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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The variability of the arrival and service processes has a strong impact on the performance of supply chain networks (SCNs), 
especially when the reverse flow to the manufacturer is considered. This paper proposes to use approximate analytical models to 
quickly evaluate the performance of SCN configurations during the design phase of the forward and reverse supply chains. The 
models are applied to the case of scrap-based steel production in which the role of the reverse flow is higher compared to the other 
reverse supply chains since a higher proportion of the raw material is provided by the reverse flow. As the solution methodology, 
an approach based on the queueing network model has been developed to represent general distributions of the stochastic 
parameters (i.e. arrival and processing rates). The accuracy of the proposed analytical models is assessed by comparing the results 
of numerical experiments against discrete-event simulations. 
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1. Introduction 

The study of supply chain network (SCN) configurations in 
the forward and reverse supply chain plays a vital role 
especially for the industries in which the proportion of the 
return rate is higher. Steel production is among these industries 
since it is almost 100% recyclable. This importance in the 
reverse supply chain is more evident in scrap-based steel 
production [1]. Secondary steel production will more than 
double by 2050 and may surpass primary production between 
2050 and 2060 [2]. The recycling of scrap plays an essential 
role in the conservation of energy because the remelting of 
scrap requires much less energy than the production of iron or 
steel products from iron ore [3]. The US Geological Survey 
reports that “The US domestic steel industry recycles millions 
of metric tons per year of steel cans, automobiles, appliances, 
construction materials, and other steel products. The primary 
source of obsolete steel is the automobile” [4]. Steel is the most 

versatile industrial material, with many types in different 
quality classes [1].  

The scrap which is used for steel production can be divided 
into three main categories: process (prompt, pre-consumed) 
scrap, obsolete (capital, post-consumed) scrap, and home 
(plant) scrap. Due to technology improvements, the amount of 
home scrap is being reduced and currently, compared to the 
previous two types, the proportion of this scrap type is 
negligible [5]. 

The study of forward and reverse supply chains has 
generated interest from approximately 1995 [6]. One of the 
reasons for this increasing focus is that a well-estimated return 
rate improves the financial health of the company [7]. Future 
research trends will pay more attention to this subject due to 
the advantages for the environment. Also, it is a step forward 
towards a more independent economy while managing a highly 
cooperated network among actors will be a challenge [8]. The 
combination of a forward and reverse supply chain, compared 
to a forward supply chain, is prone to greater uncertainty since 
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the forward flow is internally controlled by the manufacturer, 
while the reverse flow depends on external factors 
characterized by greater volatility [9]. Another reason for this 
increasing focus is the addition of more tiers (e.g. collection 
and preparation centers)  in the reverse flow, while in forward 
flow the company normally deals with fewer tiers (from the 
producer to the market) [10]. The uncertainty in reverse supply 
chain is classified into three factors: the quantity of elements 
(i.e. post-consumed products, scraps) in the network, the 
quality of returned products, and the timing of the return flow 
that is especially important for perishable goods [11]–[13]. 
Furthermore, there are other variations caused by the 
endogenous and exogenous factors. The endogenous factors 
are related to the possibility of not having a structured dataset 
or even not having data for some parameters. The exogenous 
factors are related to the uncertainties in the future estimations. 
Consequently, to calculate these performance measures, a 
method which embeds all the sources of stochasticity and gives 
accurate results in a timely manner is desirable. 

To design the network for analyzing the feasibility of 
autonomous collection and preparation centers for the 
producer, it is necessary to optimize their location or flows 
based on the uncertainties in the inventory level (for inventory 
design) and production rates (for the design of production 
capacity). Another application of this uncertainty analysis is to 
estimate the long-term availabilities of scrap to analyze the 
feasibility of the expansion of production activities. The aim of 
this work is to propose an analytical model for the 
medium/long-term forecast of the production utilization rate 
and the average inventory level applied to a supply chain 
network of the steel sector. Furthermore, the proposed solution 
approach calculates the average waiting time for the steel scrap 
at the warehouse and the average production time. The 
calculations are based on an application case of an Italian scrap-
based steel producer described in Section 2. Section 3 gives a 
brief literature overview on the forward and reverse network 
characteristics and stochastic analysis in these networks. The 
analytical formulas which are applicable in this context are 
explained in Section 4. Section 5 shows how the proposed 
analytical method can be applied to the case study, while 
testing its accuracy in different scenarios. Finally, Section 6 
draws the conclusions and identifies future developments. 

2. Problem statement 

The producer (P), produces different types of steel by using 
steel scrap as the raw material coming from different sources 
with different quality classes. The quality of each input scrap is 
checked by sampling from the trucks on their arrival at the 
plant. The quality control is a costly and time-consuming 
activity, and therefore, it is limited to a few samplings; as a 
consequence, the specified quality classes are prone to errors. 
Arriving scrap is kept in the warehouse from where it is 
transferred to the production line which uses the electric arc 
furnace (EAF). The work in process (WIP) after the quality 
check is then transferred to the ladle furnace (LF). The output 
is then checked at the second quality control. Therefore, the 
production rate is volatile and may be different from what is 
planned. 

