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Abstract
The search problem of computing a Stackelberg (or leader-follower) equilibrium (also
referred to as an optimal strategy to commit to) has been widely investigated in the
scientific literature in, almost exclusively, the single-follower setting. Although the
optimistic and pessimistic versions of the problem, i.e., those where the single fol-
lower breaks any ties among multiple equilibria either in favour or against the leader,
are solved with different methodologies, both cases allow for efficient, polynomial-
time algorithms based on linear programming. The situation is different with multiple
followers, where results are only sporadic and depend strictly on the nature of the
followers’ game. In this paper, we investigate the setting of a normal-form game with
a single leader and multiple followers who, after observing the leader’s commitment,
play a Nash equilibrium. When both leader and followers are allowed to play mixed
strategies, the corresponding search problem, both in the optimistic and pessimistic
versions, is known to be inapproximable in polynomial time to within any multi-
plicative polynomial factor unless P = NP. Exact algorithms are known only for the
optimistic case. We focus on the case where the followers play pure strategies—a
restriction that applies to a number of real-world scenarios and which, in principle,
makes the problem easier—under the assumption of pessimism (the optimistic version
of the problem can be straightforwardly solved in polynomial time). After casting this
search problem (with followers playing pure strategies) as a pessimistic bilevel pro-
gramming problem, we show that, with two followers, the problem is NP-hard and,
with three or more followers, it cannot be approximated in polynomial time to within
any multiplicative factor which is polynomial in the size of the normal-form game,
nor, assuming utilities in [0, 1], to within any constant additive loss stricly smaller
than 1 unless P = NP. This shows that, differently from what happens in the opti-
mistic version, hardness and inapproximability in the pessimistic problem are not due
to the adoption of mixed strategies. We then show that the problem admits, in the
general case, a supremum but not a maximum, and we propose a single-level mathe-
matical programming reformulation which asks for the maximization of a nonconcave
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quadratic function over an unbounded nonconvex feasible region defined by linear and
quadratic constraints. Since, due to admitting a supremum but not a maximum, only
a restricted version of this formulation can be solved to optimality with state-of-the-
art methods, we propose an exact ad hoc algorithm (which we also embed within a
branch-and-bound scheme) capable of computing the supremum of the problem and,
for cases where there is no leader’s strategy where such value is attained, also an
α-approximate strategy where α > 0 is an arbitrary additive loss (at most as large as
the supremum). We conclude the paper by evaluating the scalability of our algorithms
via computational experiments on a well-established testbed of game instances.

Keywords Leader-follower games · Stackelberg equilibria · Pessimistic bilevel
programming

1 Introduction

In recent years, Stackelberg (or Leader-Follower) Games (SGs) and their correspond-
ing Stackelberg Equilibria (SEs) have attracted a growing interest in many disciplines,
including theoretical computer science, artificial intelligence, and operations research.
SGs describe situations where one player (the leader) commits to a strategy and the
other players (the followers) first observe the leader’s commitment and, then, decide
how to play. In the literature, SEs are often referred to as optimal strategies (for the
leader) to commit to. SGs encompass a broad array of real-world games. A prominent
example is that one of security games, where a defender, acting as leader, is tasked
to allocate scarce resources to protect valuable targets from an attacker, who acts as
follower [3,17,28]. Besides the security domain, applications can be found in, among
others, interdiction games [10,23], toll-setting problems [19], and network routing [2].

While, with only a few exceptions (see [6,8,13,18,21]), the majority of the game-
theoretical investigations on the computation of SEs assumes the presence of a single
follower, in this work we address the multi-follower case.

When facing an SG and, in particular, a multi-follower one, two aspects need to
be considered: the type of game (induced by the leader’s strategy) the followers play
and, in it, how ties among the multiple equilibria which could arise are broken.

As to the nature of the followers’ game, and restricting ourselves to the cases
which look more natural, the followers may play hierarchically one at a time, as
in a hierarchical Stackelberg game [14], simultaneously and cooperatively [13], or
simultaneously and noncooperatively [4].

As to breaking ties among multiple equilibria, it is natural to consider two cases:
the optimistic one (often called strong SE), where the followers end up playing an
equilibrium which maximizes the leader’s utility, and the pessimistic one (often called
weak SE), where the followers end up playing an equilibrium by which the leader’s
utility is minimized. This distinction is customary in the literature since the seminal
paper on SEs with mixed-strategy commitments by Von Stengel and Zamir [34]. We
remark that the adoption of either the optimistic or the pessimistic setting does not
correspond to assuming that the followers could necessarily agree on an optimistic or
pessimistic equilibrium in a practical application. Rather, by computing an optimistic
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and a pessimistic SE the leader becomes aware of the largest and smallest utility she
can get without having to make any assumptions on which equilibrium the followers
would actually end up playing if the game resulting from the leader’s commitment
were to admitmore than a single one.What ismore,while an optimistic SE accounts for
the best case for the leader, a pessimistic SE accounts for the worst case. In this sense,
the computation of a pessimistic SE is paramount in realistic scenarios as, differently
from the optimistic one, it is robust, guaranteeing the leader a lower bound on the
maximum utility she would get independently of how the followers would break ties
among multiple equilibria. As we will see, though, this degree of robustness comes at
a high computational cost, as computing a pessimistic SE is a much harder task than
computing its optimistic counterpart.

1.1 Stackelberg Nash Equilibria

Throughout the paper, we will consider the case of normal-form games where, after
the leader’s commitment to a strategy, the followers play simultaneously and nonco-
operatively, reaching a Nash equilibrium. We refer to the corresponding equilibrium
as Stackelberg Nash Equilibrium (SNE).1 We focus on the case where the followers
are restricted to pure strategies. This restriction is motivated by several reasons. First,
while the unrestricted problem is already hard with two followers (as shown in [4]),
it is not known whether the restriction to followers playing pure strategies makes the
problem easier or not. Secondly, many games admit pure-strategy NEs, among which
potential games [25], congestion games [29], and toll-setting problems [19] and, as
we show in Sect. 3.3, the same also holds with high probability in many unstructured
games.

1.2 Original Contributions

After briefly pointing out that an optimistic SNE (with followers restricted to pure
strategies) can be computed efficiently (in polynomial time) by a mixture of enu-
meration and linear programming, we entirely devote the remainder of the paper to
the pessimistic case (with, again, followers restricted to pure strategies). In terms of
computational complexity, we show that, differently from the optimistic case, in the
pessimistic one the equilibrium-finding problem is NP-hard with two or more follow-
ers, while, when the number of followers is three or more, the problem cannot be
approximated in polynomial time to within any polynomial multiplicative factor nor
to within any constant additive loss unless P = NP. To establish these two results, we
introduce two reductions, one from Independent Set and the other one from 3-SAT.

After analyzing the complexity of the problem, we focus on its algorithmic aspects.
First, we formulate the problem as a pessimistic bilevel programming problem with
multiple followers. We then show how to recast it as a single-level Quadratically Con-
strained Quadratic Program (QCQP), which we show to be impractical to solve due to
admitting a supremum, but not a maximum. We then introduce a restriction based on

1 For the sake of completeness, we remark that the Stackelberg Equilibrium can be also adopted with
sequential games, see, e.g., [15,22].

123



Algorithmica

a Mixed-Integer Linear Program (MILP) which, while forsaking optimality, always
admits an optimal (restricted) solution. Next, we propose an exact algorithm to com-
pute the value of the supremumof the problembased on an enumeration schemewhich,
at each iteration, solves a lexicographic MILP (lex-MILP) where the two objective
functions are optimized in sequence. Subsequently, we embed the enumerative algo-
rithmwithin a branch-and-bound scheme, obtaining an algorithmwhich is, in practice,
much faster. We also extend the algorithm (in both versions) so that, for cases where
the supremum is not a maximum, it returns a strategy by which the leader can obtain
a utility within an additive loss α with respect to the supremum, for any arbitrarily
chosen α > 0. To conclude, we experimentally evaluate the scalability of our methods
over a testbed of randomly generated instances.

