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Abstract—Dataflow applications have proven to be well-suited
for hardware implementation due to their intrinsic pipelined
nature. Furthermore a wide range of algorithms, ranging from
image analysis to map-reduce tasks, can be expressed using this
paradigm. At the same time Field Programmable Gate Arrays
(FPGA) start to be employed as hardware accelerators also
in high-end systems coupled with General Purpose Processors
(GPP). In this work we propose a programmable interconnection
structure which permits to dynamically reconfigure the function-
ality of an FPGA implementing dataflow applications. A detailed
analysis of the proposed solution shows that it is effectively able
to increase the overall system flexibility helping in reducing the
overall workload execution up to 25%, while at the same time
reducing its variance.

I. INTRODUCTION

Miniaturization of electronics components is pushing field

programmable gate arrays (FPGAs) limits always forth. For

instance, they contain enough reconfigurable logic to make

it is possible to build large systems-on-chip (SoC), allowing

for large and complex designs to be implemented directly on a

single chip. Many high performance computing (HPC) systems

(like Maxeler Ltd.’s workstations [1]) and everyday desktops

and notebooks (like Apple’s MacBook Pro, featuring a Lattice

LFXP2-5E FPGA) make use of dedicated FPGAs to accelerate

performance-critical portions of code of their applications or

improve the overall performance/watt figure of the design.
Given the availability of these platforms, an open research

issue is the crisp characterization of the class of algorithms that

is convenient to implement in dedicated hardware, the most

attractive feature of these platforms due to the intrinsically

parallel nature of the reconfigurable logic. A widely accepted

practical result is that any algorithm that may be implemented

as a deeply-pipelined design made of highly predictable and

small stages with a low amount of control logic is a good

candidate to be efficiently mapped in hardware [2]. Accurate

design of the hardware logic leads to designs that respect

these conditions. Examples of applications successfully ported

to hardware are image processing filters [3], digital signal

processing frameworks [4], stock options pricing [5] and

cryptographic algorithms, such as AES [6]. Additionally, some

stages may be shared among different component libraries,

leading to a scenario where it is feasible to partially reuse

some hardware stages for different applications.
Designing and programming these architectures is not usu-

ally straightforward; for this reason, specific programming

paradigms have been developed. Particularly relevant is the

data flow programming approach [2], which particularly fits

these scenarios. In the dataflow approach, applications are

described by means of graphs of operations where each node

executes a specific arithmetic function, getting data from the

inputs and putting data on the outputs. Data “flows” from one

node to the next, hence dataflow approach.

There are commercially successful platforms relying on the

dataflow paradigm in the context of HPC; in this work we

focus on the FPGA-accelerated, HPC workstations by Maxeler

Ltd. These platforms allow the developer to accelerate his/her

application by offloading the “hot code” to the FPGA in

a suitable dataflow representation, while keeping the most

“control intensive” portions of the application on the CPU.

Data is moved from main memory to FPGA and vice-versa

by means of an interface like PCI-e in a streaming fashion.

The components realizing the various stages of the pipeline

(called “kernels”) are written in Java and may be packed

into components libraries to improve code and component

reuse. Moreover, in order to maximize the utilization of the

reconfigurable logic and the overall system, we consider a

scenario where many different instances of these hardware

libraries are instantiated (possibly at runtime) and invoked by

the host code at different times and in an unpredictable order.

In this situation, it is almost impossible to determine a priori
which are the optimal connections among the various kernels

and the endpoints to/from the host machine, thus requiring a

means for redirecting traffic. Even though Maxeler provides a

manager to realize such connections, this must be configured

at design time and might not be subsequently modified at

runtime. Of course, since the FPGA is reconfigurable, it

is possible to devise a solution where all the connections

among the various kernels are reconfigured to accomplish

the new users’ needs, but the amount of logic to reconfigure

might be non negligible, thus introducing large reconfiguration

overheads. Moreover, partial bitstreams of all the possible

configurations must be anticipated at design time. To cope

with this kind of issues, a typical solution in the context of

embedded systems is the introduction of a interconnection

infrastructure, called crossbar [7], [8], which is a hardware

switch capable of connecting each of the N inputs to one of

its M outputs.