 The produced steel is then transported to the manufacturers 
of consumer products (M). The high-quality steel produced by 

the producer is used mostly in the automotive sector. Therefore, 
the vast majority of these nodes are automotive manufacturers 
(around 80%).  

The suppliers (S) are other steel producers that are directly 
sending their scraps to the steel producer (P). The collection 
and preparation centers (L) deal with the treatment of pre- and 
post-consumed scraps that are transferred to the steel producer. 
A large amount of post-consumed scrap is from used cars 
deriving from junkyards. About half of the flow to the producer 
is from suppliers while the other half is from the collection and 
preparation centers.  

The reference network considered in this study is shown in 
Fig. 1. The external flows are the possible flows from/to the 
nodes not located in the reference network to/from the nodes in 
the reference network and are from the nodes S, M, and C. 
These flows are the remaining proportion of the scrap which is 
transferred to the other destinations for treatment and recycling. 
The external flows to the network are to nodes S, M, and C 
where the raw material from the mines, the steel from the other 
producers, and other steel-made products are considered 
respectively. 

 

 
Fig. 1. Forward and reverse flow of the scrap-based steel production. 

To design the network for analyzing the feasibility of 
autonomous collection and preparation centers for the producer 
and consider the uncertainties in the inventory and production 
rate of these nodes, the flows between the supply chain tiers 
and the production rates of each tier are stochastic parameters. 
The flows to the producer are based on the demand and can 
have two types of uncertainties. The first type is when there is 
a specific delivery time for components, but due to reasons 
such as disruption events caused by transportation modes or 
supplier delivery problems, the delivery time is not respected. 
The second type is when the plant defines a time slot and the 
delivery in any time in this slot is not important, the flows are 
stochastic during this time slot. Regarding the production rate, 
the unexpected quality problems prevent the producer from 
following its daily/weekly production plan and causes 
uncertainties in the production time. 

3. State-of-the-art 

The reverse flow could be in different layers of the supply 
chain network. Generally, these layers can be collection, 
rework, and disposal centers [10]. 

Many papers have identified randomly distributed variables 
for different parameters of the network. The most important 
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random parameters are as follows: 
• Production rate of the producer [14], [15] 
• Demand for returned products or produced products [14]–

[21] 
• Disposal rate [14] 
• Return flow [15], [16], [18]–[20], [22] 
• Service rate in collection centers [23] 

Discrete-event simulation (DES) can be used to evaluate the 
performance of systems like a forward and reverse supply 
chain. DES models are highly flexible and capable of 
considering different sources of uncertainty and different 
statistical distributions. However, the adoption of a DES-based 
approach can be highly time consuming both for the generation 
of the DES model and the execution of the simulation runs that 
are needed for obtaining accurate results within an acceptable 
confidence interval.  

Also, analytical methods, and in particular, queueing 
networks, can be employed in place of DES to model forward 
and reverse supply chains and evaluate their performance. 
Analytical methods are typically faster than DES, but they are 
based on limiting modelling assumptions that may jeopardize 
their accuracy.  

Analytical methods can be classified into two groups 
according to how they deal with stochastic parameters. The 
first group assumes a specific type of distribution for the flows 
and production rates. This asks to make strong and non-realistic 
assumptions, but the advantage is that exact formulas can be 
exploited to estimate the performance of the network. The 
second group takes a broader and more realistic approach to 
model the network by enabling to consider more than one 
distribution or even generic distributions. However, in this case 
there are no exact formulas, therefore approximate formulas 
must be adopted based on the characteristics of the network. 
Table 1 reports some of the papers belonging to the second 
group and considering general distribution for the stochastic 
parameters. 

Table 1. The studies in which some parameters are used for the performance 
measurement as general distribution of forward and reverse supply chain 
(SC). 

Reference Forward 
SC  

Reverse 
SC Parameters  

[24] ✓  Expected waiting time for the 
manufacturer, expected number 
of orders 

[25]–[27] ✓ ✓ Expected cycle time, expected 
lead time 

[28]  ✓ Average availability at the 
recovery facilities 

4. The proposed model 

Herein, an analytical model based on open queueing 
networks is proposed to represent the internal and external 
flows in a forward and reverse supply chain. Even if less 
accurate than a DES model, this approach was chosen because 
it is faster and better suited to support the network design since 
several network configurations must be assessed. Since we deal 
with a network design as a medium/long-term decision, the 
mentioned uncertainties are stable during the time and 
therefore, the model could be built in a steady-state situation. 
Another view of the network of Fig. 1 is shown in Fig. 2 where, 

for each tier, it is assumed that there is only one node. This 
figure represents external flows, the proportion of flows 
between the nodes, and the production rates of the nodes S, P, 
M, and L, as well as the consumption rate of the market (C) as 
reported in Table 2. 