The status, in terms of complexity and known algorithms, of the problem of com-
puting an SNE (with followers playing pure or mixed strategies) is summarized in
Table 1. The original results we provide in this paper are reported in boldface.

1.3 Paper Outline

The paper is organized as follows.2 Previous works are introduced in Sect. 2. The
problem we study is formally stated in Sect. 3, together with some preliminary results.
In Sect. 4, we present the computational complexity results. Sect. 5 introduces the
single-level reformulation(s) of the problem, while Sect. 6 describes our exact algo-
rithm (in its two versions). An empirical evaluation of our methods is carried out in
Sect. 7. Sect. 8 concludes the paper.

2 PreviousWorks

As we mentioned in Sect. 1, most of the works on (normal-form) SGs focus on the
single-follower case. In such case, as shown in [14] the follower always plays a pure
strategy (except for degenerate games). In the optimistic case, an SE can be found
in polynomial time by solving a Linear Program (LP) for each action of the (single)
follower (the algorithm is, thus, a multi-LP). Each LP maximizes the expected utility
of the leader subject to a set of constraints imposing that the given follower’s action
is a best-response [14]. As shown in [13], all these LPs can be encoded into a single
LP—a slight variation of the LP that is used to compute a correlated equilibrium (the
solution concept where all the players can exploit a correlation device to coordinate
their strategies).3 Some works study the equilibrium-finding problem (only in the

2 A preliminary version of this work appeared in [12]. Compared to it, this paper extends the complexity
results by studying the inapproximability of the problem (Sect. 4), introduces and analyses a single-level
QCQP reformulation and an MILP restriction of it (Sect. 5), substantially extends the mathematical details
needed to establish the correctness of our algorithms, also illustrating their step-by-step execution on an
example (Sect. 6 and Appendix A), and it reports on an extensive set of computational results carried out
to validate our methods (Sect. 7).
3 In this case, the leader and the follower play correlated strategies under rationality constraints imposed
on the follower only, maximizing the leader’s expected utility.
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optimistic version) in structured games where the action space is combinatorial. See
[7] for more references.

For what concerns the pessimistic single-follower case, the authors of [34] study
the problem of computing the supremum of the leader’s expected utility. They show
that, for the latter, it suffices to consider the follower’s actions which constitute a
best-response to a full-dimensional region of the leader’s strategy space. The multi-
LP algorithm the authors propose solves two LPs per action of the follower, one
to verify whether the best-response region for that action is full-dimensional (so to
discard it if full-dimensionality does not hold) and a second one to compute the best
leader’s strategy within that best-response region. The algorithm runs in polynomial
time. While the authors limit their analysis to computing the supremum of the leader’s
utility,we remark that such value does not always translate into a strategy that the leader
can play as, in the general case where the leader’s utility does not admit a maximum,
there is no leader’s strategy giving her a utility equal to the supremum. In such cases,
one should rather look for a strategy providing the leader with an expected utility
which approximates the value of the supremum. This aspect, which is not addressed
in [34], will be tackled on the multi-follower case by our work.

The multi-follower case, which, to the best of our knowledge, has only been inves-
tigated in [4,6], is computationally much harder than the single-follower case. It is, in
the general case where leader and followers are entitled to mixed strategies, NP-hard
and inapproximable in polynomial time to within any multiplicative factor which is
polynomial in the size of the normal-form game unless P = NP.4 In the aforemen-
tionedworks, the problemof finding an equilibrium in the optimistic case is formulated
as a nonlinear and nonconvex mathematical program and solved to global optimal-
ity (within a given tolerance) with spatial branch-and-bound techniques. No exact
methods are proposed for the pessimistic case.

3 Problem Statement and Preliminary Results

After setting the notation used throughout the paper, this section offers a formal defi-
nition of the equilibrium-finding problem we tackle in this work and illustrates some
of its properties.

3.1 Notation

Let N = {1, . . . , n} be the set of players and, for each player p ∈ N , let Ap be her set
of actions, of cardinality mp = |Ap|. Let also A = Ś

p∈N Ap = A1 × · · · × An . For

each player p ∈ N , let xp ∈ [0, 1]mp , with
∑

ap∈Ap
x
ap
p = 1, be her strategy vector

(or strategy, for short), where each component x
ap
p of xp represents the probability

by which player p plays action ap ∈ Ap. For each player p ∈ N , let also Δp =
{xp ∈ [0, 1]mp : ∑

ap∈Ap
x
ap
p = 1} be the set of her strategies, or strategy space,

4 For the case where the utilities are in [0, 1], the result can be extended to show that the problem cannot be
approximated in polynomial time to within any constant additive loss strictly smaller than 1 unless P = NP.
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which corresponds to the standard (mp − 1)-simplex in R
mp . A strategy is said pure

when only one action is played with positive probability, i.e., when xp ∈ {0, 1}mp ,
and mixed otherwise. In the following, we denote the collection of strategies of the
different players (called strategy profile) by x = (x1, . . . , xn). For the case where
all the strategies are pure, we denote the collection of actions played by the players
(called action profile) by a = (a1, . . . , an).

Given a strategy profile x , we denote the collection of all the strategies in it but
the one of player p ∈ N by x−p, i.e., x−p = (x1, . . . , xp−1, xp+1, . . . , xn). Given
x−p and a strategy vector xp, we denote the whole strategy profile x by (x−p, xp).
For action profiles, a−p and (a−p, ap) are defined analogously. For the case were all
players are restricted to pure strategies with the sole exception of player p, who is
allowed to play mixed strategies, we use the notation (a−p, xp).

We consider normal-form games where Up ∈ Q
m1×···×mn represents, for each

player p ∈ N , her (multidimensional) utility (or payoff) matrix. For each p ∈ N and
given an action profile a = (a1, . . . , an), each component Ua1...an

p of Up corresponds
to the utility of player p when all the players play the action profile a. For the ease
of presentation and when no ambiguity arises, we will often write Ua

p in place of
Ua1...an

p . Given a collection of actions a−p and an action ap ∈ Ap, we will also use
U

a−p,ap
p to denote the component ofUp corresponding to the action profile (a−p, ap).

Given a strategy profile x = (x1, . . . , xn), the expected utility of player p ∈ N is the
n-th-degree polynomial

∑
a∈A U

a
p x

a1
1 xa22 . . . xann .

An action profile a = (a1, . . . , an) is called pure strategyNashEquilibrium (or pure
NE, for short) if, when the players in N\{p} play as the equilibrium prescribes, player
p cannot improve her utility by deviating from the equilibrium and playing another
action a′

p �= ap, for all p ∈ N . More generally, a mixed strategy Nash Equilibrium
(or mixed NE, for short) is a strategy profile x = (x1, . . . , xn) such that no player
p ∈ N could improve her utility by playing a strategy x ′

p �= xp assuming the other
players would play as the equilibrium prescribes. A mixed NE always exists [26] in
a normal-form game, while a pure NE may not. For more details on (noncooperative)
game theory, we refer the reader to [32].

Similar definitions hold for the case of SGs when assuming that only a subset of
players (the followers) play an NE given the strategy the leader has committed to.

3.2 The Problem and Its Formulation

In the following, we assume that the n-th player takes the role of leader. We denote the
set of followers (the first n − 1 players) by F = N\{n}. For the ease of notation, we
also define AF = Ś

p∈F Ap as the set of followers’ action profiles, i.e., the set of all
collections of followers’ actions. We also assume, unless otherwise stated, mp = m
for every player p ∈ N , where m denotes the number of actions available to each
player. This is without loss of generality, as one could always introduce additional
actions with a utility small enough to guarantee that they would never be played, thus
obtaining a game where each player has the same number of actions.