The contribution of this paper is the realization of a

dataflow oriented N ×M crossbar scheme aimed at dynamic
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reconfiguring interconnections between cores at run-time in

order to support the instantiation of hardware computation

pipelines among different kernels even when they have not

been foresee at design time. We provide details about our

implementation and analyze a case study showing how this

interconnection component provides up to a 25% speedup in

workload execution time while decreasing, at the same time,

its standard deviation leading to more predictable executions.

The rest of the paper is organized as follows. Section II

introduces some of the most relevant related works in this

field of research. Then, Section III introduces the proposed

solution and discusses some alternatives, along with their

drawbacks, while Section IV presents the details of the devised

architecture, and Section V analyzes the overhead introduced

by the interconnection component in term of area occupation

an frequency. Subsequently, Section VI presents a case study

involving an image processing pipeline, while Section VII ana-

lyzes the results of introducing our interconnection component

when designing a hardware implementation for the presented

case study. Finally, conclusions and future directions of work

are given in Section VIII.

II. RELATED WORK

Much research focuses on the design of interconnection

components between IPs in an embedded system, whereas

dynamic connection of multiple kernels in a HPC and dataflow

context is a pretty novel research. In this section, we compare

our solution to some of the most relevant IP-interconnection

related methodologies in literature.

A straightforward means for connecting different IPs to the

host system is a bus-based solution like ARM AMBA/AXI

[9], [10] or IBM’s CoreConnect. The main drawback of these

solutions is that they share the same bus signals to route

traffic among all the IPs connected to the bus, thus creating a

bottleneck whenever the pipeline is “warm” (i.e. when all the

cores are moving data among them). This scenario requires to

account for a bus whose peak throughput is the sum of the peak

throughputs of all the cores plus the arbitration traffic. This is

unnecessary since dataflow applications are highly predictable,

with a precise ordering among the invoked kernels, and the

traffic flows constantly from one single kernel to another, so

a point-to-point topology is more appropriate.

A relevant field of research in IP interconnection schemes

is that of Networks on Chip (NoC) architectures [11]–[13],

where communication among different processors is a main

issue for which dedicated solutions have been proposed. The

main concept underlying NoCs is the presence of a specialized

network for routing data between all the IPs in the system [11].

They differ from common bus-based communication architec-

tures since the dedicated routing networks explicitly recognize

the peculiarities of different aspects in the communication

process between IPs. This leads to a specialization of the

interconnection network, ultimately yielding better scalability

and flexibility in the presence of a large number of cores.

Many routing schemes exist in order to minimize different

metrics like power [14], routing algorithm complexity [15],

peak traffic disparity between network links [16], latency

and available bandwidth [17]. NoCs represent state-of-the-art

solutions to the intercommunication issue and scale very well

with the number of IPs [12], but in the context of HPC-oriented

dataflow architecture they have the drawback of adding an

unnecessary overhead to the amount of routed data – the

routing header – that our solution does not incur in. In fact,

in a static dataflow architecture the IP interconnection scheme

– namely, the call graph – is known at the beginning of the

computation and does not change until its end.

More relevant to the embedded systems domain is the

crossbar component [7], [8], [18], which is a network topology

where data is forwarded from N sources to M destinations

in a straightforward way. In [7] the authors implement the

crossbar mechanism as a means for connecting all the inputs

to all the outputs, demonstrating effective scalability to up

to 9 connected nodes. Differently from their design, we do

not require to explicitly state many low level details (like the

width of the data bus) since this is taken care of by Maxeler’s

toolchain and is implicit in the Java code written to describe

the pipeline stages. Moreover, they do not explicitly consider

the problem of management of data flowing from one core to

the other, and the problems associated with the memorization

of intermediate values. Also in [8], [18] a NoC crossbar com-

munication infrastructure is presented. However they cannot

be effectively used in a completely pipelined solution since

the overhead introduced by the NoC management. In the next

sections we will show how to properly address these issues.

III. PROPOSED APPROACH

The basic idea behind this work is to obtain a flexible and

reconfigurable interconnection structure for FPGA dataflow

applications. The dataflow programming model of compu-

tation describes the computation structurally (computing in

space) rather than specifying a sequence of processor in-

structions (computing in time). In other words, the dataflow

model of computation focuses on the flow of data within the

applications. A dataflow architecture is a computer architecture

where the computation is performed directly by a set of

parallel processing elements connected each other through

some kinds of communication channels. Summarizing, the

main components of a dataflow architecture are the processing
elements (PEs) (usually organized in a pipeline) and the

communication infrastructure. This work aims to introduce the

concept of flexibility into such kind of systems focusing on

the latter: the communication infrastructure.

