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Abstract 

Detection of cracks in structural components and identification of their size for structures having beam form is of 
crucial importance in many engineering applications. Usually, the crack characteristics are assumed to be known. 
However they possess considerable scatter or uncertainty assumed in this paper by both a probabilistic and non-
probabilistic model. In order to evaluate the main statistics as well the upper and lower bounds of the response, the 
Frequency Response Function of damaged beams with uncertain depth of the crack is derived in explicit 
approximate form.   
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1. Introduction 

For damaged structures the dynamic response changes with respect to the undamaged ones due to the changes 
produced on its mechanical properties by the presence of the crack [1,2]. In this framework an interesting issue is 
the effect of a single crack on the structural response [3-6]. In Structural Dynamics, the Frequency Response 
Function (FRF) is a complex function able to provide information about the behaviour of a structure over a range of 
frequencies. In this paper a novel procedure for deriving in explicit approximate form the FRF of damaged beams 
with uncertain depth of the crack, generalizing the procedure recently proposed by the authors [7], is presented. By 
adopting the approximate FRF and modelling the uncertainty by both probabilistic and interval approaches, a 
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procedure is proposed to evaluate the bounds of the interval displacement and of the mean-value and variance of the 
random response. Finally, interval versus stochastic analysis results are derived and compared in a numerical  
application. 

2. Analytical model of the cracked beam 

The mathematical model adopted to analyze the damaged beam with a transverse on-edge non-propagating crack 
is based on the finite element model proposed in Refs. [1,2]. 

According to the Saint-Venant principle the presence of a crack in the beam modifies the stress field in the region 
adjacent to the crack. Such a perturbation of the stress field is relevant especially when the crack is open and 
determines a local reduction of the flexural rigidity affecting only the element that contains a central crack. 

It follows that the element stiffness matrix, with the exception of the terms which represent the cracked element, 
may be regarded as unchanged under a certain limitation of the element size. 

Undamaged parts of the beam are modelled by Euler type finite elements with two nodes and two degrees of 
freedom (transverse displacement and rotation) at each node. 

The calculation of the additional stress energy introduced by the crack has been studied in fracture mechanics and 
the flexibility coefficients are expressed by a stress intensity factor in the linear elastic range, using Castigliano’s 
theorem. The generic component ( )0

ijd  of the compliance (or flexibility) matrix ( )0
eD of the undamaged element and 

the terms ( )1
ijd of the additional flexibility matrix ( )1

eD due to the crack can be derived respectively as 

                                                 ( ) ( )
2 (0) 2 (1)

0 1
1 2, ; , 1, 2; ,ij ij

i j i j

W Wd d i j P P P M
P P P P

∂ ∂= = = = =
∂ ∂ ∂ ∂

                                    (1) 

being ( )0W the strain energy of an element without a crack, whereas ( )1W the additional energy. By the principle of 
virtual work the stiffness matrix of the undamaged and cracked element takes the following form: 

                                                  ( )0 1 1
e e c,e e

1 1 0
; ;

0 1 0 1
T T T− − − − 

= = =  − 
K TD T K TD T T

ℓ
                                     (2) 

where the apex T means transpose matrix. Once the stiffness matrices of the undamaged and cracked elements are 
defined, for the beam discretized in Ne finite elements the stiffness matrix K of order n n×  with e2n N=  can be 
straightforwardly evaluated following the classical assembly rules. 
Moreover, in the framework of the finite element approximation, it is usually assumed that the crack does not 
modify the mass distribution. 