As we mentioned in Sect. 1, in this work we tackle the problem of computing an
equilibrium in a normal-form gamewhere the followers play a pure NE once they have
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observed the leader’s commitment to amixed strategy.We refer to anOptimistic Stack-
elberg Pure-Nash Equilibrium (O-SPNE) when the followers play a pure NE which
maximises the leader’s utility, and to aPessimistic Stackelberg Pure-Nash Equilibrium
(P-SPNE) when they seek a pure NE by which the leader’s utility is minimized.

3.2.1 The Optimistic Case

Before focusing our attention entirely on the pessimistic case, let us briefly address
the optimistic one.

An O-SPNE can be found by solving the following bilevel programming problem
with n − 1followers:

max
xn ,x−n

∑

a∈A
Ua
n x

a1
1 xa22 . . . xann

s.t. xn ∈ Δn

xp ∈ argmax
xp

∑

a∈A
Ua

p x
a1
1 xa22 . . . xann ∀p ∈ F

s.t. xp ∈ Δp ∩ {0, 1}mp .

(1)

Note that, due to the integrality constraints on xp for all p ∈ F , each follower can
play a single action with probability 1. By imposing the argmax constraint for each
p ∈ F , the formulation guarantees that each follower plays a best-response action ap,
thus guaranteeing that the action profile a−n = (a1, . . . , an−1) with, for all ap ∈ Ap,
ap = 1 if and only if x

ap
p = 1, be an NE for the given xn . It is crucial to note that the

maximization in the upper level is carried out not only w.r.t. xn , but also w.r.t. x−n . This
way, if the followers’ game admitsmultiple NEs for the chosen xn , optimal solutions to
Problem (1) are then guaranteed to contain followers’ action profiles which maximize
the leader’s utility—thus satisfying the assumption of optimism.

As shown in the following proposition, computing an O-SPNE is an easy task:

Proposition 1 In a normal-form game, an O-SPNE can be computed in polynomial
time by solving a multi-LP.

Proof It suffices to enumerate, inO(mn−1), all the followers’ action profiles a−n ∈ AF

and, for each of them, solve an LP to: i) check whether there is a strategy vector xn
for the leader for which the action profile a−n is an NE and ii) find, among all such
strategy vectors xn , one which maximizes the leader’s utility. The action profile a−n

which, with the corresponding xn , yields the largest expected utility for the leader is
an O-SPNE.

Given a followers’ action profile a−n , i) and ii) can be carried out in polynomial
time by solving the following LP, where the second constraint guarantees that a−n =
(a1, . . . , an−1) is a pure NE for the followers’ game for any of its solutions xn :

max
xn

∑

an∈An

Ua−n ,an
n xann

s.t.
∑

an∈An

Ua−n ,an
p xann �

∑

an∈An

U
a1...a′

p ...an−1an
p xann ∀p ∈ F, a′

p ∈ Ap\{ap}
xn ∈ Δn .
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As the size of an instance of the problem is bounded from below by mn , one can
enumerate over the set of the followers’ action profiles (whose cardinality is mn−1) in
polynomial time. The claim of polynomiality of the overall algorithm follows due to
linear programming being solvable in polynomial time. ��
3.2.2 The Pessimistic Case

In the pessimistic case, the computation of a P-SPNE amounts to solving the following
pessimistic bilevel problem with n − 1 followers:

sup
xn

min
x−n

∑

a∈A
Ua
n x

a1
1 xa22 . . . xann

s.t. xn ∈ Δn

xp ∈ argmax
xp

∑

a∈A
Ua

p x
a1
1 xa22 . . . xann ∀p ∈ F

s.t. xp ∈ Δp ∩ {0, 1}mp .

(2)

There are two differences between this problem and its optimistic counterpart: the
presence of the min operator in the objective function and the fact that Problem (2)
calls for a sup rather than for a max. The former guarantees that, in the presence of
many pure NEs in the followers’ game for the chosen xn , one which minimizes the
leader’s utility is selected. The sup operator is introduced because, as illustrated in
Subsect. 3.3, the pessimistic problem does not admit a maximum in the general case.

Throughout the paper, we will compactly refer to the above problem as

sup
xn∈Δn

f (xn),

where f is the leader’s utility in the pessimistic case, defined as a function of xn . Since a
pure NEmay not exist for every leader’s strategy xn , we define supxn∈Δn

f (xn) = −∞
whenever there is no xn such that the resulting followers’ game admits a pure NE.
Note that f is always bounded from above when assuming bounded payoffs and, thus,
supxn∈Δn

f (xn) < ∞.

3.3 Some Preliminary Results

Since not all normal-form games admit a pure NE, a normal-form game may not
admit an (optimistic or pessimistic) SPNE. Assuming that the payoffs of the game
are independent and follow a uniform distribution, and provided that the number of
players’ actions is sufficiently large, with high probability there always exists a leader’s
commitment such that the resulting followers’ game has at least one pure NE. This is
shown in the following proposition:

Proposition 2 Given a normal-form game with n players and independent uniformly
distributed payoffs, the probability that there exists a leader’s strategy xn ∈ Δn induc-
ing at least one pure NE in the followers’ game approaches 1 as the number of players’
actions m goes to infinity.
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Proof As shown in [33], in an n-player normal-form game with independent and
uniformly distributed payoffs the probability of the existence of a pure NE can
be expressed as a function of the number of players’ actions m, say P(m), which
approaches 1 − 1

e for m → ∞. Assume now that we are given one such n-player
normal-form game. Then, for every leader’s action an ∈ An , let Pan (m) be the prob-
ability that the followers’ game induced by the leader’s action an admits a pure NE.
Since each of the followers’ games resulting from the choice of an also has independent
and uniformly distributed payoffs, all the probabilities are equal, i.e.,Pan (m) = P(m)

for every an ∈ An . It follows that the probability that at least one of such followers’
games admits a pure NE is:

1 −
∏

an∈An

(
1 − Pan (m)

) = 1 − (1 − P(m))m .

Since this probability approaches 1 asm goes to infinity, the probability of the existence
of a leader’s strategy xn ∈ Δn which induces at least one pure NE in the followers’
game also approaches 1 for m → ∞. ��

The fact that Problem (2) may not admit a maximum is shown by the following
proposition:

Proposition 3 In a normal-form game, Problem (2) may not admit a max even if the
followers’ game admits a pure NE for every leader’s mixed strategy xn.

Proof Consider a game with n = 3, A1 = {a11, a21}, A2 = {a12, a22}, A3 = {a13, a23}.
The matrices reported in the following are the utility matrices for, respectively, the
case where the leader plays action a13 with probability 1, action a23 with probability
1, or the strategy vector x3 = (1 − ρ, ρ) for some ρ ∈ [0, 1] (the third matrix is the
convex combination of the first two with weights x3):

a12 a22

a11 1,1,0 2,2,5

a21
1
2 ,

1
2 ,1 1,1,0

a13

a12 a22

a11 0,0,0 2,2,10

a21
1
2 ,

1
2 ,1 0,0,0

a23

a12 a22

a11 1−ρ,1−ρ,0 2,2,5+5ρ

a21
1
2 ,

1
2 ,1 1−ρ,1−ρ,0

x3 = (1 − ρ, ρ)

In the optimistic case, one can verify that (a11, a
2
2 , a

2
3) is the unique O-SPNE (as it

achieves the largest leader’s payoff in U3, no mixed strategy x3 would yield a better
utility).