In this work, the idea of flexibility concerns with the possi-

bility of changing at run-time the functionality of the pipeline

of the dataflow application. For instance, let us consider the

architectures shown in Figure 1 where the first functionality is

composed of the processing elements PE1-PE2-PE3-PE4 and

the second one is composed of PE1-PE2-PE5-PE6.

In order to allow to switch between the two functionalities

and, at the same time, reuse the first two components (i.e.,

PE1 and PE2), a reconfigurable communication element must

be introduced inside the overall architecture: this element

must provide a simple interface to rapidly change (in few

clock cycles) the communication flow of the pipeline. The
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PE 5 PE 6

PE 1 PE 2 PE 3 PE 4

PE 5 PE 6

PE 1 PE 2 PE 3 PE 4

CONFIGURATION 1

CONFIGURATION 2

Fig. 1: Pipeline reconfiguration example

approach proposed in this paper is thus to introduce such a

component, namely a Reconfigurable Interconnection Element
(as shown in Figure 2) that allows to dynamically select

at runtime the desired pipeline structure. Considering the

previous example, to realize the two configurations shown in

Figure 1, the resulting Reconfigurable Interconnection Element
must be configured with the schema proposed in Figure 3.

In particular, the proposed approach aims at realizing a

reconfigurable pipelined interconnection element that can be

easily configured via software (through standard CPU direc-

tives). In fact, to be software configurable is relatively simple:

just a simple API must be designed. Moreover, having a

software interface seems to be a reasonable solution since

CPUs are usually available on dataflow architectures for at

least two main reasons: first, computation is generally hybrid

(imperative and dataflow); second, a controller is needed in

any case to manage the data transfers with the memory and

the dataflow processing cores.

On the other hand, in order to design a pipelined inter-

connection element, it is necessary to take into account some

details. First, since we are targeting the dataflow class of

applications, to avoid to empty the pipeline, it is important

not to stop the computation and the flow of data while the

reconfiguration process is performed. Second, it is necessary

to correctly balance the overall architecture placing FIFOs

PE 5 PE 6

PE 1 PE 2 PE 3 PE 4

RECONFIGURABLE 
INTERCONNECTION ELEMENT

Fig. 2: Reconfigurable Interconnection Element example

PE 5 PE 6

PE 1 PE 2 PE 3 PE 4

CONFIGURATION 1

PE 5 PE 6

PE 1 PE 2 PE 3 PE 4

CONFIGURATION 2

Fig. 3: Reconfigurable Interconnection Element example

among the stages to manage unbalanced pipelines. Finally,

the goal of the proposed approach is to realize a flexible

interconnection element that is able to work with general

purpose dataflow processing elements, for instance, supporting

different input/output data size.

As presented in the next section (Section IV), the proposed

approach has been implemented and tested on the Maxeler

HPC Dataflow platform, that is a commercial platform for

computationally intensive applications. Here, a pipelined and

software-reconfigurable interconnection element has been de-

ployed on FPGA. The results of the proposed approach is then

discussed in Section V.

IV. IMPLEMENTED ARCHITECTURE

The proposed approach presented in Section III has been de-

signed, deployed and tested on the Maxeler High Performance

Computing (HPC) Dataflow platform. Maxeler Technologies

Ltd. [19] is a company that produces High Performance

Computing (HPC) systems that use the dataflow paradigm

in order to speed up the computation. More precisely, the

key factor of the Maxeler platform is the interaction between

a standard Intel x86 64 CPU and a so called Data Flow
Engine (DFE) which is the board used to exploit hardware

acceleration, connected through a high speed PCI Express in-

terface. Maxeler’s DFEs are composed of one or more Xilinx’s

FPGAs, and they represent the portion of the system devoted

to the actual hardware computation. In Maxeler’s platform,

FPGAs are employed as static hardware accelerators that

are programmed with the dataflow paradigm to obtain huge

speed-ups especially on streaming applications. Programming

an application for a Maxeler platform requires to write two

different types of code:

• The host code, which runs on the CPU;

• The dataflow code, which runs on the DFE.
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Fig. 4: Pipeline reconfiguration example

The host code can be written in either C/C++ or FORTRAN,

while the dataflow code must be written in Java. A logical

DFE is composed of two main elements:

• Kernels are hardware data-paths implementing the arith-

metic and logic computation needed within the algorithm.