Table 2. Nomenclature. 
𝜌𝜌  𝑜𝑜𝑜𝑜 𝜌𝜌𝑖𝑖 Utilization factor of each node 

𝜇𝜇  𝑜𝑜𝑜𝑜 𝜇𝜇𝑖𝑖  Production/consumption rate of each node 

𝐶𝐶𝑎𝑎2  𝑜𝑜𝑜𝑜 𝐶𝐶𝑎𝑎2(𝑖𝑖) Squared coefficient of variation (SCV) of the 
arrival to each node 

𝐶𝐶𝑝𝑝𝑝𝑝2  𝑜𝑜𝑜𝑜 𝐶𝐶𝑝𝑝𝑝𝑝2 (𝑖𝑖) SCV of production for each node 

𝐶𝐶𝑝𝑝𝑝𝑝 Coefficient of variation (CV) of production for 
each node 

𝐶𝐶𝑑𝑑
2 𝑜𝑜𝑜𝑜 𝐶𝐶𝑑𝑑

2(𝑖𝑖) SCV of departures from each node 

𝐶𝐶𝑎𝑎−𝑒𝑒𝑒𝑒𝑒𝑒
2 (𝑖𝑖) SCV of the external arrival to each node 

𝐶𝐶𝑎𝑎−𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) CV of the external arrival to each node 

𝑚𝑚 Number of servers at each node 

𝜆𝜆 𝑜𝑜𝑜𝑜 𝜆𝜆𝑖𝑖 Arrival rate to each node 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) Arrival rate of the external flow to each node 

𝑞𝑞𝑖𝑖𝑖𝑖 Proportion of the flows from node i to node j 

𝐶𝐶𝐶𝐶 Confidence interval 

 
Fig. 2. Internal and external flows between the tiers of the supply chain and the 
production rates of each tier. 

The internal flows between the nodes could be calculated 
according to traffic equations. A typical assumption for 
calculating the average amount of scrap is to consider the 
arrival rates (𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆), 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒(𝑀𝑀), 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒(𝑃𝑃)) and production rates 
(𝜇𝜇𝑖𝑖) as exponential distribution [14], [15]. However, based on 
the characteristics of the problem, assuming that all the 
parameters in the industry are exponentially distributed is a 
strict assumption [29]. According to Section 2, the two types of 
uncertainties in the flows and the quality problems for the 
production rate can follow three statistical distributions: 
exponential, normal, and uniform. Besides, if there is a 
historical data set, but it is not possible to define a specific 
distribution, we can consider a general distribution with a 
specific mean and variance to have a more realistic result [25]. 
Therefore, independent external arrivals with general 
distribution (GI), production rates with general distribution (G) 
and m production/consumption centers are the characteristics 
of this queueing network (GI/G/m). Furthermore, since the key 
feature of GI/G/m queueing network is infinite inventory 
capacity, it is aligned with the characteristics of the network 
design. Therefore, the inventory capacity could be calculated 
according to the average inventory level obtained from the 
queueing network models.  In the models of these queueing 
network types, there are not exact analytical formulas, and so, 
we use estimations to calculate the expected waiting time (EW) 
for a tier in the supply chain. This could be calculated by two 
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of the widely-used estimations proposed in the literature for 
each node of the network. The first one is derived from the 
heavy traffic approximations with the addition of a correction 
factor (i.e. 2 2( , , , )a prC C m [30]:  
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The calculation of the squared coefficient of variation 

(SCV) of the arrival to each node (i) depends on the SCV of the 
departure from the other nodes (j) and external flows. The 
estimation equations are as follows [31]: 
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5. Model application and results 

The analytical formulas in the previous section are applied 
to the forward and reverse network of Fig. 2 for the scrap-based 
steel production. The focus of the calculations in this study is 
on the average availability at node L. Other performance 
measures (i.e., average inventory level and the average 
availability of scrap in the production phase) could be obtained 
from Little’s theorem. Therefore, the goal of this section is to 
solve the problem stated in Section 2 for designing the forward 
and reverse supply chains. The average inventory level is useful 
to assign the inventory capacity for the nodes P or L. The 
average availability of scrap in the production phase is useful 
to assign the production capacity.  The input parameters are the 
mean and standard deviations of the external arrivals (to nodes 
S, M, C), mean and standard deviation of the production rates 
of each node, and the proportion of the flows in the network. 
To initialize the calculations, the arrival rate at each node is 
calculated according to the traffic equations. The main input 
data taken from the producer are the mean and standard 
deviations of the production rate, considering the variations of 
the quality of input scrap, the input flows from the suppliers 
and collection and preparation centers as well as the output 

flow to the manufacturers of consumer products. In addition, 
the data for the collection and preparation centers are based on 
the data from a company which is the main supplier (in node L) 
for the producer. The remaining data for the other nodes is 
based on the estimation from the statistical data.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 3. Analysis of the accuracy of the models against the changes of CV. 

