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Abstract—This paper presents a survey on the adoption of
Reinforcement Learning (RL) approaches for power management
in Wireless Sensor Networks (WSNs). The survey has been
carried out after a review expressly focused on the most relevant
and the most recent contributions for the topic. Moreover,
the analysis encompassed proposals at every methodological
level, from dynamic power management to adaptive autonomous
middleware, from self learning scheduling to energy efficient
routing protocols.

I. INTRODUCTION

Wireless Sensor Networks are a well-known class of dis-
tributed embedded systems, composed by small autonomous
and resource-constrained devices, called sensor nodes, used
to monitor a wide range of phenomena and to report sensed
data to a base station. Power consumption is a critical issue
for these systems, since nodes are usually battery-powered
with a limited amount of available energy and their lifetime
maximization is a foremost requirement. Node can also be
possibly equipped with energy harvesting devices (e.g. a micro
solar panel), in such cases energy neutrality is the main goal,
meaning that the consumed and harvested energy should be
balanced as much as possible by opportunely adapting the
system operation. Moreover, since data flow from leaf nodes
to the base station at the top of the routing hierarchy, the
synchronization and coordination among the nodes is a crucial
prerequisite for the energy efficiency of the whole network.

Many solutions have been devised to tackle the power
management issue in WSNs and we refer to [1] for an
overview on the various approaches.

Although an extensive and accurate review of the literature
on computational intelligence and RL models for WSNs may
be found in previous works [11][25], this paper focuses on
power management, deepening the aspects related to energy
consumption minimization of the most relevant proposals.

In special regards to power management, which represents
a broad vein of research in the WSN field, the introduc-
tion of RL-based approaches appears particularly promising
to dynamically adapt the operation of the network to run-
time variations in the topology and energy distribution of
the networks. A structural non-stationarity, in fact, is an
intrinsic characteristic of this class of networks, because of the
occurrence of disturbing events like node losses (or new nodes
introduction), radio interferences, natural obstacles in the com-

munication channel, non-uniform energy depletion, malicious
attacks and many others. The possibility to react to such
events by dynamically reconfiguring the power management
operation is a key success factor enabled by reinforcement
learning models. Possible drawbacks, on the other hand, can
be represented by the computational and memory burdens, so
that each proposal tries to tackle this issue through opportune
optimizations.

The paper is organized as follows. Section II provides a
classification of the contributions, which are then detailed
in the following sections. In particular, Section III presents
approaches related to dynamic power management, Section IV
describes RL-based adaptive autonomous middleware, Sec-
tion V shows the proposals regarding energy-efficient schedul-
ing and Section VI deals with power-aware routing protocols.
In the end, Section VII reports some final considerations.

II. CLASSIFICATION

Reinforcement learning has a strong and solid background
in the field of artificial intelligence and machine learning
in particular [22]. The main idea underlying RL models is
that an agent can learn the most profitable behavior through
trial-and-error interactions with the external environment. In
particular, the autonomous agent senses the environment or the
phenomenon of interest through dedicated interfaces and forms
a representation of the current state. Then it takes an action that
makes it to pass to a new state. In consequence of each state
transition, an opportune reward –in general a scalar value– is
assigned to the agent according to a policy specifically defined
to encourage the right behavior in reference to the considered
environment. The agent learns to take the right actions run-
after-run, trying to maximize the sum of the obtained rewards
over time. Many RL techniques have been proposed to tackle
general problems and we refer to [9] for an overview on
the most common and widely-used models. As said, here we
will focus on reinforcement learning for power management
in wireless sensor networks, a field characterized by very
peculiar issues at application, hardware and network level. In
this section we propose a classification of the most relevant
approaches to the power management, while the specific
characteristics of each class of approaches will be discussed
in the following sections.
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After an accurate literature analysis, four main classes
of Reinforcement Learning based approaches to the power
management in WSNs have been identified, as reported in
Figure 1.

Dynamic Power Management models aim at optimizing
the duty cycle of the node to minimize energy consumption.
Reinforcement learning has been used in WSNs with energy
harvesting capability, to enforce energy neutrality between the
harvested and the consumed energy, incorporating also Quality
of Service metrics.

The Adaptive Autonomous Middleware tries to extend
the adoption of reinforcement learning for a comprehensive
and energy-efficient resource management both at local and
network-level. A full-fledged middleware has been defined to
provide support for the adaptive resource management.