In the pessimistic case, the leader induces the followers’ game in the third matrix
by playing x3 = (1 − ρ, ρ). For ρ < 1

2 , (a
1
1, a

2
2) is the unique NE, giving the leader

a utility of 5+ 5ρ. For ρ � 1
2 , there are two NEs, (a

1
1, a

2
2) and (a21 , a

1
2), with a utility

of, respectively, 5+ 5ρ and 1. Since, in the pessimistic case, the latter is selected, we
conclude that the leader’s utility is equal to 5+ 5ρ for ρ < 1

2 and to 1 for ρ � 1
2 (see

Fig. 1 for an illustration). Thus, Problem (2) admits a supremum of value 5 + 5
2 , but

not a maximum. ��
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Fig. 1 The leader’s utility in the
normal-form game in the proof
of Proposition 3, showing that
Problem (2) may not admit a
maximum

We remark that the result in Proposition 3 is in line with a similar result shown in [34]
for the single-follower case, as well as with those which hold for general pessimistic
bilevel problems [35].

The relevance of computing a pessimistic SPNE is highlighted by the following
proposition:

Proposition 4 In the worst case, in a normal-form game with payoffs in [0, 1] the
leader’s utility in an O-SPNE cannot be approximated to within any constant multi-
plicative factor nor to within any constant additive loss strictly smaller than 1 by the
leader’s strategy corresponding to a P-SPNE, nor by any leader’s strategy obtained
by perturbing the leader’s strategy corresponding to an O-SPNE.

Proof Consider the following normal-form game with payoffs in [0, 1] where n =
3, A1 = {a11, a21}, A2 = {a12, a22}, A3 = {a13, a23}, parametrized by μ > 4:

a12 a22

a11 0,0,0 0,0,1

a21 1,1, 2
μ2 0,0,0

a13

a12 a22

a11
1
2 ,

1
2 ,0 0,0,0

a21 1,1, 4
μ

1
2 ,

1
2 ,0

a23

a12 a22

a11
ρ
2 ,

ρ
2 ,0 0,0,1−ρ

a21 1,1, 2+(4μ−2)ρ
μ2

ρ
2 ,

ρ
2 ,0

x3 = (1−ρ, ρ)

Let x3 = (1 − ρ, ρ). The followers’ game admits the NE (a21, a
1
2) for all values of

ρ (with leader’s utility 2+(4μ−2)ρ
μ2 ) and the NE (a11, a

2
2) for ρ = 0 (with leader’s utility

1). Therefore, the game admits a unique O-SPNE achieved at ρ = 0 (utility 1), and
a unique P-SPNE achieved at ρ = 1 (utility 4

μ
). See Fig. 2 for an illustration of the

leader’s utility function.
To show the first part of the claim, it suffices to observe that the ratio between the

leader’s utility in the unique O-SPNE, which is equal to 1, and that one in a P-SPNE,
which is equal to μ

4 , becomes arbitrarily large when letting μ → ∞, whereas the
difference between these two quantities approaches 1 for μ approaching ∞.

As to the second part of the claim, after perturbing the value that x3 takes in the
unique O-SPNE by any arbitrarily small ε > 0 (i.e., by considering the leader’s
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Fig. 2 The leader’s utility in the
normal-form game in the proof
of Proposition 4, plotted as a
function of ρ, where the leader’s
strategy is x3 = (1 − ρ, ρ)

strategy x3 = (1 − ε, ε)), we obtain a leader’s utility of 2+(4μ−2)ε
μ2 , whose ratio

w.r.t. the utility of 1 in the unique O-SPNE becomes again arbitrarily large for
μ → ∞, whereas the difference between these two quantities approaches 1 for μ

approaching ∞. ��

4 Computational Complexity

Let P-SPNE-s be the search version of the problemof computing a P-SPNE for normal-
form games. In Sect. 4.1, we show that solving P-SPNE is NP-hard for n � 3 (i.e.,
with at least two followers). Moreover, in Sect. 4.2 we prove that for n � 4 (i.e., for
games with at least three followers) the problem is inapproximable, in polynomial
time, to within any polynomial multiplicative factor or to within any constant additive
loss unless P = NP. We introduce two reductions, a non approximation-preserving one
which is valid for n � 3 and another one only valid for n � 4 but approximation-
preserving.

In decision form, the problem of computing a P-SPNE reads:

Definition 1 (P-SPNE-d) Given a normal-form game with n � 3 players and a finite
number K , is there a P-SPNE in which the leader achieves a utility greater than or
equal to K ?

In Sect. 4.1, we show that P-SPNE-d isNP-complete by polynomially reducing to it
Independent Set (IND-SET) (one of Karp’s original 21 NP-complete problems [16]).
In decision form, IND-SET reads:

Definition 2 (IND-SET-d) Given an undirected graph G = (V , E) and an integer
J � |V |, doesG contain an independent set (a subset of vertices V ′ ⊆ V : ∀u, v ∈ V ′,
{u, v} /∈ E) of size greater than or equal to J?

In Sect. 4.2, we prove the inapproximability of P-SPNE-s for the case with at
least three followers by polynomially reducing to it 3-SAT (another of Karp’s 21
NP-complete problems [16]). 3-SAT reads:
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Definition 3 (3-SAT) Given a collection C = {φ1, . . . , φt } of clauses (disjunctions of
literals) on a finite set V of Boolean variables with |φc| = 3 for 1 � c � t , is there a
truth assignment for V which satisfies all the clauses in C?

4.1 NP-Completeness

Before presenting our reduction, we introduce the following class of normal-form
games:

Definition 4 Given two rational numbers b and c with 1 > c > b > 0 and an integer
r � 1, let Γ c

b (r) be a class of normal-form games with three players (n = 3), the first
two having r + 1 actions each with action sets A1 = A2 = A = {1, . . . , r , χ} and
the third one having r actions with action set A3 = A\{χ}, such that, for every third
player’s action a3 ∈ A\{χ}, the other players play a game where:

– the payoffs on the main diagonal (where both players play the same action) satisfy
Ua3a3a3
1 = Ua3a3a3

2 = 1,Uχχa3
1 = c,Uχχa3

2 = b and, for every a1 ∈ A\{a3, χ},
Ua1a1a3
1 =Ua1a1a3

2 =0;

– for every a1, a2 ∈ A\{χ} with a1 �= a2, U
a1a2a3
1 =Ua1a2a3

2 = b;

– for every a2 ∈ A\{χ}, Uχa2a3
1 =c and Uχa2a3

2 =0;

– for every a1 ∈ A\{χ}, Ua1χa3
1 =1 and Ua1χa3

2 =0.

No restrictions are imposed on the third player’s payoffs.

See Fig. 3 for an illustration of one such game Γ c
b (r) with r = 3, parametric in b and

c.
The special feature of Γ c

b (r) games is that, no matter which mixed strategy the
third player (the leader) commits to, with the exception of (χ, χ) only the diagonal
outcomes can be pure NEs in the resulting followers’ game. Moreover, for every
subset of diagonal outcomes there is a leader’s strategy such that this subset precisely
corresponds to the set of all pure NEs in the followers’ game. This is formally stated
by the following proposition:

Proposition 5 A Γ c
b (r) game with c � 1

r admits, for all S ⊆ {(a1, a1) : a1 ∈ A\{χ}}
with S �= ∅, a leader’s strategy x3 ∈ Δ3 such that the outcomes (a1, a1) ∈ S are
exactly the pure NEs in the resulting followers’ game.

Proof First, observe that the followers’ payoffs that are not on the main diagonal are
independent of the leader’s strategy x3. Thus, any outcome (a1, a2) with a1, a2 ∈
A\{χ} and a1 �= a2 cannot be an NE, as the first follower would deviate by playing
action χ so to obtain a utility c > b. Analogously, any outcome (χ, a2) with a2 ∈
A\{χ} cannot be anNE because the second followerwould deviate by playingχ (since
b > 0). The same holds for any outcome (a1, χ) with a1 ∈ A\{χ}, since the second
follower would be better off playing another action (as b > 0). The last outcome on
the diagonal, (χ, χ), cannot be an NE either, as the first follower would deviate from
it (as she would get c in it, while she can obtain 1 > c by deviating).