They perform all the actual computation inside the DFE;

• Manager comprises all the logic that manages the data

flow between Kernels and off chip I/O in the form of

streams. Its goal is to manage the connections among the

Kernels, and among the Kernels and the host application.

Since all the computing elements inside a DFE must be

kernels, and since some computation must be performed by

the Reconfigurable Interconnection Element, this component

has been realized as a generic kernel inside the overall

architecture. The example reported in Figure 4 will be used

as reference within this section. Precisely, Figure 4 shows

a generic Maxeler architecture with 6 kernels all connected

to the central Reconfigurable Interconnection Element. The

example architecture presents also two input streams from

the host and two output streams to the host. As it is shown,

the input and the output of each kernel is connected to the

interconnection element.

To obtain a flexible and reconfigurable component, the

Reconfigurable Interconnection Element is widely parametriz-

able. Particularly, it contains both static and dynamic param-

eters. The static parameters must be set at design time; the

dynamic parameters have to be set at run-time and allow to

effectively have the run-time communication reconfiguration.

Static parameters are used to set the maximum size of

the Reconfigurable Interconnection Element, so the number

of maximum kernels that can be connected and the number

of input/output streams from/to the host that can be managed.

The dynamic parameters can be changed at runtime from the

host with simple C function calls and are used to manage the

data flow inside the pipeline. The dynamic parameters are:
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Fig. 5: Interconnection Example

• data_size[]: size of the data that has to be read and

write from/to host;

• kernel_ticks[]: kernel tick from which the stream

becomes active (for each kernel);

• interconnection_vector[]: switch logic, i.e., the

internal interconnection structure. It is an array that

specifies which output is connected to which input.

These dynamic parameters are simply represented with

arrays since the hardware components inside the Maxeler

platform are described with Java.

The first parameter, data_size[], is necessary since

each kernel in the Maxeler platform must be aware of the

number of data it has to process: in fact, a kernel becomes

active when the first valid data to process arrives as input and

remains active just for the size of the input data block. It is an

array because this parameter must be specified for each kernel

connected to the interconnection element.

The second parameter, kernel_ticks[], is an array that

represents the number of ticks to wait in order to obtain a

valid value from the i-th kernel. In order to well understand

the meaning of this value, it is necessary to explain that in the

Maxeler architecture, a kernel becomes active only if all its

inputs are valid; otherwise it is in idle state without producing

any output. This property brings to an issue that must be

solved: let us consider the Figure 5 where an instance of a

generic dataflow architecture with Reconfigurable Intercon-
nection Element is represented. In this example, the data flow

follows this path: Host - Kernel 3 - Kernel 5 - Host.
It is clear that the interconnection element will be inactive

until the inputs o3 and o5 are valid (since they are inputs for

the interconnection element). Anyway, this inputs cannot be

valid until the Kernel 3 computes its output values. Unfortu-

nately, Kernel 3 will never start to compute since it will not re-

ceive any input from the inactive interconnection element. This

leads to a dead-lock state. To solve this problem, all the inputs
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1 3 3 2 2 2kernel_ticks[] = 

[1] [2] [3] [4] [5] [6]

Fig. 6: Kernel ticks array example

of the interconnection elements are ignored by default using

a multiplexer. In this way, the interconnection element starts

in active state. Using a counter and the kernel_ticks[]
parameters is finally possible to understand when to select the

input coming from a connected kernel and when ignore it.

For instance, let us consider again Fig. 5 and also Figure 6

where a possible instance of the kernel_ticks[] array is

represented. Since only Kernel 3 and Kernel 5 are connected

in the example, the data we need to care about is that Kernel 3
takes 3 ticks to execute its task and that Kernel 5 takes 2

ticks. Knowing this information and using a counter, now it

is possible to know that the interconnection element has to

consider the input coming from Kernel 3 and Kernel 5 after

3 ticks and after 5 (3+2) ticks respectively.

The last dynamic parameter is an array that de-

scribes the interconnection schema of the element: the

interconnection_vector[]. Every stream in the ar-

chitecture is associated with an identifier value (stream id).