Self-learning scheduling can act at two different levels: at
a distributed level to optimize sleep/wake cycles of the nodes
and at local-level for scheduling tasks execution. Distributed
RL-based scheduling are used to determine the sleep/wake
duty cycle of the nodes such that communication and ap-
plication specific operations are globally guaranteed, while
reducing as much as possible energy consumption on the
single nodes and enforcing a graceful degradation of the
remaining energy throughout the network. At local level,
reinforcement learning is used to schedule the tasks execution
in the most energy-efficient way and to preserve, at the same
time, Quality of Service requirements.

Routing is by far the most studied layer in wireless sensor
networks, with an amount of publications that represents a
research niche on its own. In regards to power-management,
some RL-based protocols have been defined aiming at the
discovery of routing paths with minimum energy cost, while
preserving –at a varying extent– functional requirements like
delivery delay reduction, throughput maximization and trans-
missions success rate, among the others.

The growing interest for the adoption of RL models to
dynamically tackle the complexity of power management in
WSNs can also be observed in the trend of the literature,
which, from initial contributions by one or at most few
research groups on a specific issue, now covers the topic of
power management at almost every architectural level of a
WSN. The following sections provide a detailed description of
each of the above presented classes of models and the related
proposals.

III. DYNAMIC POWER MANAGEMENT

Reinforcement learning has been used as a model for
dynamic power management in energy harvesting wireless
sensor networks [2] (then generalized for diverse application
in embedded systems [12]). In this kind of networks, sensor
nodes are provided with energy harvesting devices (e.g. mi-
cro solar panels, piezoelectric mechanisms, etc.) capable of
retrieving renewable energy from environment. The nodes are
also provided with a battery that stores the harvested energy
and powers the system when needed. The goal is to optimize
the duty cycle of the nodes in such a way that the balance
between the consumed and harvested energy is preserved,
obtaining energy neutrality in system operation. The state of
the system is composed of three states (SD, SH , SB) ∈ S,
where SD is defined as a distance function obtained by
subtracting the consumed energy from harvested energy in
the ith sensing period, SH is the energy harvested at the ith
period, normalized on the total harvested energy, and SB is
the percentage of energy remained in the battery. An action is
defined as a level of the system duty cycle, bounded by the
minimum and the maximum value that the system can bear
A = a(i) ∈ [Dmin, Dmax]. The reward is modeled as distance
from energy neutrality, the higher the distance, the smaller
is the reward rD = −|SD(i)|/(emaxharvest − eminharvest).
Similarly it is possible to express reward as a function of the
remaining battery, the higher remaining energy, the higher is
the reward rD = −rD(1 − 2eb(i)/EB), where eb(i) is the
energy of the battery at the ith period and EB the battery
capacity. The algorithm deployed on the nodes proceeds as
usual in reinforcement learning: starts by initializing the state,
then for each sensing period i chooses a duty cycle, adjusts
the duty cycle, determines the reward and updates the Q-value
according to the classical Q-learning formula:

Q(si, ai) =(1− η)Q(si, ai) + η[ri+1+

+ γ maxai+1Q(si+1, ai+1)]
(1)

where η and γ, both between 0 and 1, are respectively the
learning and the discount rate. The algorithm restarts each day,
since solar energy exposure can vary with weather conditions
and, at a slower rate, with the seasons. The learning rate is
uniformly decreased as the time passes during the day. Results
show very good performance of the algorithm, especially in
longer sustainable operations.

In [8], the authors propose an extended version of the work
which is aware of the provided Quality of Service. In this
variant, the state array is enriched with a component SQ
which accounts for the quality of service and is defined as
SQ ∈ {QoS0, QoS1, ..., QoSn}, where QoSi represents the
transmission quality in the sensing period i. It should be noted
that the authors entail that data with higher priority need to
be delivered in a more reliable way and use the transmission
quality as a proxy for this requirement. To obtain higher levels
of QoS, higher levels of duty cycle are needed, so the actions
must be oriented consequently. The rewards are positive if the
chosen action satisfies the QoS level, i.e. a(i) ≥ QoSi, while,
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if no QoS are specified, the energy neutrality criterion applies.
The overall algorithm has the same structure seen above and
the same is also the Q-learning formula.