To check the accuracy of the equations, a set of experiments 
have been implemented in which, by increasing the standard 
deviation of the external flows and the production rates for a 
specific mean (i.e. coefficient of variation), the changes of the 
average availability amount of scrap is analyzed. To make the 
coefficient of variation (CV) changes for both the production 
rate and external flows comparable, CV is shown as a 
percentage on the graphs. The accuracy of the results obtained 
by the analytical formulas is assessed by making a comparison 
with a discrete-event simulation implemented in Java 
Modelling Tools (JMT) [32]. In the simulation, exponential, 
uniform, and normal distributions are used for the external 
flows and production rates. Each simulation run is replicated 
five times since more replications do not further improve the 
accuracy of the results. Fig. 3 shows an example of three graphs 
for these calculations. In Fig. 3 (a), the increase in the CV of 
the production rate as a normal distribution causes an 
increasing and nonlinear trend of the average availability of 
scrap. The same interpretation is valid for the increase in the 
CV of external flow with the normal distribution in Fig. 3 (b). 
Fig. 3 (c) shows the changes in the uniform distribution of the 
external flow, which is almost linear and stable around a fixed 
amount of average availability (1.7). The confidence interval 
for the simulation results is 95% except for some cases in which 
the CV is around one. In the latter case, the confidence interval 
reduces to around 85% due to the higher variations. As a 
general observation, by increasing the coefficient of variation 
of both external flows and production rate until around 40%, 
Eq. (1) gives better results compared to Eq. (2) except in cases 
where the distribution of the external flow is exponential. In the 
latter case, Eq. (2) gives accurate results until 40% of the CV. 
For more than 40% of the coefficient of variation, the results 
are not reliable. 

Although the results of Eq. (2) are closer to the simulation 
results for most of the cases, they show overestimations in 
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of the widely-used estimations proposed in the literature for 
each node of the network. The first one is derived from the 
heavy traffic approximations with the addition of a correction 
factor (i.e. 2 2( , , , )a prC C m [30]:  
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5. Model application and results 

The analytical formulas in the previous section are applied 
to the forward and reverse network of Fig. 2 for the scrap-based 
steel production. The focus of the calculations in this study is 
on the average availability at node L. Other performance 
measures (i.e., average inventory level and the average 
availability of scrap in the production phase) could be obtained 
from Little’s theorem. Therefore, the goal of this section is to 
solve the problem stated in Section 2 for designing the forward 
and reverse supply chains. The average inventory level is useful 
to assign the inventory capacity for the nodes P or L. The 
average availability of scrap in the production phase is useful 
to assign the production capacity.  The input parameters are the 
mean and standard deviations of the external arrivals (to nodes 
S, M, C), mean and standard deviation of the production rates 
of each node, and the proportion of the flows in the network. 
To initialize the calculations, the arrival rate at each node is 
calculated according to the traffic equations. The main input 
data taken from the producer are the mean and standard 
deviations of the production rate, considering the variations of 
the quality of input scrap, the input flows from the suppliers 
and collection and preparation centers as well as the output 

flow to the manufacturers of consumer products. In addition, 
the data for the collection and preparation centers are based on 
the data from a company which is the main supplier (in node L) 
for the producer. The remaining data for the other nodes is 
based on the estimation from the statistical data.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 3. Analysis of the accuracy of the models against the changes of CV. 

To check the accuracy of the equations, a set of experiments 
have been implemented in which, by increasing the standard 
deviation of the external flows and the production rates for a 
specific mean (i.e. coefficient of variation), the changes of the 
average availability amount of scrap is analyzed. To make the 
coefficient of variation (CV) changes for both the production 
rate and external flows comparable, CV is shown as a 
percentage on the graphs. The accuracy of the results obtained 
by the analytical formulas is assessed by making a comparison 
with a discrete-event simulation implemented in Java 
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for these calculations. In Fig. 3 (a), the increase in the CV of 
the production rate as a normal distribution causes an 
increasing and nonlinear trend of the average availability of 
scrap. The same interpretation is valid for the increase in the 
CV of external flow with the normal distribution in Fig. 3 (b). 
Fig. 3 (c) shows the changes in the uniform distribution of the 
external flow, which is almost linear and stable around a fixed 
amount of average availability (1.7). The confidence interval 
for the simulation results is 95% except for some cases in which 
the CV is around one. In the latter case, the confidence interval 
reduces to around 85% due to the higher variations. As a 
general observation, by increasing the coefficient of variation 
of both external flows and production rate until around 40%, 
Eq. (1) gives better results compared to Eq. (2) except in cases 
where the distribution of the external flow is exponential. In the 
latter case, Eq. (2) gives accurate results until 40% of the CV. 
For more than 40% of the coefficient of variation, the results 
are not reliable. 

Although the results of Eq. (2) are closer to the simulation 
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some cases. To study the effect of different factors on these 
overestimations, a set of experiments have been designed. For 
each experiment, three factors are considered with two 
different levels for each one. The factors are the utilization 
factor, the squared coefficient of variation (SCV) of the arrival, 
and the SCV of the production rate of the nodes (Table 3). The 
range of the changes for each factor is based on the result of the 
previous set of experiments. Therefore, the SCV of arrival 
changes between 0.01 and 0.03 to be aligned within the 40% of 
the CV. The difference between the Eq. (1) and the maximum 
amount obtained by the simulation (‘max’ column) is 
calculated to show the distance in which the result is 
acceptable. The results of the experiments show that for low 
values of the utilization factor (0.2), the approximation is very 
accurate, or with negligible overestimations (less than 0.05), 
while it is overestimated for high utilization factors (0.8). 
However, more experiments show that sometimes, for high 
utilization factors, the results are exact. To check the accuracy 
more in detail, Table 4 shows the trend of the accuracy of the 
formula against the changes of utilization factor. The other two 
factors in the previous experiment (SCV of external arrival and 
production) are kept fixed for these sets of experiments. The 
trend shows that, until around the utilization factor of 0.5, the 
model gives exact results while from 0.5 onwards, it results in 
overestimations.  