This stream ids are used to correctly map the data stream

inside the reconfigurable interconnection element. For in-

stance, let us consider Figure 8 where an instance of the

interconnection_vector[] that implement the inter-

connection of Figure 5 is presented. Each cell of the vector

represents which is the input stream of the i-th kernel. The

first n-th cells of the array represents the output streams to the

host (where n is determined by a static parameter).

The following sections will provide a detailed analysis of

the hardware implementation and will show the case of study,

along with the obtained experimental results.

V. HARDWARE IMPLEMENTATION ANALYSIS

The proposed solution has been implemented for the Max-

eler HPC computing platform and exploiting their automated

design flow. Accordingly to this flow, we specified the system

described in Section IV, logic and interconnections, in a Java-

like language and then the synthesis has been carried out
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Fig. 8: interconnection_vector example

automatically by Maxeler High Level Synthesis tool (HLS),

namely the MaxCompiler. This choice greatly simplified the

design of the system, however since the design process is

automatically done by the tools, the final solution may not

be the best one in terms of performance. However, hardware

design is a complex task and other manufacturers, such as

Xilinx, are proposing HLS tools (see Vivado HLS [20]) to

implement hardware architectures; we believe that in order to

develop scalable and reusable cores, HLS tools will play a

fundamental role in future years and results here illustrated

may be improved by newer tools. Since the proposed archi-

tecture is a configurable N ×N crossbar, it suffers from the

same limitations, basically the area increases proportionally

to the number of inputs and maximum frequency decreases

accordingly. We analyze these two parameters implementing

different architectures by varying the number of kernels and

communication channels with the host. The architectures have

been implemented in two forms: the former is the basic

system where each host channel is connected to a kernel

while the latter makes use of the proposed interconnection

element. The kernels used in this test implement only an add

operation; this choice is justified by the fact that in order to

analyze the maximum bandwidth achievable by the proposed

interconnection element we must be sure that other kernels do

not have long combinational paths.

Results about area occupation are reported in Figure 7

and, as expected, the area overhead increases with the num-

ber of controlled streams, this is not surprising since in a

N × N crossbar switch the area should be proportional to

N2. However, considering the large amount of logic available

in modern FPGAs, this is not a limitation. For example, in our

environments, we used a Xilinx Virtex6 XC6VSX475T FPGA

with 297,600 LUTs and the biggest overhead in the figure (i.e.,
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3,000 LUTs) roughly corresponds to 1% of the total space.

Data about maximum frequency achievable with our so-

lution in comparison with the basic system is reported in

Figure 9. As we can expect, the maximum frequency decreases

as we increment the number of controlled inputs because of

the switching logic, while in the basic system it remains the

same, there are N parallel pipelines in the system and they

do not influence each other. The basic system has a constant

maximum frequency of 503MHz, while our implementation

ranges from 475MHz, when controlling only one stream, down

to 309MHz when controlling 8 streams.

It is worth noting that these examples have been crafted

to analyze the overheads and that, when we implement a real

application, the kernels are much more complicated. For a fair

comparison, we reported in the figure also the frequency of

a real complex application implemented by Maxeler which is

a Brain Network image analyzer running on their platform.

As we can see our reconfigurable interconnection will not

influence the Brain Network simulator since it is capable of

achieving a higher maximum frequency. This result cannot

be obviously obtained in all the cases, but we will show in

Section VII that our solution is effective not only with respect

to the application execution time, directly influenced by the

frequency, but also to other metrics such as the variance in

the execution time.

VI. CASE STUDY

This section describes the case study we used to eval-

uate our solution. As described before, our reconfigurable

interconnection structure can be configured to change the

connections between the cores on the hardware device in

order to implement different pipeline structures without re-

configuring the logic of the device. First of all, a requirement

for all the applications that our interconnection supports is

that they can be expressed in a dataflow fashion. This is not

a limitation since nowadays a large number of applications

have been expressed in this paradigm in order to exploit

instruction level parallelism in the pipeline. As an example,

applications that can be represented with this paradigm are

image and audio processing filters, cryptographic algorithms

such as Advanced Encryption Standard (AES) [6] and map-

reduce algorithms, as recently suggested by some researchers

[21]. To keep the analysis more simple we concentrate on

the case of the image processing pipeline which permits to

illustrate benefits and limitations of our solution, this analysis

can then be generalized to other scenarios or their combination

as well. We now introduce the case study of the image

processing pipeline, detail the applications we intend to be

able to implement and illustrate the architectures we designed

to perform comparisons illustrated in Section VII.