IV. ADAPTIVE AUTONOMOUS MIDDLEWARE

In [20] and [21] an entire RL-middleware for WSN manage-
ment is presented, providing four main contributions: (1) adap-
tive resource management, (2) global optimization through
multi-tier RL, (3) resource-aware data accumulation, (4) a
complete middleware to support the previous features. The
logical architecture of the whole framework is reported in
Figure 2.

A. Adaptive resource management

The adaptive resource management of the WSN is based
on a Distributed Independent Reinforcement Learning Ap-
proach (DIRL). Given a certain set of constraints specified
at application level, this approach allows each sensor node
to independently schedule its task to achieve the maximum
possible reward. The reward is determined through a reward
function that maps some optimization parameters relevant for
a task (e.g. consumed energy, bandwidth, etc.) onto a real
number. In this way, a utility value is associated to each task,
on the basis of the resources usage. The RL system has been
defined such that each sensor node corresponds to an agent
of a Multi Agent Reinforcement Learning model, while an
action is an application task to be scheduled. A state is a set
of both application and system variables, describing relevant
properties in reference to the specific application. System
variables can be, for example, the number of neighboring
nodes, residual energy, mobility, etc. Application variables
can be the number of readings, the signal strength and so
on. A weighted hamming distance method is used to classify
group of similar states in order to reduce the complexity of
the problem. Both exploration and exploitation strategy are
adopted and the goal of the policy is to take the best choice
in terms of the task to be scheduled at the current state.
A classical Q-learning model is used for the system, under
some limiting hypothesis: each node is independent and does
not affect (nor it is affected by) neighbors, the system is
single-threaded and the task allocation is done a-priori. Since

each node acts selfishly, no communications are needed to
determine the reward of an action. The results provided for
the adaptive resource management framework, even though
under the limiting hypothesis above reported, show a good
degree of efficiency.

B. Global Optimization

The global optimization accounts for cooperative scenarios,
in which the selfishness of the nodes may lead to an overall
degradation of the system. A two-tier RL is proposed to this
purpose: a micro-learning tier where individual nodes self-
schedule their tasks and a macro-learning tier where a set of
closely connected nodes determine the reward to assign to the
nodes of the set in order to align them toward the system-
wide application goal. The bottom-up nature of the approach
also allows for a more pro-active and real-time adaptive
behavior of the single nodes, reducing the communication
overhead and avoiding the need for centralized processing. The
global optimization middleware structure has been inspired by
COllective INtelligence (COIN) [24] principles for designing
both the global utility function and the the individual nodes,
so that they can align to the global goal.

C. Resource-aware data accumulation

A resource-aware data accumulation framework is also
proposed for sparse WSNs with a Mobile Data Collector
(MDC), being the last a system (autonomous or human-driven)
that periodically passes through the various zones covered by
the network to gather data from local nodes. In particular, RL
is used by each node to learn the pattern of arrival of the
MDC, consequently adapting the duty cycle.

D. Integration within a common middleware

The three components, above described, are supported by a
common middleware referred to as Distributed Reinforcement
Learning (DReL). This middleware provides also an interface
to design optimized applications and data, to support their
dissemination on target nodes, as well as the calculation and
the distribution of rewards.

V. SELF-LEARNING SCHEDULING

The optimization of the duty cycle to reduce energy con-
sumption is the main objective of the self-learning scheduling
policies, which can act at various levels of a wireless sensor
network architecture. A first distinction can be made between
local and global policies: in the first case the goal is to
determine the best sleep-wake cycle on the single node, while
global approaches aim at deciding which nodes should stay
active and which can sleep at any given time, without loss
of quality in data transmission. Other proposals focus on the
MAC layer, for orchestrating the duty cycle according to the
traffic load. Finally, at application level, cooperative models
can be implemented for the optimal scheduling of the tasks
on the nodes.