As a result, the only outcomes which can be pure NEs are those in {(a1, a1) : a1 ∈
A\{χ}}. When the leader plays a pure strategy a3 ∈ A\{χ}, the unique pure NE in
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Fig. 3 A Γ c
b (r) game with r = 3. The third player (the leader) selects a matrix, while the first and the

second players (the followers) select rows and columns, respectively. The third player’s payoffs are defined
starting from the graph in Fig. 5, as explained in the proof of Theorem 1

the followers’ game is (a3, a3) as, due to providing the followers with their maximum
payoff, they would not deviate from it. Outcomes (a1, a1) with a1 ∈ A\{χ, a3} are
not NEs as, with them, the first follower would get 0 < c. In general, if the leader
plays an arbitrary mixed strategy x3 ∈ Δ3 the resulting followers’ game is such that
the payoffs in (a3, a3) with a3 ∈ A\{χ} are (xa33 , xa33 ). Noticing that (a3, a3) is an
equilibrium if and only if xa33 � c (as, otherwise, the first follower would deviate
by playing action χ ), we conclude that the set of pure NEs in the followers’ game is
S = {(a3, a3) : xa33 � c}.

In order to guarantee that, for every possible S ⊆ {(a1, a1) : a1 ∈ A\{χ}} with
S �= ∅, there is a leader’s strategy such that S contains all the pureNEs of the followers’
game, we must properly choose the value of c. Choosing c � 1

r suffices, as, for any
set S, the leader’s strategy x3 ∈ Δ3 such that xa33 = 1

|S| for every a3 ∈ A\{χ} with
(a3, a3) ∈ S induces a followers’ game in which all the outcomes in S are NEs. ��
Notice that the followers’ game always admits a pure NE for any leader’s commitment
x3 in a Γ c

b (r) game with c � 1
r . As shown in Fig. 4 for r = 3, the leader’s strategy

spaceΔ3 is partitioned into 2r −1 regions, each corresponding to a subset of {(a1, a1) :
a1 ∈ A\{χ}} containing those diagonal outcomes which are the only pure NEs in the
followers’ game. Hence, in a Γ c

b (r) game with c � 1
r the number of combinations

of outcomes which may constitute the set of pure NEs in the followers’ game is
exponential in r , and, thus, in the size of the game instance.

Relying on Proposition 5, we can establish the following result:

Theorem 1 P-SPNE-d is strongly NP-complete even for n = 3.
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Fig. 4 A Γ c
b (r) game with r = 3

and c � 1
r . The leader’s strategy

space Δ3 is partitioned into
2r − 1 regions, one per subset of
{(a1, a1) : a1 ∈ A\{χ}} (the
three NEs in the followers’
game, (1, 1), (2, 2), and (3, 3),
are labelled A, B, C)

Fig. 5 An undirected graph
G = (V , E), where
V = {v1, v2, v3} and
E = {{v1, v2}, {v2, v3}}

Proof For the sake of clarity, we split the proof over multiple steps.
Mapping Given an instance of IND-SET-d, i.e., an undirected graph G = (V , E)

and a positive integer J , we construct a special instance Γ (G) of P-SPNE-d of class
Γ c
b (r) as follows. Assuming an arbitrary labelling of the vertices {v1, v2, . . . , vr }, let

Γ (G) be an instance of Γ c
b (r) with c < 1

r and 0 < b < c < 1, where each action
a1 ∈ A\{χ} is associated with a vertex va1 ∈ V . In compliance with Definition 4, in
which no constraints are specified for the leader payoffs, we define:

– for any pair of vertices va1 , va2 ∈ V :Ua1a1a2
3 = Ua2a2a1

3 = −1−c
c if {va1, va2} ∈ E ,

and Ua1a1a2
3 = Ua2a2a1

3 = 1 otherwise;
– for every a3 ∈ A\{χ}: Ua3a3a3

3 = 0 and Uχχa3
3 = 0;

– for every a3 ∈ A\{χ} and for every a1, a2 ∈ Awith a1 �= a2:U
a1a2a3
3 = Ua2a1a3

3 =
0.

As an example, Fig. 5 illustrates an instance of IND-SET-d from which the game
depicted in Fig. 3 is obtained by applying our reduction. Finally, let K = J−1

J . Note
that this transformation can be carried out in time polynomial in the number of vertices
|V | = r . W.l.o.g., we assume that the graph G contains no isolated vertices. Indeed,
it is always possible to remove all the isolated vertices from G (in polynomial time),
solve the problem on the residual graph, and, then, add the isolated vertices back to
the independent set that has been found, still obtaining an independent set.

If.We show that, if the graph G contains an independent set of size greater than or
equal to J , then Γ (G) admits a P-SPNE with leader’s utility greater than or equal to
K . Let V ∗ be an independent set with |V ∗| = J . Consider the case in which outcomes
(a1, a1), with va1 ∈ V ∗, are the only pure NEs in the followers’ game, and assume that
the leader’s strategy x3 is xa33 = 1

|V ∗| if va3 ∈ V ∗ and xa33 = 0 otherwise. Since, by
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construction,Ua1a1a3
3 = 1 for all a3 ∈ A\{χ, a1}, the leader’s utility at an equilibrium

(a1, a1) is:

∑

a3∈A\{χ}
Ua1a1a3
3 xa33 =

∑

a3∈A\{χ,a1}
Ua1a1a3
3 xa33 =

∑

a3∈A\{χ,a1}
xa33 = |V ∗| − 1

|V ∗| = K .

Only if. We show that, if Γ (G) admits a P-SPNE with leader’s utility greater than
or equal to K , then G contains an independent set of size greater than or equal to J .
Due to Proposition 5, at any P-SPNE the leader plays a strategy x̄3 inducing a set of
pure NEs in the followers’ game corresponding to S∗ = {(a3, a3) : x̄a33 � c}. We now
show that the leader would never play two actions a1, a2 ∈ A\{χ} and {va1, va2} ∈ E
with probability greater than or equal to c in a P-SPNE. By contradiction, assume that
the leader’s equilibrium strategy x̄3 is such that x̄

a1
3 , x̄a23 � c. When the followers play

the equilibrium (a1, a1) (the same holds for (a2, a2)), the leader’s utility is:

∑

a3∈A\{χ}
Ua1a1a3
3 x̄a33 =

∑

a3∈A\{χ,a1,a2}
Ua1a1a3
3 x̄a33 + x̄a23

−1 − c

c
.

In the right-hand side, the first term is < 1 (as the leader’s payoffs are � 1 and∑
a3∈A\{χ,a1,a2} x̄

a3
3 = 1 − x̄a13 − x̄a23 < 1, since x̄a13 , x̄a23 � c). The second term is

less than or equal to c −1−c
c = −1 − c (as x̄a23 � c), which is strictly less than −1.