A. Image Processing Pipeline

Image processing applications can be naturally expressed

as a pipeline. Each stage of the pipeline implements a single

filter and the application output is derived by the sequential

application of all the filters in the pipeline to the original input.

Furthermore the filters can be differently combined to obtain

different results, or they can be omitted from the pipeline

when they are not needed. For instance if we want to perform

noise reduction on an image we will employ a Gaussian Blur
filter, but if we are interested only in the color intensity,

since it is the component carrying the largest information, we

may apply a Gray Scale filter before reducing the noise in

the image; this last assumption is true only when the initial

image is not already in a Gray Scale form. By this simple

example we already derived three different cases where the

application pipeline is function of the application goal and its

inputs, but the same filters are employed. This flexibility in

the implementation of image pipelines starting from the same

kernels justifies the adoption of the proposed interconnection

component.

B. Applications

The applications we used as test cases are simple image

filters that can be differently combined to obtain different

results, or the same result starting from different inputs. We

divided these applications in 4 classes each one identified by

the length of the corresponding pipeline (from 1 to 4 stages).

Applications in the first class are the basic filters that are

combined in different ways in the other classes.
Class 1:
• Gray Scale (GS): Converts an input image in its gray

scale representation; its input is a RGB image.

• Gaussian Blur (GB): Performs the noise reduction on an

input image; its input is a gray scale image or a RGB

image.

• Edge Detection (ED): Performs the edge detection on the

input expressed as a gray scale image.

Class 2:
• GS+GB: Applies GS and GB filters sequentially; its input

is a RGB image and the output is the correspondent gray

scale image with reduced noise.

• GS+ED: Applies GS and ED filters; its input is a RGB

image, while the output image shows only the edges.

• GB+ED: Applies the two filters on a input in a gray scale

format and obtain the binary image showing the edges.

Class 3:
• Canny (GS+GB+ED): This is a known variation of the

edge detection filters which relies on the fact that the

most interesting information to find the edges resides in

the color intensity (gray scale representation) and that the

ED filter is influenced by the noise in the original image.

Canny filter then implements a pipeline of GS+GB+ED

to obtain a better edge detection.

Class 4:
• GS+GB+GB+ED: This is a variation of the previous

algorithm where the noise reduction step is performed

twice. The amount of noise rejected by the GB filter

is proportional to the size of the filter which results in

a larger area occupation for a dataflow implementation.

However, it has been demonstrated that iteratively apply-

ing a smaller filter to the same image can improve the

amount of rejected noise [22]. This filter is then a canny

variant with a better noise reduction.
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C. Architectures

When it comes to implement a FPGA hardware architecture

for the image processing pipeline we basically have 4 choices:

A) The first architecture consists in placing all the filters on

the FPGA without considering their possible connections

at run time. If an application needs to connect two or

more filters they are simply executed iteratively. Our

implementation of this solution is represented in Figure

10 where two copies of each filter are instantiated.

GS GB ED

GS GB ED

Fig. 10: Architecture A

B) The second choice consists in having the previous solution

as the main case and to exploit the FPGA reconfiguration

capability to implement more complex filters. For instance

in our example we have the Canny algorithm which is

a widely known application so we decided to realize an

architecture optimized for this purpose and combine its uti-

lization with the previous one; the architecture specialized

for the Canny algorithm is represented in Figure 11.
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Fig. 11: Architecture B

C) The third solution consists in implementing both A and

B without the need for reconfiguration. Given the large

amount of space available on recent FPGAs there should

be no problems related to number of LUTs needed to im-

plement the functionality; however problems can appears

when we analyze the interconnection between the FPGA

and the source providing data. FPGA I/O pins are generally

limited and it may not be possible to place a large number

of independent components on the FPGA, at some point

we will need to serialize the inputs to be able to connect

all the filters. In our platform we are forced to a maximum

of 8 input streams; the corresponding solution is reported

in Figure 12.
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CANNY

CANNY

Fig. 12: Architecture C

D) The last option we have considered consists in implement-

ing the architecture A where the filters are connected by

means of our interconnection structure. This architecture

is reported in 13.
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Fig. 13: Architecture D

VII. EVALUATION RESULTS

This section compares the performance of the architectures

implemented using the applications described in Section VI

analyzing both benefits and limitations of using our reconfig-

urable interconnection structure.