A. Local self-learning scheduling
The approach presented in [18] integrates both a packet-

transmission scheduling and a sleep scheduling, the first deter-
mined through a Q-learning model and the second calculated
from the transmission parameter. Data received and transmit-
ted by nodes are stored in a FIFO queue and two scheduling
parameters are set: a sleep parameter ps and a transmission
parameter pt. Each node decides whether to send a packet from
the queue by generating a random number in the interval [0,1]
and comparing it with pt: if the generated number is smaller,
then the packet is sent. On the other hand, if the generated
number is greater than pt and smaller than pt + ps the node
goes to sleep, otherwise it remains idle. A Q-learning module
is adopted and the overall algorithm proceeds as follows: the
node determines the current state and takes an action according
to an ε − greedy policy that selects with probability (1 − ε)
the highest-valued action and with probability ε a new action,
so enabling both exploitation and exploration to a certain
extent; then a data delivery (DD) phase takes place, during
which the node sends or receives packets and then determines
if to sleep or to transmit according to the transmission and
sleep parameters. After that, there is a scheduling update
phase, where the node checks the length of the packets queue,
computes the reward and updates the Q-value. The whole
algorithm is then repeated for a given number of episodes.
Provided that the reduction of energy consumption is the
objective of the model, a state is defined in terms of length
of the queue of packets, since in the proposed model energy
consumption is mostly affected by packet transmissions. In
particular, there are three states: S = {0, 1, 2}, being 0 the
state in which the queue is empty, 1 representing the queue
when decreasing, while 2 when increasing. The transmission
parameter pt is augmented passing from the state 0 to the state
2. To generate a continuous action the authors partitioned the
interval of pt into N subinterval, obtaining N+1 endpoints each
characterized by a discrete action and a Q-value. An action for
a sub-interval i, referred to as ais, is a function of the discrete
action of the previous endpoint di and the next endpoint di+1

weighted by their Q-values, such that:

ais =
diQ

i
s + di+1Q

i+1
s

Qis +Qi+1
s

. (2)

The Q-value qis for the subinterval related to the action ais is
then determined as:

qis = Qis +
Qi+1
s −Qis
di+1 − di

(ais − di). (3)

The reward is computed as rt = λet + η(nt−1−nt) + θ after
the DD phase and takes into account three main contributions:
energy consumption, queue length and the baseline constant
value. Note that et is the energy consumed in the DD phase,
nt−1 and nt are the queue length at t − 1 and t, while λ, η
and θ are weight factors. If s = st and a = at the Q-learning
function has the classical formulation:

qt(s, a) =(1− α)qt−1(st, at)+

+ α(ri,t + γ maxat∈Aqt−1(s′t, a
′
t))

(4)

while it is equal to qt−1(s, a) otherwise.
After having computed the discrete Q-value for the subin-

terval, the Q-value of neighboring endpoints can be computed
as

Q(s, di) =
di+1 − at
di+1 − di

qt(s, a), left (5)

Q(s, di+1) =
at − di
di+1 − di

qt(s, a), right. (6)

The other subinterval actions and Q-values can be computed in
cascade as described for ais and qis. These values are used by
the ε−greedy policy to select the action in the next DD period.
Results obtained by the authors on simulation at MAC level,
also in comparison with the SMAC protocol, demonstrated
good performance.

B. Global self-learning scheduling

The previous scheduling acts at local level on the single
node to determine its duty cycle. In WSNs the scheduling
problem often assumes distributed nature with the goal of
determining which nodes must be active and which other can
sleep [19], without losses (or at least minimizing losses) in
data forwarding quality. A self-organizing wakeup distributed
scheduling of that kind is presented in [17], [16], [15]. The
proposed RL model is mounted on top of a simple MAC
protocol, in which time is divided in frames, i.e. discrete time
units. A standard duty cycle is defined such that each node
is awake for a fixed number of slots per each period: the
duration of the awake-period is application dependent and is
specified by the user, while the position of this period in a
frame can be opportunely chosen. The objective of the RL
model is, in the end, to schedule the awake period in a way
that maximizes both the throughput and the energy efficiency:
this entails for a node to be active when parents and children
nodes are awake, thus synchronizing along the data forwarding
path, while remaining asleep when neighboring nodes –at the
same routing level– are active, in order to avoid interference
in data transmission. The assignment of the reward depends
on the correct transmission of the packets to the destination
nodes: when a destination node receives a packet it sends back
an ACK message to the source node and a reward is hence
assigned to the source node. The approach claims to work on
any multi-hop routing protocol, provided that through the RL
algorithm coalitions are formed across different hops in the
routing path. A coalition vertically extends over multiple hop
levels and only one node per each hop is active, while other
nodes at the same level are asleep to avoid interferences. The
formation of coalitions for different topologies is demonstrated
by the authors. A stateless Q-learning model with implicit
exploration strategy is used. The model is stateless since the
size of a frame is fixed and unchanged throughout the lifetime
of the network and the length of the active period in a frame
is fixed as well, been it decided by the user and lasting for
a certain number of time slots. The model components are
defined as follows.



