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ANGIOGENESIS
Characterization of the Pall Celeris system as a point-of-care device for
therapeutic angiogenesis
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Abstract
Background aims. The Pall Celeris system is a filtration-based point-of-care device designed to obtain a high concentrate of pe-
ripheral blood total nucleated cells (PB-TNCs).We have characterized the Pall Celerisederived TNCs for their in vitro and in vivo
angiogenic potency. Methods. PB-TNCs isolated from healthy donors were characterized through the use of flow cytometry and
functional assays, aiming to assess migratory capacity, ability to form capillary-like structures, endothelial trans-differentiation and
paracrine factor secretion. In a hind limb ischemia mouse model, we evaluated perfusion immediately and 7 days after surgery,
along with capillary, arteriole and regenerative fiber density and local bio-distribution. Results. Human PB-TNCs isolated by use
of the Pall Celeris filtration system were shown to secrete a panel of angiogenic factors and migrate in response to vascular
endothelial growth factor and stromal-derived factor-1 stimuli. Moreover, after injection in a mouse model of hind limb ischemia,
PB-TNCs induced neovascularization by increasing capillary, arteriole and regenerative fiber numbers, with human cells detected
in murine tissue up to 7 days after ischemia. Conclusions. The Pall Celeris system may represent a novel, effective and reliable
point-of-care device to obtain a PB-derived cell product with adequate potency for therapeutic angiogenesis.
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Introduction

Critical limb ischemia (CLI) is the severest form of
peripheral arterial disease, characterized by ischemic
rest pain eventually leading to lower-extremity ulcera-
tion and amputation. CLI has an incidence of 500 to
1000 per million population in Western countries,
representing a heavy social and economic burden as the
result of high mortality and morbidity rates [1e3]. The
therapeutic frontline of CLI is mechanical revasculari-
zation through percutaneous or surgical procedures.
Unfortunately, up to 50% of patients with CLI are not
suitable for revascularization because of poor anatomy
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or high operative risk [1]. Among these patients, 35% to
50% undergomajor amputation within 12months, and
20% die within 6 months [4,5]. Notably, no effective
pharmacological therapy is currently available [6].

The development of a vicarious collateralization is
the therapeutic and prognostic determinant in CLI [7].
In the past decades, advancements in understanding
the biological mechanisms underpinning neo-
vascularization processes in adult tissues have focused
on the role of bone marrow (BM)/peripheral blood
(PB)-derived cells in contributing to the development of
collateral artery growth, that is, arteriogenesis [8]. After
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endothelium activation on ischemia, the main cellular
effectors of the complex scenario of neovascularization
are circulating leukocytes [9]. In particular, the mono-
nucleated compartment present in the bloodstream
(PB-MNCs), constituted by monocyte/macrophage
and lymphocyte populations, exerts a crucial role in
arterio-arterial collateral growth. Mechanistically, these
cells act as secreting “cytokine factories,” promoting
vascular growth through paracrine mechanisms
[10e14], including extracellular matrix remodeling,
endothelial progenitor cell recruitment, trophic support
for neo-endothelium and finally, the promotion of de
novo arteriogenesis [15]. Notably, it has been observed
that neo-vascularization is significantly diminished in
the absence of monocytes and that capillary density in-
creases in proportion with their accumulation [10,16].

On the basis of a such evidence, different
controlled clinical studies have tested the hypothesis
that the exogenous inoculation of BM- or PB-derived
autologous mononuclear cells may be beneficial for
the treatment of patients who are no longer suitable
for conventional revascularization therapies [17e25].
Although large confirmative studies are still lacking,
available results of phase IeII trials are encouraging,
suggesting preliminary efficacy in the absence of
major complications [26]. PB-MNCs represent a
more accessible cell source for cell therapy in CLI
with respect to the more widely adopted BM-MNCs
[27]. Importantly, evidence of non-inferiority with
respect to conservative therapy has been shown as for
PB-MNCs versus BM-MNCs in restoring lower-
limb perfusion. Notably, patients treated with
PB-derived cells showed a more enriched MNC
fraction with respect to the BM counterpart [28].

Interestingly, an increasing number of ongoing
trials take advantage of point-of-care (POC) systems
for cell selection. These devices offer the advantage
of proximity to patients and time-saving throughout
the cell harvesting, selection and delivery processes.
In addition, these systems are cheaper, user-friendly
and have wider applications with respect to standard
good manufacturing-grade procedures. Although
different POC devices for the isolation of BM cells
are currently under investigation, no system that
selects cells from PB has been tested to date.