3. Problem formulation 

Usually parameters relating to crack, namely depth and position of the crack, could be affected by a lack of 
knowledge and consequently modelled as uncertain parameters. In this section the case of uncertain depth of the 
crack is introduced. The equation of motion of a quiescent cracked beam discretized by eN  finite elements subjected 
to an external deterministic excitation ( )tf  can be written as: 

     0 0( ) ( , ) ( ) ( , ) ( ) ( )t a t a t tα α α α α, + , + , =M u C u K u fɺɺ ɺ                                                (3) 
where M  is the n n×  mass matrix of the structure, 0( , )a αC  is the n n×  damping matrix, 0( , )a αK is the n n×
stiffness matrix and ( )tf  is deterministic vector function of order 1n× ; ( )tα,u  is the uncertain vector of nodal 
displacements of order 1n×  and a dot over a variable denotes differentiation with respect to time t.  
The n n× uncertain stiffness matrix 0( , )a αK is here expressed as a function of the uncertain structural parameter 
α as follows:

                         0
0 C 0 1 0 1 0

0

( , )
( , ) ( ) ( ); ( )

a
a a a a

α

αα α
α =

∂
= + =

∂
K

K K K K                                  (4) 

where α  is the undimensional zero mean fluctuation of the uncertain crack depth ( )0 1a a α= +  with 0a  its mean 
value. In Eq.(4) C 0( )aK  is the mean stiffness matrix. It is a positive definite symmetric matrix of order n n× , while 
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1 0( )aK  is a symmetric matrix of order n n× and rank r. The Rayleigh model is herein adopted for the uncertain 
damping matrix, i.e.: 

        ( ) ( ) ( ) ( )0 0 1 0 0 1 C 0 1 1 0 C 0 1 0( , ) ( , )a c c a c c a c a a aα α α α= + = + + = +C M K M K K C C                      (5) 

where 0c  and 1c  are the Rayleigh damping constants having units 1s−  and s , respectively. Hereafter we indicate
C 0 C( )a =K K , 1 0 1( )a =K K and ( )C 0 Ca =C C for sake of notation compactness. 

4. Frequency domain response 

Performing the Fourier transform of both sides of Eq.(3) and taking into account relationships (4) and (5) the 
following set of algebraic frequency dependent equations governing the response in the frequency domain is 
obtained:      

                                                [ ] 1
C C( , ) ( ) ( , ) ( ) ( ) ( , ) ( )  nα ω ω α ω ω ω α ω ω−= + =U I H S H F H F                              (6) 

where ( , )α ωH  is the frequency response function (FRF) matrix (referred to also as transfer function matrix) given 
as: 

                         [ ] 1
C C( , ) ( ) ( , ) ( )       nα ω ω α ω ω−= +H I H S H                                                (7) 

In the previous equation, nI  denotes the identity matrix of order n, C ( )ωH  is the FRF matrix of the nominal 
structural system referred to the mean stiffness matrix and ( , )α ωS  is a complex matrix of order n n×  accounting for 
the fluctuations of the uncertain parameter. C ( )ωH and ( , )α ωS are given respectively by: 

                      

12
C 0 1 C C

1 1 1

( ) i i ;

( , ) i

c c

c

ω ω ω ω

α ω ω α α

−
 = − + + + 

= +

H M M K K

S K K                                              
(8) 

In the previous equations the matrices CK  and 1K  have been defined in Eq.(4), while U(α ,ω) and F(ω) are the 
vectors collecting the Fourier transforms of u(α ,t) and f(t), respectively. Notice that since the Rayleigh model has 
been adopted for the damping, the FRF matrix C ( )ωH  can be evaluated in closed form as: 

                                        ( ) 12 2
C C C,m C C 0 1 C C C( ) ( ) iT T

m mc cω ω ω ω
−

 = = − + + + H Φ H Φ Φ I I   Φ                 (9)

where CΦ  is the modal matrix, of order n m× , pertaining to the mean configuration. Specifically, the modal matrix 
CΦ , collecting the first m eigenvectors normalized with respect to the mass matrix M , is evaluated as solution of 

the following eigenproblem: 

                                
2 2

C C C C C C C C C C; ;m
Τ Τ=K Φ MΦ  Φ MΦ I Φ K Φ = == == == =                                      (10) 

2
C  being the spectral matrix listing the squares of the natural circular frequencies of the structure referred to the 

mean value of the uncertain parameter and mI the identity matrix of order m. It is worth noting that in Eq.(9) 
C,m ( )ωH  is the modal transfer function matrix of the “mean” structure that for classically damped structural systems 

is a diagonal matrix. 