Table 3. Experiments on the accuracy of the models on the application case 
((1): Eq. (1), Diff.: Difference between the Eq. and simulation in case of 
overestimation, Ave: Average, Acc.: Accuracy, Over: Overestimation). 

𝜌𝜌 𝐶𝐶𝑝𝑝𝑝𝑝2  𝐶𝐶𝑎𝑎−𝑒𝑒𝑒𝑒𝑒𝑒2  Simulation 
(1) Acc. Diff. CI 

Ave Min Max 
0.8 0.09 0.09 1.41 1.35 1.47 1.63 Over. 0.17 

95% 

0.2 0.09 0.09 0.21 0.20 0.22 0.21 Exact  
0.2 0.09 0.01 0.21 0.20 0.22 0.21 Exact  
0.8 0.01 0.09 1.28 1.24 1.32 1.51 Over. 0.19 
0.8 0.09 0.01 1.31 1.24 1.39 1.59 Over. 0.2 
0.2 0.01 0.09 0.21 0.20 0.21 0.21 Exact  
0.2 0.01 0.01 0.21 0.20 0.22 0.21 Exact  
0.8 0.01 0.01 1.23 1.17 1.28 1.47 Over. 0.18 

Table 4. The accuracy of the analytical model against the changes of the 
utilization factor. 

𝜌𝜌 𝐶𝐶𝑝𝑝𝑝𝑝2  𝐶𝐶𝑎𝑎−𝑒𝑒𝑒𝑒𝑒𝑒2  Simulation 
(1) Acc. Diff. CI 

Ave Min Max 
0.1 

0.09 0.09 

0.1 0.1 0.11 0.1 Exact   

95% 0.5 0.59 0.57 0.6 0.6 Exact  
0.8 1.4 1.34 1.47 1.63 Over. 0.16 
0.9 2.49 2.39 2.61 3 Over. 0.39 

All in all, Fig. 4 represents the general solution approach 
and conditions to use each of the analytical models. The first 
point is to check the standard deviation and its proportion to the 
mean for the production rate of the node and the external flows 
to the network (i.e., the coefficient of variation). The 
assumption of this study is to have a range of CV between zero 
and one. If the standard deviation of the external flow is almost 
equal to the mean (CV=1), Eq. (2) is the appropriate one to use. 
Otherwise, if the utilization factor of the node is up to 0.5, Eq. 
(1) gives the exact results (or if there is an overestimation, it is 
negligible). For the higher utilization factors, Eq. (1) could be 
applied with some overestimations. The calculation time for the 
analytical models in MATLAB is less than one second. 

Regarding the discrete-event simulation, the running time in 
JMT depends on the values of the standard deviation and the 
utilization factor and is between around 10 and 30 seconds for 
five replications, calculating the average, minimum, and 
maximum values for each replication. Therefore, the analytical 
models are both more efficient and stable in the calculation 
time.  
 

 
 
 
 
 

 
Fig. 4. Solution approach. 

6. Conclusion 

This paper proposes a solution approach to estimate the 
performance measures in the design phase of forward and 
reverse supply chains of scrap-based steel production. The real 
distribution of the inbound flows and production rates of the 
nodes are unknown. To validate the models, we design and run 
a set of experiments where the variables have exponential, 
normal, or uniform distributions. In this way, the solution 
approach identifies how to use the models in different 
configurations . It is verified that the analytical models are 
much quicker compared to the discrete-event simulation. 
Moreover, the experiments show that for the calculations of the 
performance measures of a specific node, the variability of the 
production rate of the other nodes does not affect the solution. 

The results of the analyses help the decision-makers for 
designing the forward and reverse supply network to have a 
reliable estimation of the inventory and production capacity for 
both the producer and collection and preparation centers.  

In cases where the analysis of all the tiers in the network is 
not desired, the models could be applied to a part of the 
network. In this case, the internal flows that are not considered 
in the new configuration are counted as the external flows. In 
addition, the proposed solution approach could be applied for 
the workstations and buffers in the production lines with a 
similar configuration of this study.   

Further studies could be focused on the reduction of the 
overestimations of the results of the analytical formulas 
compared to the simulation, the analysis of the effect of the 
quality variations of the scrap on the stochasticity of the 
production rate, and the possible correlations between the flows 
and production rates.  