The Pall Celeris system is a simple and effective
POC device designed to obtain a high concentration
of total nucleated cells (TNCs) from PB by means
of whole-blood gravity filtration. With the long-term
objective to evaluate the therapeutic efficacy of
autologous TNC delivery obtained with the use of
the Pall Celeris system in CLI patients, in the pre-
sent work, we characterized the PB-TNCs obtained
with the use of the Pall Celeris system for their
identity and for their in vitro and in vivo angiogenic
potency.
Methods

TNC enrichment with the use of the Pall Celeris system

A 20- to 120-mL volume of peripheral blood was
collected from 27 healthy donors. Collection was per-
formed after the donor signed a research donation
consent form. All blood samples were collected in
ACD-A anticoagulant and held at room temperature
until use. Experiments were performed within 24 h of
blood collection. PB-TNCs were isolated through the
use of the Pall Celeris system (Pall Medical Corpora-
tion) according to the manufacturer’s instructions
(Figure 1A). Briefly, the cell collection bag that receives
the TNC concentrate was connected to port A with
the use of a Luer lock mechanism. Whole blood was
loaded through port B (Figure 1B). Gravity filtration
(Figure 1C) was allowed to proceed until the upstream
side of thefilter had no remaining blood and thefluid no
longer flowed into the lower filtrate bag (Figure 1D).
During filtration, TNCs were captured in the filter; the
majority of plasma, platelets (PLTs) and red blood cells
(RBCs) were not retained. The enriched TNCs were
recovered by back-flushing the filter with 14 mL of
sterile saline through port C (Figure 1E).
Complete blood counts

The volume of whole blood (WB) and TNCs, before
and after filtration with the Pall Celeris system, was
carefullymeasured for eachdonor.Asample (200mL)of
WB and TNCs was tested with the use of the XS-1000i
Analyzer (Sysmex EuropeGmbH) to obtain a complete
blood count. Data were analyzed to obtain recovery,
yield enrichment and cell dose for each cell subpopula-
tion. Table I shows data from five samples with the
higher clinical-grade volume of starting material (WB).
Flow cytometry

WBandTNCswere stained immediately after filtration
with fluorescent-conjugated antibodies for 15 min at
room temperature; red blood cells were lysed with the
use of BD Pharm Lyse (BD Biosciences) and analyzed
with the use of a FACSCalibur (BD Biosciences)
equippedwithCell-Quest Software. The following anti-
human antibodies were used: CD3 PE, CD19 PE,
CD14 FITC, CD66b FITC, CD34 PE, CD45 APC
(BD Biosciences), CD3APC/CD16FITC/CD56PE
(DakoNorth America, Inc) and KDR (R&D Systems).
Migration assay

A total of 5 � 105 WB or TNCs per well were re-
suspended in 300 mL of medium M199 (Life Tech-
nologies) and placed in the upper chamber of a



Figure 1. Pall Celeris system. (A) Schematic of the Pall Celeris system; (BeE) representative images for Pall Celeris system use. (B) Blood
loading into the sample input bag through port B. (C and D) Filtration by gravity. (E) Filter backflush to recover TNCs with the use of 14
mL of saline solution through port C.
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modified Boyden chamber (Corning Corporation; 5-
mm pore size). The upper chamber was placed in a
24-well culture dish containing 500 mL of M199
medium supplemented with 100 ng/mL of stromal
cellederived factor 1 (or C-X-C motif chemokine 12
or CXCL12) (SDF1) (R&D Systems), 50 ng/mL of
vascular endothelial growth factor (VEGF) (R&D
Systems), 10% fetal bovine serum (positive control)
or M199 medium alone (negative control).

After 16 h of incubation at 37�C, 5% CO2, trans-
migrated cells were counted. Non-migratory cells on
the upper side of the membrane were scraped off with
the use of wet cotton swabs.Migrated cells in the lower
chamber weremanually counted. Cells present both in
the lower chamber and on the lower side of the filter
were counted and considered as migrated cells.
Capillary-like structure-forming assay

To assess the ability of WB and TNCs to form
vascular structures in vitro, cells were seeded onto
Cultrex (Cultrex Reduced Growth Factor Basement
Membrane Extract, Trevigen Inc) artificial cell basal
Table I. Cell concentration after Pall Celeris system filtration.