By inspection of Eqs.(7) and (9), it is observed that the evaluation of the FRF ( , )α ωH matrix involves the 
inversion of a matrix expressed as sum of a diagonal matrix plus a deviation given by the full matrix ( , )α ωS . It 
follows that the uncertain FRF matrix can be determined in approximate explicit form by applying the Rational 
Series Expansion (RSE) [7], herein truncated to first-order terms, i.e.: 

                                    
( )C C

1 1

( )
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r r
j

j j j
j jj j

p
p b

ω λ α
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with 1( ) 1 ip cω ω= +  and 
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                             ( )C C C

( )
( ) ( ) ;    ( ) ( ) ( ); ,
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jT T
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j j

p
b

p b
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In the previous equations the following position has been made: Cj j=v K ψ , with jψψψψ  and jλ  the j -th eigenvector 
( 1, , )j r= … and the associated eigenvalue, solutions of the following eigenproblem: 

                  [ ]1 C C 1 2; ;    T
j j j r r= = = ⋅⋅⋅K ψ K ψ Ψ K Ψ I Ψ ψ ψ ψλ                  (13) 

Notice that only r n<  eigenvalues are different from zero and the generic term  of the summation in Eq.(11) turns 
out to be a rank-one matrix. It follows that the evaluation of the FRF matrix involves the inversion of a matrix 
expressed as sum of a mean FRF matrix plus a deviation given as superposition of rank-one matrices. 

In the following sub-sections the uncertain depth of the crack is modelled first by a random variable and then by 
an interval variable. For the first case a second-moment analysis, namely computing the evolution of mean values 
and covariances of response quantities, is performed employing a method developed in the frequency domain. For 
the interval case the bounds of the dynamic response are evaluated through a procedure which derives explicit 
expressions of the interval FRF. 

4.1. Statistic functions of the response 

Let us first consider the case of the stochastic crack depth ( )0 1a a α= + ɶ where αɶ  is the undimensional zero mean 
random fluctuation of the uncertain crack depth  and 0a  its mean value. 

Taking into account Eq.(11), specifying the random fluctuation of the uncertain parameter, and by substituting 
Eq.(11) into Eq.(6) it follows that the k-th element of the vector ( )ωUɶ  can be expressed as: 

                                           ( ) , , , ,
1 1

( )
( ) ( ) ( ) ( , )

1+ ( ) ( )

r r
j

k k C k j k C k j
j jj j

p
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with 
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The symbol { }k•  means k-th element of the vector into curly parentheses. In order to evaluate in the time domain 
the mean value and variance of the k-th nodal response, ( )

kU tµ ɶ and 2 ( )
kU tσ ɶ respectively, the inverse Fourier 

Transform is applied to Eq.(14) obtaining: 

                                            ( ) ( )1
, ,

1
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r
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=
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where 1
, ,( ) ( )k C k CU t F U ω−  =   and 1

, ,( ) ( , )k j k jN t F −  =  
ɶ ɶη α ω . Starting from Eq.(16), the mean value and variance 

functions of the stochastic variables ( )kU tɶ  can be evaluated as follows, respectively:
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ℓ
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where , ( )k je tℓ  is the time domain stochastic average for the generic cross-term with respect to the zero-mean 

stochastic variable αɶ  which can be evaluated as: 
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where 1
, ,( ) ( )k C k CU t F U ω−  =   and 1

, ,( ) ( , )k j k jN t F −  =  
ɶ ɶη α ω . Starting from Eq.(16), the mean value and variance 

functions of the stochastic variables ( )kU tɶ  can be evaluated as follows, respectively:
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where , ( )k je tℓ  is the time domain stochastic average for the generic cross-term with respect to the zero-mean 

stochastic variable αɶ  which can be evaluated as: 

                                i i
, , , , ,

1( ) E ( ) ( ) ( , ) e d ( , )e d ( ) d
4

t t
k j k j k k j ke t N t N t p

+∞ +∞ +∞

−∞ −∞ −∞

  ≡ = × 
  
∫ ∫ ∫ ɶℓ ℓ ℓ

ɶ ɶ ɶ ɶω ω
αη α ω ω η α ω ω α α

π

      