Appendix A. The correction factor for Eq. (1) 

The calculations for the correction factor 2 2( , , , )a prC C m  in 
Eq. (1) are as follows:  

2 2 2
2 2 2

12 2 2 2
2 2

2 2 2 2
2 2 2

32 2 2 2

4( )
( ) ( , ) ( ) ( , , ),

4 3 4 3
( , , , ) {

3
( ) ( , ) ( ) ( , , ),
2( ) 2( )

a pr pr
a pr

a pr a pr
a pr

pr a pr a
a pr

a pr a pr

C C C
m c m C C

C C C C
C C m

C C C C
m c m C C

C C C C

 



 

−
 +  

− −
 =

− −
 +  

+ +

 

1( , ) 1 ( , )m m   = +        ;  
2 (1 )

3
3( , ) (1 4 ( , ))m m e


  
−

−
 = −  

 Mohammadtaghi Falsafi et al./ Procedia CIRP 00 (2019) 000–000  6 

2

2
2

2(1 ) 2
4

1, 1
( , , ) {

( , ) , 0 1c

c
c m

m c


 −


 =

  
 

0.5(1 )( 1)[(4 5 ) 2]( , ) min{ 0.24 , }
16

m mm
m

 


− − + −
=  

2 2
2

2
a prC C

c
+

=    ;   1 3
4

( , ) ( , )( , ) min {1, }
2

m mm  


 +
 =  

References 
[1] EUROFER, “Steel and the Circular Economy,” 2015. [Online]. 

Available: 
http://www.eurofer.org/News&Events/PublicationsLinksList/20151016
_CircularEconomyA4.pdf. 

[2] S. Pauliuk, R. L. Milford, D. B. Muller, and J. M. Allwood, “The Steel 
Scrap Age,” Environ. Sci. Technol., vol. 47, no. 7, p. pp.3448-3454, 2013. 

[3] M. D. Fenton, “Iron and steel scrap,” in Minerals yearbook, vol. 1, 2010, 
p. 38.1. 

[4] U.S. Geological Survey, “Iron and steel scrap,” 2017. 
[5] D. Janke, L. Savov, H.-J. Weddige, and E. Schulz, “Scrap-Based Steel 

Production and Recycling of Steel,” Mater. Tehnol., vol. 34, no. 6, pp. 
387–399, 2000. 

[6] S. Rubio, A. Chamorro, and F. J. Miranda, “Characteristics of the 
research on reverse logistics (1995-2005),” Int. J. Prod. Res., vol. 46, no. 
4, pp. 1099–1120, 2008. 

[7] S. Bhattacharjee and J. Cruz, “Economic sustainability of closed loop 
supply chains: A holistic model for decision and policy analysis,” Decis. 
Support Syst., vol. 77, pp. 67–86, 2015. 

[8] T. Tolio, G. Copani, and W. Terkaj, “Key Research Priorities for 
Factories of the Future—Part I: Missions,” in Factories of the Future, 
Cham: Springer International Publishing, 2019, pp. 433–474. 

[9] M. Fleischmann, H. R. Krikke, R. Dekker, and S. D. P. Flapper, “A 
characterisation of logistics networks for product recovery,” Omega, vol. 
28, no. 6, pp. 653–666, 2000. 

[10] M. T. Melo, S. Nickel, and F. Saldanha-da-Gama, “Facility location and 
supply chain management - A review,” Eur. J. Oper. Res., vol. 196, no. 
2, pp. 401–412, 2009. 

[11] A. Atasu, V. D. R. Guide, and L. N. Van Wassenhove, “Product Reuse 
Economics in Closed-Loop Supply Chain Research,” Prod. Oper. 
Manag., vol. 17, no. 5, pp. 483–496, Sep. 2008. 

[12] M. de Keizer, R. Akkerman, M. Grunow, J. M. Bloemhof, R. Haijema, 
and J. G. A. J. van der Vorst, “Logistics network design for perishable 
products with heterogeneous quality decay,” Eur. J. Oper. Res., vol. 262, 
no. 2, pp. 535–549, 2017. 

[13] P. Chanintrakul, “Reverse logistics network design : a state-of-the-art 
literature review Adrian E . Coronado Mondragon , Chandra Lalwani and 
Chee Yew Wong *,” vol. 1, no. 1, 2009. 

[14] A. Korugan, S. Ata, and M. Fadiloglu, “The Impact of Orbit Dependent 
Return Rate on the Control Policies of a Hybrid Production System,” in 
SMMSO 2017, 2017, pp. 201–208. 

[15] H. Zerhouni, J. P. Gayon, and Y. Frein, “Influence of dependency 
between demands and returns in a reverse logistics system,” Int. J. Prod. 
Econ., vol. 143, no. 1, pp. 62–71, 2013. 

[16] M. Fleischmann, R. Kuik, and R. Dekker, “Controlling inventories with 
stochastic item returns: A basic model,” Eur. J. Oper. Res., vol. 138, no. 
1, pp. 63–75, 2002. 

[17] X.-M. Yuan and K. L. Cheung, “Modeling returns of merchandise in an 
inventory system,” OR Spektrum, vol. 20, no. 3, pp. 147–154, 1998. 

[18] G. P. Kiesmüller and E. A. Van der Laan, “An inventory model with 
dependent product demands and returns,” Int. J. Prod. Econ., vol. 72, no. 
1, pp. 73–87, 2001. 

[19] M. Ferguson, V. D. Guide, E. Koca, and G. C. Van Souza, “The value of 
quality grading in remanufacturing,” Prod. Oper. Manag., vol. 18, no. 3, 
pp. 300–314, 2009. 

[20] E. van der Laan, M. Salomon, R. Dekker, and L. Van Wassenhove, 
“Inventory Control in Hybrid Systems with Remanufacturing,” Manage. 
Sci., vol. 45, no. 5, pp. 733–747, 1999. 