Population

Concentration WB
(before Pall Celeris

filtration)

Concentration
TNCs (after Pall
Celeris filtration)

TNCs 5.46 � 1.85 (�103/mL) 16.24 � 3.97 (�103/m
RBCs 4.12 � 0.41 (�106/mL) 1.58 � 0.42 (�106/m
PLTs 226.60 � 68.82 (�103/mL) 292.60 � 35.44 (�103

Neutrophils 3.31 � 1.45 (�103/mL) 7.23 � 2.34 (�103/m
Lymphocytes 1.66 � 0.34 (�103/mL) 7.05 � 2.16 (�103/m
Monocytes 0.32 � 0.11 (�103/mL) 1.25 � 0.27 (�103/m
MNCs 1.98 � 0.41 (�103/mL) 8.30 � 2.31 (�103/m

Anticoagulated (ACD-A) whole blood obtained from healthy donors. Th
the volume of the enriched TNC concentrate obtained was 12.84 � 1.2
membrane. Cultrex (250 mL) was allowed to poly-
merize onto 24-well plates at 37�C, 5% CO2 for 30
min. WB and TNCs were seeded at a concentration
of 5� 104 cells per well in complete EGM-2 medium
(Life Technologies). Branching point number was
evaluated after 1, 2 and 7 days. Human umbilical
vein endothelial cells (HUVEC) (Lonza Group Ltd)
were used as a positive control for these experiments
and were exposed to the same culture conditions.
Cytokine, chemokine and growth factor assay

A bead-based multiplex immunoassay, Bio-Plex assay
(Bio-Rad Laboratories), was used to compare cyto-
kines, chemokines and growth factors released from
TNCs immediately after the Pall Celeris system
filtration (n ¼ 8) versus Ficoll (Ficoll Paque Plus, GE
Healthcare Life Sciences) gradient centrifugation ac-
cording to the manufacturer’s instructions (n ¼ 5).
Samples were centrifuged at 4000g for 20 min.
The supernatant was removed and frozen at �80�C
until use. Samples were evaluated in duplicate for
the presence of the following angiogenic factors:
Yield
enrichment Recovery % Dose

L) 2.97 39.85 � 6.30 2.08 � 0.53 (�108)
L) 0.38 4.99 � 1.18 1.99 � 0.42 (�1010)
/mL) 1.29 17.83 � 4.46 37.72 � 7.34 (�108)
L) 2.18 29.81 � 8.06 0.93 � 0.32 (�108)
L) 4.25 55.05 � 7.28 0.90 � 0.25 (�108)
L) 3.94 54.20 � 12.16 0.16 � 0.04 (�108)
L) 4.20 54.76 � 7.93 1.06 � 0.28 (�108)

e whole blood volume processed was 98.2 mL � 8.49 (n ¼ 5) and
9 mL. Values are mean � standard deviation (n ¼ 5).
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Angiotensin-1, platelet-derived growth factor-AB/BB
(PDGF-AB/BB), hepatocyte growth factor (HGF),
granulocyte colony-stimulating factor (G-CSF), regu-
lated on activation, normal T-cell expressed and
secreted (or Chemokine [C-C motif] ligand 5 or
CCL5) (RANTES), interleukin-8 (IL-8), growth-
regulated oncogene-a (or C-X-C motif ligand 1)
(GRO-a), IL-10, VEGF-A, tumor necrosis factor-a
(TNF-a), IL-1b, IL-6, soluble VEGF receptor type 2
(sVEGFR-2), platelet endothelial cell adhesion
molecule-1 (PECAM), basic fibroblast growth factor
(bFGF) and SDF-1, by use of Luminex Technology
(Bio-Plex assay, Bio-Rad), according to the in-
structions for use.
Mouse model of limb ischemia

All experimental procedures were approved by the
internal Animal Research Ethical Committee (pro-
tocol HH39) according to the Italian Ministry of
Health and complied with the National Institutes of
Health (USA) Guide for the Care and Use of Laboratory
Animals. CD1 male mice (Charles River), 2 months
old, weighing 25 to 30 g, were used for all experi-
ments. Animals were anesthetized with a mixture of 1
g of tribromoethyl alcohol in 1 mL of tert-amyl
alcohol (Avertin, Sigma-Aldrich), diluted 1:50 and
intraperitoneally injected, 20 mL/g body weight.
Acute hind limb ischemia in CD1 mice was induced
by femoral artery dissection as previously described
[29]. Mice (n ¼ 5/group) received five injections of
either normal saline or 1 � 105 enriched TNCs into
the adductor muscle. Induction of ischemia was
confirmed by means of laser Doppler perfusion im-
aging (Lisca, PeriMed AB) immediately after surgery
and at 7 days before euthanasia, as established pre-
viously [29]. Briefly, blood flow was measured in
ischemic and contralateral hind limbs by use of Lisca
at baseline, immediately after induction of ischemia
(day 0, to confirm efficient induction of ischemia)
and 7 days after ischemia. Before imaging, mice were
placed on a heating mat at 37�C. Low or no perfu-
sion was displayed in dark blue, whereas high
perfusion was displayed in red. To avoid the influ-
ence of ambient light and temperature, results were
expressed as the ratio between perfusion in the left
(ischemic) versus right (non-ischemic) limb.
Histological analysis