(18)



1132 G. Muscolino  et al. / Procedia Engineering 199 (2017) 1128–1133 G. Muscolino, R. Santoro/ Procedia Engineering 00 (2017) 000–000 5

4.2. Interval response in frequency and time domain 

Let us now consider the case in which the uncertainty is modeled as an interval variable. In this case, according to 
the interval analysis [8], the bounded real number [ ],Iα α α ∈≜   such that α α α≤ ≤ , with α  and α  denoting 
the lower and upper bound of α,  is introduced. Referring to the so-called extra symmetric unitary interval (EUI) 
variable [9] [ ]ˆ 1,1Ieα −≜  therefore ( )0 ˆ1 ,Ia a e= + ∆ αα  it follows that the FRF function can be rewritten as [7]: 

                                C mid dev
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jI I

jI
j j j

p e
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α
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ω ω ω ω ω

ω α λ ω=

∆
≈ − =

∆∑H H B H H                       (19)

Equation (19) provides the interval FRF matrix as sum of the midpoint matrix, mid ( )ωH , plus the interval 
deviation matrix, dev ( )I ωH , given, respectively, by: 
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with 
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where the argument α∆  in the functions 0, ( )ia ωℓ  and ( )ia ω∆ ℓ  as well as in the matrix functions mid ( )ωH  and 
dev ( )I ωH  is omitted for the sake of conciseness. Upon substitution of the approximate FRF the response can be 

expressed as sum of the midpoint value plus the deviation as well, i.e.: 
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The k-th element of the vector ( , )α ωU  can be written as: 
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with 
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The symbol { }k
•  means k-th element of the vector into curly parentheses. 

In the time domain the lower and upper bounds of dynamic response can evaluated once inverse Fourier 
transforms of midpoint and deviation functions are performed, that is: 

                               i i
,mid ,mid ,dev ,

1

1 1ˆ ˆ( ) ( ) e d ; ( ) ( ) e d ( )
2π 2π

r
t I I t I

k k k k j k
j

u t U u t e e g tω ω
α αω ω γ ω ω

∞ ∞

=−∞ −∞

= = =∑∫ ∫                     (25) 

It follows that the lower and upper bounds of dynamic response in the time domain can be written as: 
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5. Numerical application 

A damaged cantilever steel beam studied in [1] subjected to a transverse deterministic action f(t) applied to the free-
end is examined. The beam has length L=200mm and a rectangular cross-section with width b=1mm and height
h=7.8mm. The Young’s modulus and the material mass density are assumed 2207000 N mmE = and 

37860 Kg m ,ρ = respectively. The Rayleigh damping constants in Eq.(5) are evaluated as c0= 83.927s-1 and 
c1=0.0000138s in such a way that the modal damping ratio for the first and second modes of the structure referred to 
the mean stiffness matrix is 0 0.05ζ = . The considered acting load is expressed by a combination of decaying 
sinusoidal functions in the form ( ) ( ) ( )4

1
exp 10 sin 5

j
f t jt jt

=
= −∑ . 

The cantilever beam has been modelled by e 5N =  finite elements with the crack supposed to be located in the 
middle of the second element. 
The mean value of the crack depth is assumed to be 0 0.4a h= . Moreover for the stochastic model, the zero mean 
random fluctuation ɶα is uniformly distributed on the interval [-0.3,0.3] while in the interval model the deviation 
amplitude is fixed in 0.3.∆ =α  Efficiency and accuracy of the presented procedures have been confirmed by the 
comparison with exact result and MonteCarlo simulation for the two cases of uncertainty. In this application, results 
provided by the two described approaches for the probabilistic and non-probabilistic crack depth model are 
compared in terms of bounds of the vertical displacement u(t) of the free end of the cantilever beam, namely 9 ( )u t . 
Figs.1a and 1b show lower 9 ( )u t  and upper 9 ( )u t bounds of the interval free-end displacement compared with the 
bounds calculated as 

9 9
( ) ( )U Ut t±ɶ ɶµ σ  and

9 9
( ) 3 ( )U Ut t±ɶ ɶµ σ being 

9
( )U tɶµ the mean value and 

9
( )U tɶσ the standard 

deviation, respectively, of the stochastic response. As evident by the figures the intervals obtained  via the stochastic 
model for the uncertain crack depth include the interval displacement response.   