Actions. Since both the frame and the awake-period lengths
are fixed, an action just consists of choosing where to place the
active period in a frame. The action space complexity depends
on the number of time slots in frame: the higher it is, the higher
is the action space complexity with the advantage, however,
of a greater optimization flexibility. Dividing a frame in the
right number of time slots, so, represents itself an optimization
problem which is not explicitly faced by the authors. To each
slot a Q-value is assigned: this Q-value says how much it is
convenient to stay awake in the related time slot, given the
past observations. If a node decides to stay awake in a given
time slot, then the related Q-value is updated at the end of the
frame depending on what happened during the active period,
e.g. a communication event occurred or no events occurred.

Rewards. In the specific implementation the reward is as-
signed for each successful transmission (both toward the parent
or from the children), so a 1 is assigned if an ACK is received
from a parent (or sent to a child), 0 otherwise. Moreover
also packet overhearing (unwilling/unuseful radio listening of
neighbors transmissions) is modeled, by assigning a reward
of 0. Note that, however, the framework is theoretically more
general and is prone to be computed with metrics that can
also be different from the ACK messages, provided that these
metrics correctly account for the quality of the communication.

Q-learning update. The Q-value of each slot is firstly
randomly initialized with a value in the [0,1] interval. Then
the Q-value of each time slot s for the agent i is updated
according to the classical formula:

Qis = (1− α) ·Qis + α · ris,e (7)

where Qis is the previous Q-value for the slot s and ris,e
the reward associated to the occurrence of the event e. Note
that the Q-value of every slot in which an event occurred is
updated: this differs from classical Q-learning methods where
only the Q-value of the selected action is updated. Note that
since the model is ”‘stateless”’ a discount value γ has not been
defined. The Q-value of a slot, as said, indicates how much it
is convenient for a node to stay awake in that slot. Since the
duty cycle of the system is defined by the user, who specifies
the active period of a node as a series of D consecutive time
slots, a node will choose the action as′ (s′ is the slot where
the active period begins) for which the sum of the Q-values
for the D consecutive time slots is the highest possible, i.e.
s′ = ArgMaxs∈S

∑D
j=0Q

i
s+j . As said, the Q-value of each

slot for which an event occurs is updated.
Policy. By updating each slot singularly, and not the duty

cycle active period D as a whole (nor just the initial active
slot), an intrinsic exploration is enforced. In this way it is
possible to dynamically tune the duty cycle, by choosing
as active period the D consecutive slots that present the
highest sum of the Q-values as the time runs out. The random
initialization of the Q-values, moreover, entails that at the
beginning the exploration is potentially extended to all the
slots of the framework, then converging on the D consecutive
time slots for which the sum of the Q-values becomes larger.

The convergence speed depends on the duty cycle (i.e. the
length of the slots sequence D) and on the learning rate.

Results obtained in simulations show how the model pro-
posed by the authors is effective in choosing the active period
within a frame, obtaining also synchronization across multiple
hops and de-synchronization at the same hop level. This leads
to efficient data forwarding and coalitions formation across the
various levels of the routing path.

C. MAC-level scheduling

At MAC level another interesting approach is presented in
[13] and [14], where both the frame active time and the duty
cycle are dynamically tuned on the basis of the traffic load.
Even in this case time is divided into frames, in turn divided
in time slots1. The RL engine selects the active time slots in a
frame, trying to maximize throughput (payload bitsec ) and energy
efficiency ( effective transmissiontotal active time ). Given these two goals, the
authors try to allocate active time slots as a function of the
traffic. They model states as the number of packets (nb) queued
for transmission at the beginning of a frame, while the reserved
active time tr is the action. In modeling the reward function,
the authors consider the number of packets successfully sent
(ns) and received (nr). They also use the number of packets
queued for transmission at the beginning of the next frame
(n′b) as an indicator of the effectiveness of the chosen active
slots (since if the active slots are chosen properly, the node is
able to effectively transmit an higher number of packets to its
neighbors). To prevent the early sleeping problem2, a negative
reward is assigned as the sum of failed transmissions from
the neighbors to the node when it was sleeping. The number
of failed transmissions is communicated by the neighbors to
the node in a reserved field of the packet header. To account
for the Quality of Service, the data contention window of the
collision avoidance protocol is dimensioned according to three
different level of priority (high, medium, low) assigned to the
traffic. A classical Q-learning update formula is used (with
an ε− greedy formula for both exploitation and exploration),
where the learning factor is fixed (α = 0.1) to account for the
frequent variation of the traffic load. At the beginning of each
frame the action, i.e. the active time slots, with the highest Q-
value is chosen. Results show very good performance at the
cost of a limited computational complexity.