Seven days after surgery, anesthetized mice were kil-
led and perfused with phosphate-buffered saline, fol-
lowed by 10% buffered formalin (10 min) at 100 mm
Hg through the left ventricle. After paraffin embed-
ding, 3-mm-thick sections were cut from each sample
with muscle fibers oriented in the transverse direction.
Hematoxylin and eosin staining was used to
identify capillaries and regenerating myofibers.
Capillaries were identified by their morphology and
adjacent localization to or associated with muscle
fibers. The number of capillaries from 10 randomly
selected separate fields was counted for each muscle.
Capillary density was defined as the mean number of
capillaries per field as previously established [29].
Regenerating myofibers are defined as fibers with
centrally located nuclei; fibers intersecting the right
and top border of the field were not counted. Images
were taken with the use of a Zeiss Axioplan micro-
scope. Ten fields (�20 objective) were analyzed in
each mouse by two individuals in a blinded manner.

Arterioles were identified by use of a-smooth
muscle actin (a-SMA)-positive (Sigma-Aldrich)
fluorescent staining and appropriate morphology and
localization (adjacent to or associated with muscle
fibers, 4 to 40 mm diameter) and counted by two
independent operators blinded to the treatment
regimen. The number of arterioles from 10 randomly
selected different fields was counted for each muscle.
Arteriole density was defined as the mean number of
capillaries per field as previously established [29].

To assess the local bio-distribution of injected
cells, human cells were identified by means of anti-
human nucleiepositive fluorescent staining (Milli-
pore Corporation). Sections were observed with the
use of an inverted Zeiss Axioplan fluorescence mi-
croscope. Images were acquired by use of a �40
objective and a digital camera system and analyzed
with the use of IAS Delta System software.
Statistical analysis

Statistical analyses were performed by use of Student’s
paired or unpaired t-tests, with the use of GraphPad
statistical software, except for migration assay. A value
of P < 0.05 was considered statistically significant.

For the migration assay, to compare means of the
two “subsamples” (WB and TNCs), one-way anal-
ysis of variance was performed. Outcomes confirmed
no significant differences in means among the WB
and TNCs (P ¼ 0.4). A comparison of the means for
four subsamples: CTR-neg, SERUM, VEGF and
SDF-1 was performed with the use of one-way analysis
of variance.Outcomesconfirmasignificantdifference in
means among the four subsamples (P < 0.01).
Results

TNC characterization

The mean volume of whole blood processed was 98.2
� 8.49 mL (n ¼ 5) and the mean volume of the
enriched TNC concentrate obtained was 12.84� 1.29



Figure 2. FACS analysis of TNCs: (A) CD45þCD3þ T lymphocytes, (B) CD45þCD14þ monocytes, (C) CD45þCD19þ B lymphocytes,
(D) CD45þCD66bþ neutrophil granulocytes, (E) (CD3�)CD16þCD56þ natural killer, (F) CD45þCD34þ stem cell component, (G)
CD45þKDRþ and (H) CD34þKDRþ endothelial progenitor markers. Values are mean � standard error of the mean (n ¼ 4). Paired t-test.
*P < 0.05.
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mL (n ¼ 5). TNCs were enriched 2.97-fold (concen-
tration factor averaged) andMNCs were enriched 4.2-
fold (Table I); the CD34þ progenitor cell subpopula-
tionwas enriched by 5.6%� 4.2% versus controls,P<
0.01; n ¼ 4 (Figure 2). No differences were found for
the various surface markers used to identify sub-
populations of leukocyte cells including B and T lym-
phocytes, monocytes and granulocytes.
Table II. Released cytokines in TNC supernatant after Pall
Celeris filtration versus Ficoll centrifugation.