It follows that, since (a1, a1) (or, equivalently, (a2, a2)) always provides the leader
with a negative utility, she would never play x̄3 in an equilibrium. This is because, by
playing a pure strategy shewould obtain a utility of at least zero (as the followers’ game
admits a unique pure NE giving her a zero payoff when she plays a pure strategy). As
a result, we have Ua3a3a3

3 = 0 for every action a3 such that x̄a33 � c and Ua1a1a3
3 = 1

for every other action a1 such that x̄
a1
3 � c (since va1 and va3 are not connected by an

edge).
Note that, in any equilibrium (a1, a1) ∈ S∗, the leader’s utility is:

∑

a3∈A\{χ}
Ua1a1a3
3 x̄a33 =

∑

a3∈A\{χ,a1}:x̄a33 �c

Ua1a1a3
3 x̄a33 +

∑

a3∈A\{χ}:x̄a33 <c

Ua1a1a3
3 x̄a33 ,

where, in the first summation in the right-hand side, each payoff Ua1a1a3
3 is equal to

1 (as x̄a13 � c and x̄a33 � c). We show that the same holds for each payoff Ua1a1a3
3

appearing in the second summation. By contradiction, assume that there exists an
action a3 ∈ A\{χ} such that x̄a33 < c and Ua1a1a3

3 = −1−c
c for some equilibrium

(a1, a1) ∈ S∗. By shifting all the probability that x̄3 places on a3 to actions a1 such
that (a1, a1) ∈ S∗ (so that x̄a33 = 0), we obtain a new leader’s strategy which induces
the same set S∗ of pure NEs in the followers’ game. Moreover, the leader’s utility
in any equilibrium (a1, a1) ∈ S∗ strictly increases if Ua1a1a3

3 = −1−c
c , while it stays

the same when Ua1a1a3
3 = 1. This contradicts the fact that x̄3 is a P-SPNE. Thus, all

the actions a3 ∈ A\{χ} such that x̄a33 < c satisfy Ua1a1a3
3 = 1 for every equilibrium

(a1, a1) ∈ S∗.
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As a result, the leader’s utility at an equilibrium (a3, a3) ∈ S∗ is 1− x̄a33 . Since, due
to the pessimistic assumption, the leader maximizes her utility in the worst NE, her
best choice is to select an x̄3 such that all NEs yield the same utility, that is: x̄a13 = x̄a23
for every a1, a2 with (a1, a1), (a2, a2) ∈ S∗. This results in the leader playing all
actions a3 such that (a3, a3) ∈ S∗ with the same probability x̄a33 = 1

|S∗| , obtaining a

utility of |S∗|−1
|S∗| = K . Therefore, the vertices in the set {va3 : (a3, a3) ∈ S∗} form an

independent set of G of size |S∗| = J . The reduction is, thus, complete.
NPmembership Given a triple (a1, a2, x3) which is encoded with a number bits

which is polynomial w.r.t. the size of the game, we can verify in polynomial time
whether (a1, a2) is an NE in the followers’ game induced by x3 and whether, when
playing (a1, a2, x3), the leader’s utility is at least as large as K . The existence of such
a triple follows as a consequence of the correctness of either of the two equilibrium-
finding algorithms that we propose in Sect. 6—we refer the reader to Sect. 6.2 for
a discussion on this. Therefore, we deduce that P-SPNE belongs to NP. Moreover,
since in the game of the reduction the players’ payoffs are encoded with a polynomial
number of bits and due to IND-SETbeing stronglyNP-complete, P-SPNE-d is strongly
NP-complete. ��

4.2 Inapproximability

We show now that P-SPNE-s (the search problem of computing a P-SPNE) is not
only NP-hard (due to its decision version, P-SPNE-d, being NP-complete), but it is
also difficult to approximate. Since the reduction from IND-SET which we gave in
Theorem 1 is not approximation-preserving, we propose a new one based on 3-SAT
(see Definition 3). We remark that, differently from our previous reduction (which
holds for any number of followers greater than or equal to two), this one requires at
least three followers.

In the following, given a literal l (an occurrence of a variable, possibly negated),
we define v(l) as its corresponding variable. Moreover, for a generic clause

φ = l1 ∨ l2 ∨ l3,

we denote the ordered set of possible truth assignments to the variables, namely,
x = v(l1), y = v(l2), and z = v(l3), by

Lφ = {xyz, xyz̄, x ȳz, x ȳz̄, x̄ yz, x̄ yz̄, x̄ ȳz, x̄ ȳ z̄},

where, in each truth assignment, a variable is set to 1 if positive and to 0 if negative.
Given a generic 3-SAT instance, we build a corresponding normal-form game as
detailed in the following definition.

Definition 5 Given a 3-SAT instancewhereC = {φ1, . . . , φt } is a collection of clauses
and V = {v1, . . . , vr } is a set of Boolean variables, and some ε ∈ (0, 1), let Γε(C, V )

be a normal-form gamewith four players (n = 4) defined as follows. The fourth player
has an action for each variable in V plus an additional one, i.e., A4 = {1, . . . , r}∪{w}.
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Each action a4 ∈ {1, . . . , r} is associated with variable va4 . The other players share
the same set of actions A, with A = A1 = A2 = A3 = {ϕca | c ∈ {1, . . . , t}, a ∈
{1, . . . , 8}} ∪ {χ}, where each action ϕca is associated with one of the eight possible
assignments of truth to the variables appearing in clause φc, so that ϕca corresponds
to the a-th assignment in the ordered set Lφc . For each player p ∈ {1, 2, 3}, we define
her utilities as follows:

– for each a4 ∈ A4\{w} and for each a1 ∈ A\{χ} with a1 = ϕca = l1l2l3,
Ua1a1a1a4

p = 1 if v(l p) = va4 and l p is a positive literal or v(l p) �= va4 and
l p is negative;

– for each a4 ∈ A4\{w} and for each a1 ∈ A\{χ} with a1 = ϕca = l1l2l3,
Ua1a1a1a4

p = 0 if v(l p) = va4 and l p is a negative literal or v(l p) �= va4 and
l p is positive;

– for each a1 ∈ A\{χ} with a1 = ϕca = l1l2l3, U
a1a1a1w
p = 0 if l p is a positive

literal, while Ua1a1a1w
p = 1 otherwise;

– for each a4 ∈ A4 and for each a1, a2, a3 ∈ A\{χ} such that a1 �= a2 ∨ a2 �=
a3 ∨ a1 �= a3, U

a1a2a3a4
p = 1

r+2 ;
– for each a4 ∈ A4, a3 ∈ A\{χ}, and a2 ∈ A\{χ} with a2 = ϕca = l1l2l3,
Uχa2a3a4
1 = 1

r+1 if l1 is a positive literal, whereasU
χa2a3a4
1 = r

r+1 if l1 is negative,
while Uχa2a3a4

2 = Uχa2a3a4
3 = 0;

– for each a4 ∈ A4, a3 ∈ A\{χ}, and a1 ∈ A\{χ} with a1 = ϕca = l1l2l3,
Ua1χa3a4
2 = 1

r+1 if l2 is a positive literal, whereasU
a1χa3a4
2 = r

r+1 if l2 is negative,
while Ua1χa3a4

1 = 1 and Ua1χa3a4
3 = 0;

– for each a4 ∈ A4, a1 ∈ A\{χ}, and a2 ∈ A\{χ} with a2 = ϕca = l1l2l3,
Ua1a2χa4
3 = 1

r+1 if l3 is a positive literal, whereasU
a1a2χa4
3 = r

r+1 if l3 is negative,
while Ua1a2χa4

1 = 0 and Ua1a2χa4
2 = 1;

– for each a4 ∈ A4,U
a1χχa4
1 = Ua1χχa4

3 = 1 andUa1χχa4
2 = 0, for all a1 ∈ A\{χ};

– for each a4 ∈ A4,U
χa2χa4
1 = 1 andUχa2χa4

2 = Uχa2χa4
3 = 0, for all a2 ∈ A\{χ};

– for each a4 ∈ A4, U
χχa3a4
1 = Uχχa3a4

3 = 0 and Uχχa3a4
2 = 1, for all a3 ∈ A.

The payoff matrix of the fourth player is so defined:

– for each a4 ∈ A4 and for each a1 ∈ A\{χ} with a1 = ϕca = l1l2l3, U
a1a1a1a4
4 = ε

if the truth assignment identified by ϕca makes φc false (i.e., whenever, for each
p ∈ {1, 2, 3}, the clause φc contains the negation of l p), while Ua1a1a1a4

4 = 1
otherwise;

– for eacha4 ∈ A4 and for eacha1, a2, a3 ∈ A such thata1 �= a2∨a2 �= a3∨a1 �= a3,
with the addition of the triple (χ, χ, χ), Ua1a2a3a4

4 = 0.