D. Cooperative task-level scheduling

Another energy-efficient scheduling approach is presented
in [10], where a cooperative Q-learning model is used to
determine the best task to be schedule at each time step. A
WSN is modeled as a multi-agent system, where the states
are represented by system variables (e.g. object in the sensing
range of a node, data to transmit, energy consumed for an
action), while the actions coincide with tasks (e.g. sense,

1The dimension of a time slot in this model depends on the bandwidth and
packet size.

2A node goes to sleep when some of its neighbors still have to transmit
some packets to it.



transmit, receive). The initial Q-value is set to zero for each
node and is updated according to the following function:

Qit+1(sit, a
i
t) =(1− α)Qit(s

i
t, a

i
t)+

+ α[rit+1(sit+1) + γΨneigh]
(8)

where,

ΨNeigh =
∑

j∈Neigh(i)

f i(j)V jt (sjt+1). (9)

Note that V jt is the value function of the node j at time t,
while the value for node i at time t+ 1 is expressed by:

V it+1(Sit) = maxa∈AiQit+1(Sit , a) (10)

which is the maximum Q-value obtainable by executing the
best action among the various possible. The term rit+1 is the
reward3 after having executed the action a at time t. Finally, γ
is the discount factor and α the learning rate, while the weight
for the values of the neighboring nodes f i(j) is set to 1 if no
neighbors exist, otherwise it is determined as:

f i(j) =
1

|Neigh(i)|
. (11)

After having initialized to zero the Q-values, the algorithm
enters in a endless loop performing the following actions:
determines the current status by evaluating the system vari-
ables that have been chosen to describe a state, calculates
the Q-value for all the actions in the action set, chooses the
action with the maximum Q-value, sends this value to the
neighbors, moves to the next state according to the transition
caused by the chosen action. Results obtained in simulations
and evaluations show good performance in terms of energy
efficiency for the model, confirming the validity of RL-based
approaches to tackle this class of problems.

VI. ENERGY EFFICIENT ROUTING

The routing protocol represent the backbone tier of a WSN,
since this is the architectural level that most affects the quality
of service and the energy consumption of the entire network.
Following we present noticeable models which pursue the goal
of optimizing energy consumption at a decreasing level of
generality, in particular: the discovery of the shortest routing
path at minimum energy consumption in multi-sink multi-
source WSNs, the restructuring of the RL model itself to
reduce memory burdens in resource constrained scenarios and,
finally, the adaptation of RL-based models to specific hardware
and radio characteristics of the network, such as Ultra Wide
Band communication.

3Note that the reward depends on the specific application. In the presented
work, for example, the authors targeted an object tracking application, so a
positive reward is given to a node if it performs the action ”‘sense”’ when
the object enters in the sensing range of the node.

A. General multi-source multi-sink routing models

In [6], [7], [5], [4] a Q-learning based routing approach is
presented for multi-source multi-sink WSNs, which self-adapts
to node failures and mobility. The goal is that of identifying
the shortest routing path, with best energy efficiency. The
data flow in the proposed protocol, named FROMS, has two
directions: requests (also called sink announcements) flow
from sink nodes to sensor nodes, while data flow from sensor
nodes to the requiring sinks. Each node retains in its routing
tables all the possible routes to a sink and not just the best
path. Each node must choose the next hop toward the sink
and this choice is made according to energy consumption for
data transmission: a Q-value is associated to each next hop,
representing the convenience of forwarding packets through
that hop. This Q-value is updated several times during the
node lifetime. Since multiple sinks are present, multiple paths
are possible so the model has a non negligible complexity,
especially in terms of memory 4. Both exploitation (select
the best known route) and exploration (i.e. try to find out
other energy efficient routes) are enforced through a classical
ε − greedy policy. The key feature of FROMS is a feed-
back mechanism from neighboring nodes: each node, in fact,
extracts cost information from feedback packets overheard
from neighbors. The cost of a root is so derived from the
three steps seen above, namely sink announcements (which
permits initial costs evaluation), route selection through the
exploit/explore policy and cost estimation from feedbacks,
which also represent the basis to calculate the reward. The
Q-values are updated through a classical Q-learning formula,
with a learning parameter γ taken near 1 in order to have fast
estimation of the route cost. Being D the set of all the sinks in
the network and Di ∈ D a subset of sinks, the cost function to
reach the Di destinations, choosing as next hop the neighbor
ni, is:

Ehops(ni) = (
∑
d∈Di

hopsni

d )− 2(|Di| − 1) (12)

where hopsd are the number of hops from the neighbor ni to
each sink d ∈ Di. To calculate the cost to reach all sinks from
all the possible neighbors k, the cost function changes as:

Ehops(route) = (

k∑
i=1

Ehops(ni))− (k − 1). (13)

The Q-value coincides with the hop-based cost function
Qhops(route) = Ehops(route), but this does not take into ac-
count energy consumption. So an extension is proposed where
a term Ebattery is used to consider the node with minimum
remaining battery Ebattery = minni∈route(battery).

Consequently, the Q-value function becomes:

Qcomb(route) = hcm(Ebattery) · Ehops (14)

4The authors claim to have developed an heuristic to store in memory just
the most promising routes. Moreover, the approach is also expensive from
an energetic point of view at the moment of the routes initialization, but this
operation happens only at the start or when a new sink joins the network.



where hcm is a commonly-used function5 that estimates the
hop count according to the remaining energy on the nodes.
To account for this extension, the feedback packets from
neighbors have been adapted to contain both the number of
hops and the remaining battery.

B. RL routing model at minimum memory burden

In [23] a least squares reinforcement learning routing model,
named AdaR, is presented. AdaR strongly reduces memory
burdens and does not depend on initial settings, also reducing
the energy consumption for initialization. Each node represents
a state s, while forwarding a packet is an action a that causes
a state transition from the node s to a neighbor s′. In such a
model, the routing table of a node s simply coincides with the
Q-values table. A more efficient Least Squares Policy Iteration
(LSPI) is used, instead of classical Q-learning function, trying
to reduce the convergence time and to avoid the issue of
how to fine-tune the learning, the discount and eventually the
exploration parameters. LSPI approximates the Q-value Qπ ,
for a given policy π, as a linear weighted combination of k
basis functions, s.t.:

Q̂π(s, a, w) =

k∑
i=1

φi(s, a)wi = φ(s, a)Tw (15)

being φi(s, a) the ith basis function, expressing information
about a state-action pair, and wi its weight in the linear
equation. The learning process is then expressed as a function
of the matrix Φ of the basis functions, for each state-action
pair and the rewards vector R. The weights are determined
by resolving a linear system –the description of which we
omit for the sake of conciseness– after some parameters have
been learned by sampling from the environment. Though this
approach can appear –and indeed is– quite cumbersome, it
makes sense in the proposed work since authors suppose to
have a multi-objectives optimization policy for which a linear
combination of basis functions is expressive to represent the
trade-off between these goals. Moreover, considering an origin
state s and an action a that entails a transition to s′, they use
as components of the basis functions the following criteria:
the difference d(s, a) of the distances of s and s′ from the
base station (in terms of number of hops), the energy e(s, a)
remaining on s′, the number of paths c(s, a) to which s′

belongs, the link reliability l(s, a) between s and s′. Thus, the
basis function for a node s taking a certain action a becomes

φ(s, a) = {d(s, a), e(s, a), c(s, a), l(s, a)}. (16)

The algorithm has the following flow: each time a packet is
forwarded, a tuple < s, a, s′, φ(s, a) > is appended to the
packet, so that when the packet arrives to the base station it
is possible to determine the quality of a whole routing path
and to assign a reward to each tuple (s, a, s′) according to
the estimated quality. After that, the weights w are calculated

5The acronym hcm stands for hop-count multiplier: this function increases
the cost of routes in which the nodes have depleted their battery the most, so
these routes become less appealing.

by the sink and broadcasted to the nodes, which can now
choose the most convenient action by computing the Q-value
with the received weights. The process goes on until a fixed
point is reached, so that the policy is stable. Results show
good performance if compared to basic Q-learning approaches,
provided that the conditions exist for modeling the basis
functions in the way described by the authors 6.