Cytokine

Supernatant
TNCs (pg/mL)
mean � SD

n ¼ 8

Supernatant Ficoll
(pg/mL) mean � SD

n ¼ 5 P value

bFGF 201.32 � 106.51 213.01 � 48.52 0.8236
G-CSF 367.03 � 206.67 231.41 � 82.26 0.1945
Cytokine, chemokine and growth factor assay

The pro-angiogenic potential of TNCs has been tested
through the use of multiplex analysis by comparing
multiple cytokine content in the supernatant obtained
after filtration with the Celeris system versus the Ficoll
gradient centrifugation counterpart (Table II). As
shown in Table II, a variety of angiogenic cytokines
have been found in TNC supernatant: bFGF, G-CSF,
HGF, PDGF-AB/BB, PECAM-1, sVEGFR-2, IL-8,
TNF-a, VEGF-A, IL-1b, IL-10, RANTES, SDF-1
and IL-6. Notably, we found that the levels of angio-
genic cytokines in supernatant of the Pall Celeris
filtrate are significantly higher than for Ficoll for 10 of
14 tested molecules (P < 0.05) (Table II).
HGF 743.32 � 540.80 141.81 � 59.52 0.0330
PDGF-AB/BB 783.09 � 264.62 394.90 � 168.87 0.0143
PECAM-1 2830.04 � 808.87 4388.69 � 1553.17 0.0350
sVEGFR-2 2499.42 � 1776.57 54.76 � 32.43 0.0116
IL-8 18.09 � 7.98 0.41 � 0.75 0.0005
TNF-a 54.32 � 20.71 0.77 � 0.09 0.0001
VEGF-A 144.81 � 95.80 19.07 � 7.45 0.0149
IL-1b 0.72 � 0.20 0.12 � 0.07 0.0001
IL-10 2.00 � 1.71 0.72 � 0.19 0.1287
RANTES 6188.49 � 1676.56 5582.95 � 4028.66 0.7090
SDF-1 172.55 � 54.95 34.60 � 25.21 0.0003
IL-6 2.68 � 2.03 0.30 � 0.19 0.0258
Migration assay

A prerequisite for the therapeutic success of intramus-
cularly deliveredTNCs is their ability tomigrate toward
chemoattractant factors upregulated in ischemic tissue
such as SDF-1 and VEGF. BothWB and the enriched
TNCs showed a comparable (P ¼ 0.4) and significant
migratory ability comparedwith negative control (CTR
neg) (P< 0.05), confirming that Celeris filtration does
not impair the ability of the cells to migrate on che-
moattractant stimuli (n ¼ 8) (Figure 3B).
In vitro endothelial differentiation

Positive control cells (HUVECs) formed capillary-
like structures within 24 h on seeding on to syn-
thetic media (Cultrex), whereas native whole blood
(WB) cells and Celeris-derived TNCs did not form
capillary structures after 7 days of observation
(Figure 3). After 7 days in differentiation medium,
immunofluorescence analyses were performed to
evaluate markers of endothelial differentiation:
Von Willebrand Factor (vWF) and the uptake of



Figure 3. (A) Capillary tube formation assay (n ¼ 6) formation of tubular-like structures by WB, TNCs and HUVECs onto Cultrex
basement membrane. Capillary formation was found only in the positive control (HUVECs). Representative images �10. Scale bar ¼ 200
mm. (B) Migration assay. Stimuli were culture medium M199 (CTR neg), culture medium þ 10% fetal bovine serum (SERUM), culture
medium VEGFþ 50 ng/mL (VEGF) and SDF1 culture mediumþ 100 ng/mL (SDF1). No significant differences are observed between WB
and TNCs in any of the conditions considered (P ¼ 0.4). Stimuli with SERUM, VEGF and SDF1 cause a significant increase in the number
of migrated cells compared with CTR neg (*P < 0.05) (n ¼ 8).
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acetylated low-density lipoprotein (DiI-Ac-LDL).
After 7 days of culture, we observed in WB and
TNCs a very low number of endothelial-like cells
characterized by the expression of vWF and DiI-
Ac-LDL, as compared with HUVECs
(Supplementary Figure 1S).
In vivo perfusion

Laser color Doppler perfusion evaluation 7 days after
ischemia showed a significant improvement of blood
flow in the hind limb of mice treated with enriched
human TNCs with respect to controls (P ¼ 0.036)
(Figure 4A,C).
In vivo immunohistochemistry and immunofluorescence

The local bio-distribution of human cells was
assessed by anti-human nucleiepositive fluorescent
staining (Figure 4D,E). This assay showed that 7
days after transplantation, isolated clusters of human
cells in murine muscle tissue can be identified.

Histological analysis of ischemic tissues demon-
strated that human TNC delivery was associated
with a significant increase in capillary and arteriole
formation compared with that in saline-treated ani-
mals (P ¼ 0.0025 and P ¼ 0.0001, respectively)
(Figure 5AeC).