Games adhering toDefinition 5 have some interesting properties,whichwe formally
state in the following Propositions 6 and 7 .

First, we give a characterization of the strategy space of the leader in terms of the
set of pure NEs in the followers’ game. In particular, given a game Γε(C, V ), the
leader’s strategy space Δ4 is partitioned according to the boundaries xa44 = 1

r+1 , for
a4 ∈ A4\{w}, by which Δ4 is split into 2r regions, each corresponding to a possible
truth assignment to the variables in V . Specifically, in the assignment corresponding
to a region, variable va4 takes value 1 if xa44 � 1

r+1 , while it takes value 0 if xa44 �
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1
r+1 . Moreover, for each a1 ∈ A\{χ} and a1 = ϕca an outcome (a1, a1, a1) is an
NE in the followers’ game only in the regions of the leader’s strategy space whose
corresponding truth assignment is compatible with the one represented by ϕca . For
instance, if ϕca = v̄1v2v3 the corresponding outcome is an NE only if x14 � 1

r+1 ,

x24 � 1
r+1 , and x34 � 1

r+1 (with no further restrictions on the other probabilities).
Formally, we can claim the following:

Proposition 6 Given a game Γε(C, V ) and an action a1 ∈ A\{χ} with a1 = ϕca =
l1l2l3, the outcome (a1, a1, a1) is an NE of the followers’ game whenever the leader
commits to a strategy x4 ∈ Δ4 such that:

– xa44 � 1
r+1 if v(l p) = va4 and lp is a positive literal, for some p ∈ {1, 2, 3};

– xa44 � 1
r+1 if v(l p) = va4 and lp is a negative literal, for some p ∈ {1, 2, 3};

– xa44 can be any if v(l p) �= va4 for each p ∈ {1, 2, 3}.
All the other outcomes of the followers’ game, i.e., those belonging to the set
{(a1, a2, a3) : a1, a2, a3 ∈ A with a1 �= a2 ∨ a2 �= a3 ∨ a1 �= a3} ∪ {(χ, χ, χ)},
cannot be NEs for any of the leader’s commitments.

Proof Observe that, the followers’ payoffs do not depend on the leader’s strategy x4 in
the outcomes not in {(a1, a1, a1) : a1 ∈ A\{χ}}. Thus, for every a1, a2, a3 ∈ A\{χ}
such that a1 �= a2 ∨ a2 �= a3 ∨ a1 �= a3 the outcome (a1, a2, a3) cannot be an NE
as the first follower would deviate by playing action χ , obtaining a utility at least as
large as 1

r+1 , instead of 1
r+2 . Also, for all a2, a3 ∈ A\{χ} the outcome (χ, a2, a3)

is not an NE since the second follower would be better off playing χ (as she gets
1 > 0). Analogously, for all a1, a3 ∈ A\{χ} the outcome (a1, χ, a3) cannot be an NE
as the third follower would deviate to χ (getting a utility of 1 > 0). For all a3 ∈ A,
a similar argument also applies to the outcome (χ, χ, a3) as the first follower would
have an incentive to deviate by playing any action different fromχ (note that (χ, χ, χ),
whose payoffs are defined in the last item of Definition 5, is included). Moreover, for
all a1 ∈ A\{χ} the outcome (a1, χ, χ) is not an NE as the second follower would
deviate to any other action (getting a utility of 1). For all a1, a2 ∈ A\{χ}, the same
holds for the outcome (a1, a2, χ), where the first follower would deviate and play
action χ , and for the outcome (χ, a2, χ)where, for all a2 ∈ \{χ}, the second follower
would deviate and play χ .

Therefore, the only outcomes which can be NEs in the followers’ game are those
in {(a1, a1, a1) : a1 ∈ A\{χ}}. Assume that the leader commits to an arbitrary mixed
strategy x4 ∈ Δ4. For each a1 ∈ A\{χ} with a1 = ϕca = l1l2l3 and for each
p ∈ {1, 2, 3}, the outcome (a1, a1, a1) provides follower p with a utility of u p such
that:

– u p = xa44 if v(l p) = va4 and l p is a positive literal;
– u p = 1 − xa44 if v(l p) = va4 and l p is a negative literal;

The outcome (a1, a1, a1) is an NE if the following conditions hold:

– u p � 1
r+1 for each p ∈ {1, 2, 3} such that l p is positive, as otherwise follower p

would deviate and play χ ;

123



Algorithmica

– u p � r
r+1 for each p ∈ {1, 2, 3} such that l p is negative, as otherwise follower p

would deviate and play χ ;

The claim is proven by these conditions, together with the definition of u p. ��
The characterization of the leader’s strategy space given in Proposition 6 establishes

the relationship between the leader’s utility in a P-SPNE of a game Γε(C, V ) and
the feasibility of the corresponding 3-SAT instance. We highlight it in the following
proposition.

Proposition 7 Given a game Γε(C, V ), the leader’s utility in a P-SPNE is 1 if and
only if the corresponding 3-SAT instance is feasible, and it is equal to ε otherwise.

Proof The result follows form Proposition 6. If the 3-SAT instance is a YES instance
(i.e., if it is feasible), there exists then a strategy x4 ∈ Δ4 such that all the NEs of the
resulting followers’ game provide the leader with a utility of 1. This is because there
is a region corresponding to a truth assignment which satisfies all the clauses. On the
other hand, if the 3-SAT instance is a NO instance (i.e., if it is not satisfiable), then in
each region of the leader’s strategy space there exits an NE for the followers’ game
which provides the leader with a utility of ε. Therefore, the followers would always
play such equilibrium due to the assumption of pessimism. ��

We are now ready to state the result.

Theorem 2 With n � 4 and unless P = NP, P-SPNE-s cannot be approximated in
polynomial time to within any multiplicative factor which is polynomial in the size
of the normal-form game given as input, nor (assuming the payoffs are normalized
between 0 and 1) to within any constant additive loss strictly smaller than 1.

Proof Given a generic 3-SAT instance, let us build its corresponding game Γε(C, V )

according to Definition 5. This construction can be done in polynomial time as |A4| =
r + 1 and |A| = |A1| = |A2| = |A3| = 8t + 1 are polynomials in r and t , and,
therefore, the number of outcomes in Γε(C, V ) is polynomial in r and t . Furthermore,
let us select ε ∈ (

0, 1
2r

)
(the polynomiality of the reduction is preserved as 1

2r is
representable in binary encoding with a polynomial number of bits).

By contradiction, let us assume that there exists a polynomial-time approximation
algorithmA capable of constructing a solution to the problem of computing a P-SPNE
with a multiplicative approximation factor 1

poly(I ) , where poly(I ) is any polynomial
function of the size I of the normal-form game given as input. By Proposition 7, it
follows that, when applied to Γε(C, V ),Awould return an approximate solution with
value greater than or equal to 1 · 1

poly(I ) > 1
2r (for a sufficiently large r ) if and only if

the 3-SAT instance is feasible. When the 3-SAT instance is not satisfiable, A would
return a solution with value at most 1

2r . Since this would provide us with a solution
to 3-SAT in polynomial time, we conclude that P-SPNE-s cannot be approximated in
polynomial time to within any polynomial multiplicative factor unless P = NP.

For the additive case, observe that an algorithm A with a constant additive loss

 < 1 would return a solution of value at least 1− 
 for feasible 3-SAT instances and
a solution of value at most 1

2r for infeasible ones. As for any 
 < 1− 1
2r this algorithm

123



Algorithmica

would allow us to decide in polynomial time whether the 3-SAT instance is feasible or
not, a contradiction unless P = NP, we deduce 
 � 1− 1

2r . Since
1
2r → 0 for r → ∞,

this implies 
 � 1, a contradiction. ��

5 Single-Level Reformulation and Restriction

In this section, we propose a single-level reformulation of the problem admitting a
supremum but, in general, not a maximum, and a corresponding restriction which
always admits optimal (restricted) solutions.