C. RL routing adaptation to network-specific characteristics

A power efficient routing protocol, specific for Ultra Wide
Band (UWB) WSNs, is presented in [3]. A RL model is used
to optimize both functional requirements, as delay and routing
failure, and non-functional objectives as energy consumption
and network lifetime, which are relevant in regards to the
present survey. The reinforcement learning based geographic
routing protocol (RLGR) targets more powerful nodes, often
used as cluster heads, since UWB transceivers are not typically
mounted on smaller nodes. Cluster heads are supposed to
remain fixed in their position, otherwise the information of the
location should be communicated to the neighbors by includ-
ing it in periodic HELLO packets. Since geographic routing
is enforced, a fundamental hypothesis is that the location of
the sink, as well as of the neighbors, is known to each cluster
head, thanks to the high radio range of the UWB. Cluster
heads also store information about the remaining energy of
the neighbors, being this information communicated through
periodic HELLO packets.

Also this proposal uses a classical Q-learning model:

Q(s, a) = Q(s, a) +α[r+ γ maxa′Q(s′, a′)−Q(s, a)] (17)

where, as usual, α is the learning rate, γ the discount factor, the
current node is the state s and an action consists of selecting
the neighbor a for which the Q-value is maximized7. The
reward function considers the multi-objective nature of the
problem, in particular:

r = β · adv

advavg
+ (1− β)

Er
El

(18)

where Er and EI are, respectively, the remaining energy
and the initial energy on the neighbors. The term adv =
d(i, k)−d(n, k) represents the advance from node i to the sink
k by choosing n as next hop, while advavg =

∑m
j=1

|advj |
m is

the average advance through all the neighbors. In such a way
the node with more residual energy and higher relative advance
is chosen, balancing the need for graceful energy degradation
throughout the network and the reduction of delivery delay.
The reward is set to a constant value RC if the sink is the
next hop8. To prevent the void problem of geographic routing,
if the forwarding node cannot reach the sink, it drops the

6It should be noted that the complexity entailed by such a model poses
a serious trade-off between the modeling effort, required to formalize the
problem, and the actual gain in terms of energy efficiency, considering also
the tolerance in terms of flexibility as the considered parameters vary during
the lifetime of the network.

7In this proposal the Q-value represents the total reward to send a packet
from the current node s to the sink, through the neighbor a.

8It is supposed that the sink has unlimited energy.



packet and sends back a negative constant reward (−RD)
to the origin node, which in that way can choose another
neighbor as next hop. Finally, another negative reward value
(−RS) is foreseen for those cases in which the node has
a remaining energy under a given minimum threshold: by
sending to its neighbors this negative reward, the node signals
that its energy is going to be depleted so neighbors can update
their Q-value consequently. The overall algorithm proceeds
as follows. Each node initializes its Q-values table, which is
indeed the routing table, with the initial localization and energy
information of its neighbors collected through the periodic
HELLO packets. When a node has to forward a packet, it
chooses the neighbor closer to the sink with the highest Q-
value9 and with remaining energy above the lower threshold.
If none of the neighbors closer to the sink has remaining
energy exceeding the lower threshold, the algorithm resorts to
the neighbor with the highest Q-value among those which are
placed farther from the sink. If also at this step no neighbors
are available, the packet is dropped, otherwise the packet is
forwarded, the reward is determined as described above and
the Q-values are updated. Then the algorithm starts again from
the beginning. Simulation results are compared with classical
GPRS protocol and show a noticeable improvement in overall
performance.

VII. CONCLUSIONS

This paper presented a survey on RL-based approaches for
power management in WSNs. Four classes of approaches have
been identified and an extensive analysis of the literature per
each class has been carried out. A major consideration can be
made on the advantage of using RL in WSNs: these models
turn out to be very handy and easy to design, as well as
extremely promising to dynamically adapt and optmize both
selfish and distributed operation of sensor nodes. Through
opportune optimizations, moreover, the computational and
memory burdens can be considerably contained, making these
models very useful for resource-constrained WSN nodes.
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