Furthermore, to evaluate whether human cells
play a role in skeletal muscle regeneration, the
number of regenerating fibers were counted on
adductor muscle sections at day 7 after ischemia
and treatment delivery. At this time point, the
number of regenerating fibers increased in the cell-
treated group when compared with untreated ani-
mals (Figure 5AeC) (P ¼ 0.047).
Discussion

In this report, we have provided evidence that human
peripheral blood TNCs isolated with the Pall Celeris



Figure 4. (AeC) Laser Doppler perfusion imaging (LDPI) in a murine model before (A) and after (B) microsurgery to induce hind limb
ischemia. (C) Seven days after ischemia, LDPI showed a significant increase in the group of mice treated with 105 cells, compared with the
group treated with saline. *P < 0.05 (T7 cells versus T7 saline) (n ¼ 5). (D, E) Local bio-distribution of injected cells after 7 days after
transplantation (n ¼ 5). Immunofluorescence for anti-human nuclei identifies human cells (white arrows) in murine tissue, with Hoechst
33258 staining. Representative images �40. (D) Mice treated with saline; (E) mice treated with 1 � 105 TNCs. Scale bar ¼ 50 mm.
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filtration system have high angiogenic potency
in vitro and in vivo. In particular, we showed that
TNCs secrete a variety of angiogenic factors and can
migrate in response to VEGF and SDF-1. Moreover,
when injected in a mouse model of hind limb
ischemia, TNCs induced neovascularization by
increasing capillary and arteriole number.

BM- or PB-derived cell therapy has recently
gained interest as a potential treatment option for
refractory CLI, with the goal to increase blood cir-
culation in the ischemic limb [26]. Different cell
lineages have been delivered to affected limbs
through the intramuscular or intra-arterial route to
achieve therapeutic angiogenesis. These approaches
aimed to boost the physiological active role that
leukocytes, and in particular circulating mono-
nuclear and endothelial progenitor cells (EPCs),
are exerted into ischemic tissues through initiating
a cascade of events leading to collateral artery
growth [30e36]. As consistently shown [37,38],
BM-derived nucleated cells with monocytic and/or
macrophage markers [39] invade ischemic tissues
after endothelium-dependent activation and promote
vascular growth, not directly incorporating into
vessel walls but rather acting as “cytokine factories,”
releasing angiogenic factors in a paracrine manner.
Circulating EPCs, first described by Asahara [40]
and classified on the basis of CD34þ expression,
are generally defined as a BM-derived circulating cell
population with endothelial potential [41]. Despite
the lack of a precise classification, these cells have
been purported to originate from the monocyte-
macrophage lineage, representing approximately
1% of total MNC population [13]. EPCs are
responsive to ischemia similarly to BM-derived
monocytic cells, acting as cytokine factories in the
perivascular collateral artery space [42]. Conse-
quently, BM and PB are possible sources of cells
with angiogenic potential.

Different isolation procedures have been used to
concentrate the mononuclear fractions or to posi-
tively isolate EPCs on the basis of their surface
markers from BM or PB. From a regulatory stand-
point, the techniques involving cell separation
(Table III), such as Ficoll density gradient system
centrifugation [30], plasma pheresis systems (ie,
COBE Spectra, Gambro; CS 3000-Plus, Baxter
Healthcare) [27,43] or immune-magnetic selection
(ISOLEX 300i Magnetic Cell Selection System,
Baxter Healthcare; Sepax 2 BioSafe SA; MACS,
Miltenyi Biotec S.r.l.) [33,36] require complex
and stringent Good Clinical Practiceeor Good



Figure 5. Capillary, arteriole and regenerative fiber counts after 7 days. The number of capillaries (A), regenerative fibers (B) and arterioles
(C) per unit of area showed a significant increase in the cell-treated mouse group compared with the saline-treated group. Representative
images �20 (n ¼ 5). Scale bar ¼ 200 mm. *P < 0.05; **P < 0.01; ***P < 0.001.
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Manufacturing Practiceecertified procedures. In the
European community, tight regulation is applied for
such advanced therapies, which results in high
manufacturing costs and complex authorization
processes (WHO Technical Report Series, No. 908,
2003 Annex 4 Good Manufacturing Practices for
pharmaceutical products: main principles). In an
attempt to overcome these issues, POC systems have
been recently implemented. POC systems are single-
step, bedside, closed isolation systems that allow for
a relatively cost effective and quicker cell processing.
To date, different centrifugation-based POC systems
(SmartPReP, Harvest Technologies Corp Res-Q60
BMC, TotipotentSC; Magellan, Arteriocyte Medi-
cal System) have been designed to process BM [9].
Some of them are currently under investigation in
controlled clinical trials of BM-derived cell therapy
in CLI: MarrowStim (Biomet, Inc), NCT01049919,
Magellan, NCT01386216, (Icellator Cell Isolation
System, Tissue Genesis, Inc), NCT02234778,
BMAC 2 (Harvest Technologies), NCT01232673,
NCT01245335, NCT00595257, NCT00498069,
Res-Q60 BMC and NCT01472289 (Table III). Of
note, four clinical trials are currently ongoing (www.
clinicaltrials.gov) that use the BMAC 2 system,
which concentrates, by means of a centrifugation-
based principle, 4.20-fold BM-derived nucleated
cells. In a phase II study, Prochazka et al. [35] re-
ported a 79% limb salvage rate in patients with CLI
and foot ulcers. Notably, the efficiency in CD34þ

