalized eigenvectors of 
the covariance matrix of the original variables and ranked 
according to how much of the variation existing in the data they 
comprehend. The first principal component, PC1, is the 
eigenvector of the covariance matrix of the input sample with 
the largest eigenvalue, that is the direction along which the 
samples show the largest variation. The second principal 
component, PC2, is the direction, uncorrelated to the first 
component, with the largest eigenvalue, and so on. The 
positions of each observation in this new coordinate system of 
principal components are called scores and are linear 
combinations of the original variables and the relative weights. 

Given a set of data vectors in a d-dimensional space, if the 
first q eigenvalues have significantly larger values than the 
remaining d-q eigenvalues, it means that the data can be 
represented to a relatively high accuracy by projection onto the 
first q eigenvectors. If the dimensions are highly correlated, 
there will be few eigenvectors with large eigenvalues, hence q 
will be much smaller than d and a notable dimensionality 
reduction may be achieved. If the dimensions are not 
correlated, q will be as large as d and PCA is not helpful. 

In this work, PCA was applied via Singular Value 
Decomposition (SVD), which is a computationally efficient 
method for determining principal components. Through linear 
projection from the d = 8 original statistical features, d = 8 
principal components were generated (named PC1, …, PC8).  

 

Figure 7. Scree plot reporting the variance explained as a function of the 
principal components for all the drilling tests. 

To decide the suitable size of q (q < d) allowing for feature 
reduction without loss of important information, visual analysis 
through the scree graph technique was employed. The scree 
graph is the plot of variance explained (i.e. the eigenvalues of 
the covariance matrix of x) as a function of the number of 
eigenvectors (i.e. the principal components). When the plot 
takes a bend displaying an “elbow”, it indicates that adding 
another eigenvector does not considerably increase the 
variance explained.  

Figure 7 shows the scree plot reporting the variance 
explained as a function of the principal components for all the 
drilling tests. The plot elbows suggest that a number of q = 2 
components is sufficient to describe the variance of the data. 
Hence, for all the drilling tests, the first 2 principal components 
were selected to be used for machine learning. 

 Specifically, the scores, i.e. the representations of the 
original data in the principal component space, corresponding 
to the first 2 principal components were used as input for 
machine learning. The principal components scores are sensor 
fusion features, as they are linear combinations of the original 
features extracted from the multiple sensor signals of different 
nature (in this case force, torque and acoustic emission). 

In this way, a significant dimensionality reduction by one 
order of magnitude was achieved, decreasing the number of 
required features from the initial 20 statistical features to 8 
features via statistical correlation and finally to 2 features via 
PCA. Irrelevant features were cut off and the significant ones 
were combined to retain important information. 

In practice, each of the 4 experimental tests in Table 1 was 
initially represented by a set of n = 60 data vectors (where n = 
60 is the number of holes) in a 20-dimensional space (d = 20 
features for each hole). After the implementation of the PCA 
method, the data set for each experimental test was drastically 
reduced to a set of n = 60 vectors in a smaller 2-dimensional 
space (q = 2 principal components for each hole ni).  

Graphical analysis of the first principal component scores 
plotted together with the corresponding tool wear value, VB, 
shows that the behaviour with increasing hole number is in 
agreement with tool wear development. Fig. 8 illustrates the 
PC1 scores and the tool wear values for the drilling test carried 
out at v = 6000 rpm and f = 0.15 mm/rev.  
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With the aim to estimate the tool wear through cognitive 
pattern recognition based on the input PCA features extracted 
from the sensor signals, a machine learning model based on 
artificial neural networks (ANN) was developed [17,19,20].  

The two selected PCA features, PC1 and PC2, were 
employed to construct sensor fusion feature pattern vectors 
(SFPVs) to be fed to the ANN for pattern recognition [21].  

For each hole i, a 3-feature SFPV was built by combining 
the first two PCA features with the hole number, ni. 
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Where n is the total number of drilled holes with the same 

cutting conditions and ni is the specific hole number. 
In this way, for each drilling test of Table 1, a learning set 

consisting of a number of n = 60 SFPVs, equal to the number 
of holes, was set up. 

Supervised machine learning was implemented for each 
drilling test by associating each 3-feature SFPV to the 
corresponding flank wear value, VB. 

Three-layer cascade-forward backpropagation ANNs were 
built with a number of input layer nodes equal to 3, that is the 
number of input features of each SFPV, and varying the 
numbers of hidden layer nodes between 3, 6, and 9 nodes, i.e. 
1x, 2x and 3x the number of input layer nodes, with the 
objective to find the best ANN configuration providing the 
highest performance rate. The output layer had a number of 
nodes equal to 1, corresponding to the tool wear value, VB.  

The Levenberg-Marquardt optimization algorithm was 
chosen for ANN training. ANN cross-validation was 
performed through the leave-k-out method with k = 1 [19]. 
According to the leave-k-out method, at each step, k = 1 SFPV 
was removed in turn from the original set of n SFPVs and used 
for ANN testing while the remaining n-k SFPVs were used for 
training. This procedure was repeated for all the n SFPVs and 
the overall pattern recognition performance was eventually 
estimated by aggregating the n recognition rates obtained. 