[21] L. B. Toktay, L. M. Wein, and S. A. Zenios, “Inventory Management of 
Remanufacturable Products,” Manage. Sci., vol. 46, no. 11, pp. 1412–
1426, 2000. 

[22] M. P. de Brito and R. Dekker, “Modelling product returns in inventory 
control - Exploring the validity of general assumptions,” Int. J. Prod. 
Econ., vol. 81, no. 82, pp. 225–241, 2003. 

[23] B. Vahdani, R. Tavakkoli-Moghaddam, M. Modarres, and A. Baboli, 
“Reliable design of a forward/reverse logistics network under 
uncertainty: A robust-M/M/c queuing model,” Transp. Res. Part E 
Logist. Transp. Rev., vol. 48, no. 6, pp. 1152–1168, 2012. 

[24] S. Srivathsan and M. Kamath, “An analytical performance modeling 
approach for supply chain networks,” IEEE Trans. Autom. Sci. Eng., vol. 
9, no. 2, pp. 265–275, 2012. 

[25] K. Lieckens and N. Vandaele, “Reverse logistics network design with 
stochastic lead times,” Comput. Oper. Res., vol. 34, no. 2, pp. 395–416, 
2007. 

[26] K. Lieckens and N. Vandaele, “Multi-level reverse logistics network 
design under uncertainty,” Int. J. Prod. Res., vol. 50, no. 1, pp. 23–40, 
2012. 

[27] K. T. Lieckens, P. J. Colen, and M. R. Lambrecht, “Optimization of a 
stochastic remanufacturing network with an exchange option,” Decis. 
Support Syst., vol. 54, no. 4, pp. 1548–1557, 2013. 

[28] D. Si-Bo and H. Wei-lai, “Reverse Logistics Optimization Based on 
GI/G/m,” in InService Systems and Service Management, 2007. 

[29] W. . Hopp and M. L. Spearman, Factory physics, Waveland P. 2011. 
[30] W. Whitt, “Approximations for the GI/G/m queue,” Prod. Oper. Manag., 

vol. 2, no. 2, pp. 114–161, 1993. 
[31] J. Buzacott and J. Shanthikumar, Stochastic models of manufacturing 

systems. Englewood Cliffs, NJ: Prentice Hall, 1993. 
[32] M. Bertoli, P. Milano, M. Hall, and G. Serazzi, “JMT - Performance 

Engineering Tools for System Modeling,” ACM SIGMETRICS Perform. 
Eval. Rev., vol. 36, no. 4, pp. 10–15, 2009. 

 



 Mohammadtaghi Falsafi  et al. / Procedia CIRP 81 (2019) 1342–1347 1347
 Mohammadtaghi Falsafi et al./ Procedia CIRP 00 (2019) 000–000  6 

2

2
2

2(1 ) 2
4

1, 1
( , , ) {

( , ) , 0 1c

c
c m

m c


 −


 =

  
 

0.5(1 )( 1)[(4 5 ) 2]( , ) min{ 0.24 , }
16

m mm
m

 


− − + −
=  

2 2
2

2
a prC C

c
+

=    ;   1 3
4

( , ) ( , )( , ) min {1, }
2

m mm  


 +
 =  

References 
[1] EUROFER, “Steel and the Circular Economy,” 2015. [Online]. 

Available: 
http://www.eurofer.org/News&Events/PublicationsLinksList/20151016
_CircularEconomyA4.pdf. 

[2] S. Pauliuk, R. L. Milford, D. B. Muller, and J. M. Allwood, “The Steel 
Scrap Age,” Environ. Sci. Technol., vol. 47, no. 7, p. pp.3448-3454, 2013. 

[3] M. D. Fenton, “Iron and steel scrap,” in Minerals yearbook, vol. 1, 2010, 
p. 38.1. 

[4] U.S. Geological Survey, “Iron and steel scrap,” 2017. 
[5] D. Janke, L. Savov, H.-J. Weddige, and E. Schulz, “Scrap-Based Steel 

Production and Recycling of Steel,” Mater. Tehnol., vol. 34, no. 6, pp. 
387–399, 2000. 

[6] S. Rubio, A. Chamorro, and F. J. Miranda, “Characteristics of the 
research on reverse logistics (1995-2005),” Int. J. Prod. Res., vol. 46, no. 
4, pp. 1099–1120, 2008. 

[7] S. Bhattacharjee and J. Cruz, “Economic sustainability of closed loop 
supply chains: A holistic model for decision and policy analysis,” Decis. 
Support Syst., vol. 77, pp. 67–86, 2015. 

[8] T. Tolio, G. Copani, and W. Terkaj, “Key Research Priorities for 
Factories of the Future—Part I: Missions,” in Factories of the Future, 
Cham: Springer International Publishing, 2019, pp. 433–474. 

[9] M. Fleischmann, H. R. Krikke, R. Dekker, and S. D. P. Flapper, “A 
characterisation of logistics networks for product recovery,” Omega, vol. 
28, no. 6, pp. 653–666, 2000. 