Fig. 1. (a) Lower and (b) upper bound of the free-end displacement of the damaged cantilever beam with interval and random crack depth 
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4.2. Interval response in frequency and time domain 

Let us now consider the case in which the uncertainty is modeled as an interval variable. In this case, according to 
the interval analysis [8], the bounded real number [ ],Iα α α ∈≜   such that α α α≤ ≤ , with α  and α  denoting 
the lower and upper bound of α,  is introduced. Referring to the so-called extra symmetric unitary interval (EUI) 
variable [9] [ ]ˆ 1,1Ieα −≜  therefore ( )0 ˆ1 ,Ia a e= + ∆ αα  it follows that the FRF function can be rewritten as [7]: 
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Equation (19) provides the interval FRF matrix as sum of the midpoint matrix, mid ( )ωH , plus the interval 
deviation matrix, dev ( )I ωH , given, respectively, by: 
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where the argument α∆  in the functions 0, ( )ia ωℓ  and ( )ia ω∆ ℓ  as well as in the matrix functions mid ( )ωH  and 
dev ( )I ωH  is omitted for the sake of conciseness. Upon substitution of the approximate FRF the response can be 

expressed as sum of the midpoint value plus the deviation as well, i.e.: 
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The k-th element of the vector ( , )α ωU  can be written as: 
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The symbol { }k
•  means k-th element of the vector into curly parentheses. 

In the time domain the lower and upper bounds of dynamic response can evaluated once inverse Fourier 
transforms of midpoint and deviation functions are performed, that is: 
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It follows that the lower and upper bounds of dynamic response in the time domain can be written as: 
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5. Numerical application 

A damaged cantilever steel beam studied in [1] subjected to a transverse deterministic action f(t) applied to the free-
end is examined. The beam has length L=200mm and a rectangular cross-section with width b=1mm and height
h=7.8mm. The Young’s modulus and the material mass density are assumed 2207000 N mmE = and 

37860 Kg m ,ρ = respectively. The Rayleigh damping constants in Eq.(5) are evaluated as c0= 83.927s-1 and 
c1=0.0000138s in such a way that the modal damping ratio for the first and second modes of the structure referred to 
the mean stiffness matrix is 0 0.05ζ = . The considered acting load is expressed by a combination of decaying 
sinusoidal functions in the form ( ) ( ) ( )4

1
exp 10 sin 5

j
f t jt jt

=
= −∑ . 

The cantilever beam has been modelled by e 5N =  finite elements with the crack supposed to be located in the 
middle of the second element. 
The mean value of the crack depth is assumed to be 0 0.4a h= . Moreover for the stochastic model, the zero mean 
random fluctuation ɶα is uniformly distributed on the interval [-0.3,0.3] while in the interval model the deviation 
amplitude is fixed in 0.3.∆ =α  Efficiency and accuracy of the presented procedures have been confirmed by the 
comparison with exact result and MonteCarlo simulation for the two cases of uncertainty. In this application, results 
provided by the two described approaches for the probabilistic and non-probabilistic crack depth model are 
compared in terms of bounds of the vertical displacement u(t) of the free end of the cantilever beam, namely 9 ( )u t . 
Figs.1a and 1b show lower 9 ( )u t  and upper 9 ( )u t bounds of the interval free-end displacement compared with the 
bounds calculated as 

9 9
( ) ( )U Ut t±ɶ ɶµ σ  and
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( ) 3 ( )U Ut t±ɶ ɶµ σ being 

9
( )U tɶµ the mean value and 

9
( )U tɶσ the standard 

deviation, respectively, of the stochastic response. As evident by the figures the intervals obtained  via the stochastic 
model for the uncertain crack depth include the interval displacement response.   

Fig. 1. (a) Lower and (b) upper bound of the free-end displacement of the damaged cantilever beam with interval and random crack depth 
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