6. Results 

The tool wear diagnosis performance achieved by the 
different ANN architectures was estimated in terms of root 
mean squared error, RMSE, between the VB values predicted 
by the ANN and the measured VB values.  
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Table 2 reports the RMSE values obtained by the ANNs for 

tool wear estimation of all the experimental turning tests. It can 
be observed that very low RMSE values, between 2.86x10-5 
and 2.17x10-3, were achieved for all the experimental tests. 
These low values indicate that the ANN output values are very 
close to the measured flank wear values, therefore the ANN 
provided an accurate tool wear diagnosis. Table 2 also shows 
the influence of the varying number of hidden layer nodes: in 
most cases, the best performance was obtained with a lower 
number of hidden nodes, namely with the 3-3-1 configuration. 
In Fig. 9, the ANN predicted VB values are reported vs the 
measured VB values for the test carried out at v = 6000 rpm, f 
= 0.15 mm/rev. In the graph, the diagonal line indicates the 
perfect condition in which the measured VB and the predicted 
VB coincide: the minimal dispersion of values around this line 
allows to graphically evaluate the ANN tool wear prediction 
performance, which shows to be very accurate. 

Table 2. Overall Root Mean Square Error (RMSE) obtained by ANN tool 
wear estimation for all the drilling tests. 

 RMSE 

 3 nodes 6 nodes 9 nodes 

2700 rpm – 0.11 mm/rev 8.95E-05 1.34E-04 1.78E-04 

6000 rpm – 0.15 mm/rev 4.09E-04 2.17E-03 9.19E-04 

6000 rpm – 0.20 mm/rev 1.18E-04 3.23E-04 4.78E-05 

7500 rpm – 0.20 mm/rev 2.86E-05 1.73E-04 7.76E-05 

 

Fig. 9. Regression plot between ANN predicted and measured VB for test v = 
6000 rpm, f = 0.15 mm/rev. ANN configuration: 3-3-1. RMSE = 4.09E-04.  
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< 0.3, correlation between variables is weak, if 0.3 < rs < 0.7, 
correlation is moderate, if 0.7 < rs < 1, correlation is strong. 

Based on this coefficient, the features showing the highest 
correlation with tool wear were selected: thrust force average, 
Fz,avg, torque average, Tavg, thrust force variance, Fz,var, torque 
variance, Tvar, acoustic emission variance, AERMS,var, torque 
skewness, Tske, acoustic emission skewness, AERMS,sk, acoustic 
emission kurtosis, AERMS,kur. 

The identified correlations are also confirmed by graphical 
analysis: as an example, the thrust force average shows a rising 
trend with increasing hole number (Fig. 6) confirming good 
agreement with tool wear progression (Fig. 2). 

Using the filter method for feature selection, the number of 
features was initially cut from 20 to 8 features by removing 
those which did not exhibit a robust correlation with tool wear.  

4.2. Features extraction via Principal Component Analysis 

With the aim to further decrease the number of features and 
hence reduce the feature set dimensionality without going 
through any loss of information, a feature extraction method 
based on linear projection via Principal Components Analysis 
(PCA) was adopted [16–18]. PCA consists in an unsupervised 
linear projection allowing to perform a mapping from the input 
vectors x in the original d-dimensional space to new vectors z 
in the q-dimensional space (with q < d), with minimum loss of 
information. In practice, PCA identifies new variables along 
new directions, namely the principal components, that are 
linear combinations of the original variables. PCA is an 
unsupervised technique since it does not utilize the output data.  

The criterion to be maximized is the variance. The principal 
components are computed as the normalized eigenvectors of 
the covariance matrix of the original variables and ranked 
according to how much of the variation existing in the data they 
comprehend. The first principal component, PC1, is the 
eigenvector of the covariance matrix of the input sample with 
the largest eigenvalue, that is the direction along which the 
samples show the largest variation. The second principal 
component, PC2, is the direction, uncorrelated to the first 
component, with the largest eigenvalue, and so on. The 
positions of each observation in this new coordinate system of 
principal components are called scores and are linear 
combinations of the original variables and the relative weights. 

Given a set of data vectors in a d-dimensional space, if the 
first q eigenvalues have significantly larger values than the 
remaining d-q eigenvalues, it means that the data can be 
represented to a relatively high accuracy by projection onto the 
first q eigenvectors. If the dimensions are highly correlated, 
there will be few eigenvectors with large eigenvalues, hence q 
will be much smaller than d and a notable dimensionality 
reduction may be achieved. If the dimensions are not 
correlated, q will be as large as d and PCA is not helpful. 

In this work, PCA was applied via Singular Value 
Decomposition (SVD), which is a computationally efficient 
method for determining principal components. Through linear 
projection from the d = 8 original statistical features, d = 8 
principal components were generated (named PC1, …, PC8).  
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original data in the principal component space, corresponding 
to the first 2 principal components were used as input for 
machine learning. The principal components scores are sensor 
fusion features, as they are linear combinations of the original 
features extracted from the multiple sensor signals of different 
nature (in this case force, torque and acoustic emission). 