[10] M. T. Melo, S. Nickel, and F. Saldanha-da-Gama, “Facility location and 
supply chain management - A review,” Eur. J. Oper. Res., vol. 196, no. 
2, pp. 401–412, 2009. 

[11] A. Atasu, V. D. R. Guide, and L. N. Van Wassenhove, “Product Reuse 
Economics in Closed-Loop Supply Chain Research,” Prod. Oper. 
Manag., vol. 17, no. 5, pp. 483–496, Sep. 2008. 

[12] M. de Keizer, R. Akkerman, M. Grunow, J. M. Bloemhof, R. Haijema, 
and J. G. A. J. van der Vorst, “Logistics network design for perishable 
products with heterogeneous quality decay,” Eur. J. Oper. Res., vol. 262, 
no. 2, pp. 535–549, 2017. 

[13] P. Chanintrakul, “Reverse logistics network design : a state-of-the-art 
literature review Adrian E . Coronado Mondragon , Chandra Lalwani and 
Chee Yew Wong *,” vol. 1, no. 1, 2009. 

[14] A. Korugan, S. Ata, and M. Fadiloglu, “The Impact of Orbit Dependent 
Return Rate on the Control Policies of a Hybrid Production System,” in 
SMMSO 2017, 2017, pp. 201–208. 

[15] H. Zerhouni, J. P. Gayon, and Y. Frein, “Influence of dependency 
between demands and returns in a reverse logistics system,” Int. J. Prod. 
Econ., vol. 143, no. 1, pp. 62–71, 2013. 

[16] M. Fleischmann, R. Kuik, and R. Dekker, “Controlling inventories with 
stochastic item returns: A basic model,” Eur. J. Oper. Res., vol. 138, no. 
1, pp. 63–75, 2002. 

[17] X.-M. Yuan and K. L. Cheung, “Modeling returns of merchandise in an 
inventory system,” OR Spektrum, vol. 20, no. 3, pp. 147–154, 1998. 

[18] G. P. Kiesmüller and E. A. Van der Laan, “An inventory model with 
dependent product demands and returns,” Int. J. Prod. Econ., vol. 72, no. 
1, pp. 73–87, 2001. 

[19] M. Ferguson, V. D. Guide, E. Koca, and G. C. Van Souza, “The value of 
quality grading in remanufacturing,” Prod. Oper. Manag., vol. 18, no. 3, 
pp. 300–314, 2009. 

[20] E. van der Laan, M. Salomon, R. Dekker, and L. Van Wassenhove, 
“Inventory Control in Hybrid Systems with Remanufacturing,” Manage. 
Sci., vol. 45, no. 5, pp. 733–747, 1999. 

[21] L. B. Toktay, L. M. Wein, and S. A. Zenios, “Inventory Management of 
Remanufacturable Products,” Manage. Sci., vol. 46, no. 11, pp. 1412–
1426, 2000. 

[22] M. P. de Brito and R. Dekker, “Modelling product returns in inventory 
control - Exploring the validity of general assumptions,” Int. J. Prod. 
Econ., vol. 81, no. 82, pp. 225–241, 2003. 

[23] B. Vahdani, R. Tavakkoli-Moghaddam, M. Modarres, and A. Baboli, 
“Reliable design of a forward/reverse logistics network under 
uncertainty: A robust-M/M/c queuing model,” Transp. Res. Part E 
Logist. Transp. Rev., vol. 48, no. 6, pp. 1152–1168, 2012. 

[24] S. Srivathsan and M. Kamath, “An analytical performance modeling 
approach for supply chain networks,” IEEE Trans. Autom. Sci. Eng., vol. 
9, no. 2, pp. 265–275, 2012. 

[25] K. Lieckens and N. Vandaele, “Reverse logistics network design with 
stochastic lead times,” Comput. Oper. Res., vol. 34, no. 2, pp. 395–416, 
2007. 

[26] K. Lieckens and N. Vandaele, “Multi-level reverse logistics network 
design under uncertainty,” Int. J. Prod. Res., vol. 50, no. 1, pp. 23–40, 
2012. 

[27] K. T. Lieckens, P. J. Colen, and M. R. Lambrecht, “Optimization of a 
stochastic remanufacturing network with an exchange option,” Decis. 
Support Syst., vol. 54, no. 4, pp. 1548–1557, 2013. 

[28] D. Si-Bo and H. Wei-lai, “Reverse Logistics Optimization Based on 
GI/G/m,” in InService Systems and Service Management, 2007. 

[29] W. . Hopp and M. L. Spearman, Factory physics, Waveland P. 2011. 
[30] W. Whitt, “Approximations for the GI/G/m queue,” Prod. Oper. Manag., 

vol. 2, no. 2, pp. 114–161, 1993. 
[31] J. Buzacott and J. Shanthikumar, Stochastic models of manufacturing 

systems. Englewood Cliffs, NJ: Prentice Hall, 1993. 
[32] M. Bertoli, P. Milano, M. Hall, and G. Serazzi, “JMT - Performance 

Engineering Tools for System Modeling,” ACM SIGMETRICS Perform. 
Eval. Rev., vol. 36, no. 4, pp. 10–15, 2009. 

 