A. Single Application performance

The first experiment wants to compare how the different

architectures behave when they have to execute an application

from the classes used as case study. This experiment wants to

show the benefits and the overheads that our solution intro-

duces. For all the four classes of applications that we analyzed,

we executed real tests on the target platform considering three

different input sizes: small (1MB), medium (10MB), large

(100MB). We collected the total execution time for every

instance by averaging over 100 identical executions to reduce

the measurement error. In fact, a measurements variance is

introduced by the operating system that is responsible for

HW/SW data transfer. Architectures A and B show the same

behavior for the classes 1, 2 and 4 since, in these cases, the

application from A is used; for the class 3 the architecture tai-

lored for Canny algorithm is used instead, the reconfiguration

overhead is not taken in account in this experiment. Figures

from 14 to 17 show the normalized execution time (with

respect to the architecture B) of the architectures presented

in Section VI-C.

Figure 14 shows the execution time for a pipeline composed

of a single kernel. As expected, architectures A and B achieve

the best performance, while architecture C and D have an
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Fig. 14: Class 1 applications
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Fig. 15: Class 3 applications: Canny

overhead around 10-15%. About C, the overhead is due to the

management of a larger number of input streams (this behavior

is present also in other tests). Instead the architecture D (the

solution proposed in this paper) has the drawback of increasing

the pipeline stages; when the data enters our architecture, it

passes through the interconnect module (1st stage), goes to the

filter (2nd stage) and finally passes again in the interconnection

module (3rd stage).

Figure 16 depicts the execution time when executing an

application composed of a 2-stage pipeline. None of the

architectures from A to C can implement this pipeline, so

they need to transfer all the data from the CPU to the FPGA

to compute the first stage, then transfer the data back, and

finally send it again through PCI express link to compute the

second stage. On the contrary, our solution simply configures

the interconnections to implement a 2-stage pipeline, avoiding

to transfer the data over PCI multiple times. In this case, our

solution provides a speed-up around 2x.

Figure 15 represents the execution time for a 3-stage

pipeline which in our case is the Canny application. Architec-

ture B clearly achieves the best results in this situation since its

logic is tailored for this application. Architecture A needs to

execute 3 times resulting in a 350% overhead. Architectures C

and D present similar results resulting in a 10-20% overhead.

The motivation of this overhead is the same as the first case,

but here our solution (architecture D) has implemented a 3-

stage pipeline being able to obtain results comparable with

other architectures having that pipeline statically configured.

Furthermore the overhead in this case has to be further

analyzed considering the reconfiguration time that architecture

B has to suffer to change its configuration if needed.

2 Stages small (1MB)
2 Stages medium (10MB)
2 Stages large (100MB)

A B C D

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

0

0.2

0.4

0.6

0.8

1.0

1.2

2 Stages Pipeline

Fig. 16: Class 2 applications
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Fig. 17: Class 4 applications

Finally, Figure 17 shows the case of a 4-stage pipeline. As in

our second case, none of the architectures has such a pipeline.

Therefore, in this situation, our solution obtains a 4x speed-up

since it can implement such pipeline when requested without

applying reconfiguration or performing multiple executions.

With this experiment, we showed that our solution for

configuring interconnections at runtime can realize the best

pipeline and greatly improve the performance of an applica-

tion. In particular, this is interesting when the pipeline is not

statically available and it allows to maintain an acceptable

overhead when ad-hoc architectures are available.

B. Workload performance

In this second test, we want to analyze the impact of our

solution when used in a system with the goal of executing

a workload composed of a mix of applications. Every mix

consists in 50 applications randomly chosen from the one

presented in Section VI-B and we randomly generated 1,000

different workloads.

In order to gather results about workload execution time,

we must be able to integrate the architectures with the host

CPU. Since designing a Runtime Manager able to schedule

pipelines on a hardware architecture is beyond the scope of this

work, we designed a simple simulator to gather data needed for

this experiment. The simulator schedules applications on the

hardware trying to extract the maximum degree of parallelism

and starts to execute applications in the same order they appear

in the workload mix. The simulator can be configured to

schedule at most N applications at the same scheduling step.