In this way, a significant dimensionality reduction by one 
order of magnitude was achieved, decreasing the number of 
required features from the initial 20 statistical features to 8 
features via statistical correlation and finally to 2 features via 
PCA. Irrelevant features were cut off and the significant ones 
were combined to retain important information. 

In practice, each of the 4 experimental tests in Table 1 was 
initially represented by a set of n = 60 data vectors (where n = 
60 is the number of holes) in a 20-dimensional space (d = 20 
features for each hole). After the implementation of the PCA 
method, the data set for each experimental test was drastically 
reduced to a set of n = 60 vectors in a smaller 2-dimensional 
space (q = 2 principal components for each hole ni).  

Graphical analysis of the first principal component scores 
plotted together with the corresponding tool wear value, VB, 
shows that the behaviour with increasing hole number is in 
agreement with tool wear development. Fig. 8 illustrates the 
PC1 scores and the tool wear values for the drilling test carried 
out at v = 6000 rpm and f = 0.15 mm/rev.  
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Where n is the total number of drilled holes with the same 

cutting conditions and ni is the specific hole number. 
In this way, for each drilling test of Table 1, a learning set 

consisting of a number of n = 60 SFPVs, equal to the number 
of holes, was set up. 

Supervised machine learning was implemented for each 
drilling test by associating each 3-feature SFPV to the 
corresponding flank wear value, VB. 

Three-layer cascade-forward backpropagation ANNs were 
built with a number of input layer nodes equal to 3, that is the 
number of input features of each SFPV, and varying the 
numbers of hidden layer nodes between 3, 6, and 9 nodes, i.e. 
1x, 2x and 3x the number of input layer nodes, with the 
objective to find the best ANN configuration providing the 
highest performance rate. The output layer had a number of 
nodes equal to 1, corresponding to the tool wear value, VB.  

The Levenberg-Marquardt optimization algorithm was 
chosen for ANN training. ANN cross-validation was 
performed through the leave-k-out method with k = 1 [19]. 
According to the leave-k-out method, at each step, k = 1 SFPV 
was removed in turn from the original set of n SFPVs and used 
for ANN testing while the remaining n-k SFPVs were used for 
training. This procedure was repeated for all the n SFPVs and 
the overall pattern recognition performance was eventually 
estimated by aggregating the n recognition rates obtained. 

6. Results 

The tool wear diagnosis performance achieved by the 
different ANN architectures was estimated in terms of root 
mean squared error, RMSE, between the VB values predicted 
by the ANN and the measured VB values.  
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Fig. 9. Regression plot between ANN predicted and measured VB for test v = 
6000 rpm, f = 0.15 mm/rev. ANN configuration: 3-3-1. RMSE = 4.09E-04.  
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7. Conclusions 

With the aim to monitor the tool conditions during drilling 
of carbon fiber reinforced plastic laminates, a machine learning 
procedure based on the acquisition and processing of thrust 
force, torque, acoustic emission and vibration sensor signals 
during drilling was implemented.  

The acquired sensor signals were processed to extract 
multiple sensorial features (d = 20 features) via conventional 
statistical technique to feed machine learning paradigms based 
on artificial neural networks for tool wear diagnosis based on 
pattern recognition. To reduce the large dimensionality of the 
sensorial features, a methodology based on a supervised feature 
selection method to cut off irrelevant features followed by an 
unsupervised feature extraction method based on Principal 
Components Analysis (PCA) was implemented. 

PCA permitted to identify a lower number of features (q = 2 
features), namely the principal component scores, obtained via 
linear projection of the original d features into a new space with 
reduced dimensionality q = 2, that showed to be adequate for 
describing the variance of the data. The extracted principal 
components scores represent sensor fusion features, being 
linear combinations of the original features extracted from the 
multiple sensor signals of different nature. 

By feeding machine learning algorithms based on artificial 
neural networks with the PCA features, a very accurate 
diagnosis of tool wear (flank wear, VB) was achieved, with 
ANN predicted values very close to the measured tool wear 
values and root mean squared error always < 2.17E-03. 

The accurate diagnosis of tool wear achieved via the 
machine learning procedure presented in this work can be 
effectively implemented on-line to monitor the tool conditions 
during drilling of CFRP stack laminates allowing for the 
actuation of more efficient tool replacement strategies based on 
the actual tool conditions.  

The features set dimensionality reduction realised using the 
PCA based methodology allowed to improve the efficiency of 
the machine learning procedure, by lowering the complexity of 
the modelling and drastically reducing the number of useful 
data to be stored by one order of magnitude (from 20 features 
to 2 features for each drilled hole). 

Data volume reduction is a main goal in modern 
manufacturing industry, where huge amounts of data are 
increasingly collected and utilised in the Industry 4.0 
framework. 
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