hematopoietic stem cell enrichment with the use of
BMAC 2 to concentrate BM cells is comparable to
the use of the Pall Celeris system with PB cells, [35].
Another phase I trial that used the MarrowStim de-
vice delivers a high BM-MNC number (2 � 109) to
affect ankle-Brachial Index, TcPO2 and rest pain. By
way of contrast, the present work confirms that a
dose of approximately one-tenth of PB cells is
enough to provide significant improvement in
perfusion and capillary and arteriolar density in the
mouse model studied. The ISOLEX 300i Magnetic
Cell Selection System [36] is not strictly a POC
system. This device is used in a Good Manufacturing
Practice environment to concentrate a single stem
cell population (CD34þ) through the use of a mag-
netic selection approach. Losordo et al. [36] report a

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov


Table III. Clinical studies of cell therapy with the use of devices in patients with critical limb ischemia.

ClinicalTrials.
gov Id Phase

Patients
(n)

Raw
material Quantity Cell type Dose Device

Route of
administration Ref.

NCT01049919 II 152 BM 360e370 mL BM-MNCs 2.0 � 1.6 � 109

MNCs
MarrowStim IM [31]

NCT01065337 II 30 BM 40e50 mL BM-MNCs/
BM-MSCs

NA Sepax/MACS IM/IA [33]

NCT01386216 I 20 BM NA BM-MNCs NA Magellan IM -
NCT00523731 I 6 PB 250 mL EPCs NA Vescell IM [34]
NCT02234778 I 20 Adipose

tissue
NA Stromal vascular

fraction
NA Icellator Tissue

Genesis
IM -

NCT01232673 II 96 BM 240 mL BM-MNCs 6.44 � 0.5 � 108

MNCs
2.85 � 0.04 � 109

TNCs

BMAC 2 IM [35]

NCT01245335 III 210 BM 300 mL BM-MNCs NA BMAC 2 IM -
NCT00595257 I/II 60 BM NA BM-MNCs NA BMAC 2 IM -
NCT01472289 I/II 15 BM 120 mL BM-MNCs NA Res-Q60 IM -
NCT00498069 I/II 48 BM 300 mL BM-MNCs NA BMAC 2 IM -
NCT00616980 I/II 28 Mobilized

PB
NA CD34þ cells Low/high/placebo

1:1:1
ISOLEX 300i IM [36]

MSC, mesenchymal stromal cell; NA, not available.
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trend toward reduced amputation rates in cell-
treated subjects versus control subjects. No
published data are available for other centrifugation-
based devices (Res-Q60 BMC; Magellan) currently
under investigation in clinical trials.

Given the current lack of evidence of the supe-
riority of BM versus mobilized PB cells [27], the
advantage of PB as a cell source is the avoidance of
BM harvesting drawbacks, including local pain,
hematomas and anemia [44]. To date, more than
200 patients have been enrolled in phase IeII
clinical trials on PB cell therapy for CLI
[19e24,34,45e47]. Cells are primarily obtained
through apheresis to retrieve the MNC fraction
with or without G-CSFeinduced cell mobilization.
No adverse effects have been reported, along with
preliminary observations of enhanced wound heal-
ing, perfusion and pain in the ischemic limb [9].
Although G-CSF has proven to be effective for a
large mobilization in the bloodstream of BM cells,
concerns about rare but possible serious adverse
events [46,48,49] have prompted researchers to test
cell harvesting from PB in the absence of endoge-
nous stimulation [22,23,34]. In a pilot study on six
patients with CLI, Mutirangura et al. [34] reported
that implanting nucleated cells from PB was safe in
terms of systemic and local reactions. More
recently, Morija et al. [11] intramuscularly injected
ischemic limbs of 42 CLI patients with PB-derived
MNCs harvested without G-CSFeinduced mobi-
lization [11] by means of an apheresis-based
appliance (COBE Spectra). Although this was not
a case-controlled study, preliminary efficacy data
suggest a good safety profile and potential
angiogenic efficacy in this severely compromised
patient population.