The simulator estimates the execution times using the data

extracted from the real architectures provided in Section VI-C.
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Fig. 18: Normalized execution times, on the left, and standard deviations, on the right, w.r.t. architecture A.

Table I reports the average execution time and the standard

deviation when executing a workload mix composed of small,

medium and large instances of our test applications when no

parallelism among them is extracted by the simulator. As the

table clearly shows, when we need to perform a hardware

reconfiguration to implement the best physical pipeline, the

case of architecture B is clearly not an option since it leads

to an overhead up to 15x due to the reconfiguration overhead

which takes 1.20s to be performed.

Figure 18 shows execution times, on the left, and standard

deviations, on the right, when the simulator is allowed to

co-schedule multiple application (from 1 up to 7) on the

hardware device extracting as much parallelism as possible.

This experiment wants to show how the architectures behave

in the case of different system load, which in our simulator is

represented by the possibility to schedule multiple applications

at the same time; in this case our solution achieves a speed-

up up to 20-25%. As we can see from the graphs reporting

the execution time, when the simulator is allowed to schedule

at most one application, the architecture that adopts our

interconnection component is able to obtain the best results

(up to 20% of performance improvement) independently of

the workload input size. This can be simply explained by the

results provided in the previous sections since no parallelism

between applications in the workload is extracted. When we

increase the extracted parallelism, our solution is not the

best choice in terms of execution time for workloads with a

small input: in fact, it gets comparable results with respect

to the solution A. However, in this case, we do not get

great advantages since the data transfer time is negligible and

architecture C reaches up to 15% of speed-up. Considering

the medium input workloads, we did not experience particular

gains or losses and our solution (architecture D) gets com-

parable performance to the fastest one in the system when

altering the system load. Finally on a large input size our

architecture is the best one in all the scheduled situations

obtaining a constant 10% speed-up when the simulator is

allowed to schedule more than 3 applications at the time, a

25% speed-up when it has to schedule a single application and

no benefits or losses when 2 applications are scheduled. The

case of a large input size is the most relevant since it is the one

most widely adopted when performing HPC computing that
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TABLE I: Workload average execution time and standard

deviation for implemented architectures on different input size.

Small (1MB) Medium (10MB) Large (100MB)

Avg[s] σ[s] Avg[s] σ[s] Avg[s] σ[s]

A 1.48 0.11 13.12 0.94 134.86 9.63
B 15.75 4.90 26.30 4.99 136.77 9.75
C 1.41 0.10 13.68 1.01 138.51 10.27
D 1.20 0.00 10.39 0.00 100.18 0.00

is the situation we want to tackle. Finally, the graphs about

standard deviation show that our solution effectively reduce

variance in execution times in case of low load situations.

Increasing the system load, our solution has an overhead at

least comparable with other solutions, while for large input

size applications the standard deviation is reduced at least by

10%. Considerations about variations in execution times in a

HPC environment are fundamentals since unexpected latencies

in the application execution may causes delays in other tasks of

the same workload (possibly running on other machines) and

have to synchronize before the completion of the application.

VIII. CONCLUSIONS

In this work, we proposed and implemented a configurable

interconnection structure for hardware dataflow HPC applica-

tions able to dynamically instantiate different pipelines struc-

tures on the hardware device changing the way the pipeline

stages are connected. This solution becomes effective when we

have a hardware device containing basic high-level functions

and we want to connect them in different ways that are not

always predictable at design time. We demonstrated that the

proposed implementation is effective on a image processing

dataflow architecture where our interconnection component

is used to create different pipelines at runtime avoiding the

need of transferring data to and back from the device reducing

the computation time. Results showed benefits regarding the

overall execution time of a generic workload (up to 25%)

and a lower standard deviation (possibly a fixed behavior

on low loaded systems) with respect to different static and

reconfigurable hardware solutions.

Currently we are working on the implementation of the

Runtime Manager that has been simulated in this work to

demonstrate that such architecture can benefit from different

application scheduling and pipeline stages mapping policies.

Finally we will try to integrate partial reconfigurable hardware

cores in the architecture instead of static ones to exploit the

flexibility of this interconnection to ease the mapping and

relocation of such cores onto the architecture.
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