The Pall Celeris system is the first POC device
conceived to concentrate an MNC-enriched popu-
lation of TNCs with high angiogenic potential from
PB without apheresis, by means of a filtration system.
As reported by Jin et al. [50], ischemia induces
elevation in plasma of different cell-derived active
cytokines, including sKitL (Soluble Kit-ligand) and
thrombopoietin, and, to a lesser extent, progenitor-
active cytokines, such as granulocyte-macrophage
colony-stimulating factor (GM-CSF) and erythro-
poietin. In agreement with these results, we found
that Pall Celeris-derived TNCs produced in super-
natant a large pool of cytokines with angiogenic
properties, including FGF, VEGF, HGF and G-
CSF. Importantly, our data show that supernatant
cytokine levels of the Pall Celeris system are signifi-
cantly higher than that in the Ficoll counterpart as for
10 of 14 tested angiogenic molecules. Because Ficoll
is a gold standard for MNC isolation [51,52], this
finding is supportive for a high angiogenic potency of
the Pall Celeris system.

Our finding that Pall Celerisederived TNCs do
not trans-differentiate into endothelium reinforces the
concept that their contribution to angiogenesis pro-
motion is indirectly through secreted factors, remi-
niscent of the previously described role of BM-derived
cells in angiogenesis promotion [26]. Interestingly,
PLTs have been identified as a co-player in the
secretion process [53,54] by releasing SDF-1, a key
compound responsible for cell ability to migrate on
ischemia [55]. Our data show that the Pall Celeris
filtration system can enrich PLT concentration by
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approximately 1.3-fold and that SDF-1, along with
PDGF, are liberated in the TNC supernatant. Func-
tionally, these findings are paralleled by the preserved
capacity of filtered TNCs to migrate on SDF-1 or
VEGF stimuli, thus suggesting their well-maintained
chemo-attractive response. An additional positive
factor possibly related to efficacy after BM-MNC de-
livery was attributed to the supply of EPCs (including
CD34þ fraction) [43]. The meta-analysis by Fadini
et al. [44] reported that in BM, the mean CD34þ cell
count in published studies was 5.0 � 1.48 � 107,
indicating that approximately 1.4% of transplanted
cells were CD34þ. Our data demonstrated a signifi-
cant 5.6-fold enrichment in CD34þ cell population
after Pall Celeris filtration (from 0.32% in WB to
1.79% in Pall Celeris TNCs), with a meanCD34þ cell
count of 1.37 � 106. In addition, in comparison to
previously published data with centrifugation-based
POC systems, we first report the contamination rate
of red blood cells. The data have not been reported
thus far and the presence of red blood cells in ischemic
tissue is still controversial. Ozawa et al. [56] report that
treatment of limb-ischemic mice with whole BM cells
improved limb survival and blood flow. However, the
implantation of purified erythroid cells did not rescue
limbs but appeared not to impair the limb salvage if
present in a mixed population.

As for in vivo potency, similarly to BM-derived
cells [33], we found that the Pall Celerisederived
TNCs induce, under ischemic conditions, a signifi-
cant collateral growth, by increasing capillary and
arteriole number, and improve limb perfusion
accompanied by an increase of regenerating fibers,
possibly as a consequence of neovascularization. As
previously described [55], limited clusters of trans-
planted cells persisting 1 week after TNC introduc-
tion have been observed.

Although this study was not conceived with a
dose-finding design, the cell dose we injected in
mice (1 � 105 TNCs) was selected for a calculated
TNC number corresponding to 2.08 � 0.53 � 108

TNCs and 1.06 � 0.28 � 108 MNC in humans.
This cell count can be easily obtained through
filtration of 120 mL of PB from patients (see
Table I). In published clinical studies that used
BM-POC systems, numbers of BM-TNCs ranging
between 2.0 and 2.85 � 109 have been obtained,
with an approximate 4-fold-enrichment for each
subpopulation; however, we show in the present
work that approximately a tenth of the PB-derived
cell dose is sufficient to promote neo-angiogenesis
in a mouse model of hind limb ischemia. Very
recently, a large pilot study in CLI patients (n ¼ 43)
with intramuscular injection of Pall Cele-
risederived TNCs has been published [57]. The
starting volume of PB (WB) was 120 mL,
corresponding to our Pall Celeris setup. Results are
encouraging in terms of procedure safety and pre-
liminary efficacy (limb rescue).

In conclusion, our data indicate that the Pall
Celeris system may represent an interesting novel
and reliable POC device to obtain a PB-derived cell
product with adequate potency for therapeutic
angiogenesis in limb ischemia.
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