For notational simplicity, we consider the case with n = 3 players. Although
notationally more involved, the generalization to n � 3 is straightforward. With only
two followers, Problem (2), i.e., the bilevel programming formulation we gave in
Sect. 3.2, reads:

sup
x3

min
x1,x2

∑

a1∈A1

∑

a2∈A2

∑

a3∈A3

Ua1a2a3
3 xa11 xa22 xa33

s.t. x3 ∈ Δ3
x1 ∈ argmax

x1

∑

a1∈A1

∑

a2∈A2

∑

a3∈A3

Ua1a2a3
1 xa11 xa22 xa33

s.t. x1 ∈ Δ1 ∩ {0, 1}m
x2 ∈ argmax

x2

∑

a1∈A1

∑

a2∈A2

∑

a3∈A3

Ua1a2a3
2 xa11 xa22 xa33

s.t. x2 ∈ Δ2 ∩ {0, 1}m .

(3)

5.1 Single-Level Reformulation

In order to cast Problem (3) into a single-level problem,wefirst introduce the following
reformulation of the followers’ problem:

Lemma 1 The following MILP, parametric in x3, is an exact reformulation of the
followers’ problem of finding a pure NE which minimizes the leader’s utility given a
leader’s strategy x3:

min
y

∑

a1∈A1

∑

a2∈A2

ya1a2
∑

a3∈A3

Ua1a2a3
3 xa33 (4a)

s.t.
∑

a1∈A1

∑

a2∈A2

ya1a2 = 1 (4b)

ya1a2
∑

a3∈A3

(Ua1a2a3
1 −U

a′
1a2a3

1 )xa33 � 0 ∀a1 ∈ A1, a2 ∈ A2, a
′
1 ∈ A1 (4c)

0ya1a2
∑

a3∈A3

(Ua1a2a3
2 −U

a1a′
2a3

2 )xa33 � 0 ∀a1 ∈ A1, a2 ∈ A2, a
′
2 ∈ A2 (4d)

ya1a2 ∈ {0, 1} ∀a1 ∈ A1, a2 ∈ A2. (4e)
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Proof Note that, in Problem (3), a solution to the followers’ problem satisfies xa11 =
xa22 = 1 for some (a1, a2) ∈ A1 × A2 and x

a′
1

1 = x
a′
2

2 = 0 for all (a′
1, a

′
2) �= (a1, a2).

Problem (4) encodes this in terms of the variable ya1a2 by imposing ya1a2 = 1 if an
only if (a1, a2) is a pessimistic NE. Let us look at this in detail.

Due to Constraints (4b) and (4e), ya1a2 is equal to 1 for one and only one pair
(a1, a2).

Due to Constraints (4c) and (4d), for all (a1, a2) such that ya1a2 = 1 there can be no
action a′

1 ∈ A1 (respectively, a′
2 ∈ A2) by which the first follower (respectively, the

second follower) could obtain a better payoff when assuming that the other follower
would play action a2 (respectively, action a1). This guarantees that (a1, a2) be an NE.
Also note that Constraints (4c) and (4d) boil down to the tautology 0 � 0 for any
(a1, a2) ∈ A1 × A2 with ya1a2 = 0.

By minimizing the objective function (which corresponds to the leader’s utility), a
pessimistic pure NE is found. ��

To arrive at a single-level reformulation of Problem (3), we rely on linear program-
ming duality to restate Problem (4) in terms of optimality conditions which do not
employ the min operator. First, we show the following:

Lemma 2 The linear programming relaxation ofProblem (4) always admits anoptimal
integer solution.

Proof Let us focus on Constraints (4c) and analyse, for all (a1, a2) ∈ A1 × A2 and

a′
1 ∈ A1, the coefficient

∑
a3∈A3

(Ua1a2a3
1 − U

a′
1a2a3

1 )xa33 which multiplies ya1a2 . The
coefficient is equal to the regret the first player would suffer from by not playing action
a′
1. If equal to 0, we have the tautology 0 � 0. If the regret is positive, after dividing by

∑
a3∈A3

(Ua1a2a3
1 −U

a′
1a2a3

1 )xa33 both sides of the constraint we obtain ya1a2 � 0, which
is subsumed by the nonnegativity of ya1a2 . If the regret is negative, after diving both

sides of the constraint again by
∑

a3∈A3
(Ua1a2a3

1 −U
a′
1a2a3

1 )xa33 we obtain ya1a2 � 0,
which implies ya1a2 = 0. A similar reasoning applies to Constraints (4d).

Let us now define O as the set of pairs (a1, a2) such that there is as least an action
a′
1 or a′

2 for which one of the followers suffers from a strictly negative regret. We

have O:={(a1, a2) ∈ A1 × A2 : ∃a′
1 ∈ A1 with

∑
a3∈A3

(Ua1a2a3
1 − U

a′
1a2a3

1 )xa33 <

0∨ ∃a′
2 ∈ A2 with

∑
a3∈A3

(Ua1a2a3
1 −U

a1a′
2a3

1 )xa33 < 0}. Relying on O , Problem (4)
can be rewritten as:

min
y

∑

a1∈A1

∑

a2∈A2

ya1a2
∑

a3∈A3

Ua1a2a3
3 xa33

s.t.
∑

a1∈A1

∑

a2∈A2

ya1a2 = 1

ya1a2 = 0 ∀(a1, a2) ∈ O

ya1a2 ∈ {0, 1} ∀a1 ∈ A1, a2 ∈ A2.

All variables ya1a2 with (a1, a2) ∈ O can be discarded. We obtain a problem with a
single constraint imposing that the sum of all the ya1a2 variables with (a1, a2) /∈ O
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be equal to 1. The linear programming relaxation of such problem always admits an
optimal solution with ya1a2 = 1 for the pair (a1, a2) which achieves the largest value
of

∑
a3∈A3

Ua1a2a3
3 xa33 (ties can be broken arbitrarily), and with ya1a2 = 0 otherwise.

��
As a consequence of Lemma 2, the following can be established:

Theorem 3 The following single-level Quadratically ConstrainedQuadratic Program
(QCQP) is an exact reformulation of Problem (3):

sup
x3,y
β1,β2

∑

a1∈A1

∑

a2∈A2

ya1a2
∑

a3∈A3

Ua1a2a3
3 xa33 (5a)

s.t.
∑

a1∈A1

∑

a2∈A2

ya1a2 = 1 (5b)

ya1a2
∑

a3∈A3

(Ua1a2a3
1 −U

a′
1a2a3

1 )xa33 � 0 ∀a1 ∈ A1, a2 ∈ A2, a
′
1 ∈ A1 (5c)

ya1a2
∑

a3∈A3

(Ua1a2a3
2 −U

a1a′
2a3

2 )xa33 � 0 ∀a1 ∈ A1, a2 ∈ A2, a
′
2 ∈ A2 (5d)

∑

a1∈A1

∑

a2∈A2

ya1a2
∑

a3∈A3

Ua1a2a3
3 xa33 �

∑

a3∈A3

Ua1a2a3
3 xa33 +

−
∑

a′
1∈A1

β
a1a2a′

1
1

∑

a3∈A3

(Ua1a2a3
1 −U

a′
1a2a3

1 )xa33 +

−
∑

a′
2∈A2

β
a1a2a′

2
2

∑

a3∈A3

(Ua1a2a3
2 −U

a1a′
2a3

2 )xa33 ∀a1 ∈ A1, a2 ∈ A2 (5e)

∑

a3∈A3

x3 = 1 (5f)

β
a1a2a′

1
1 � 0 ∀a1 ∈ A1, a2 ∈ A2, a

′
1 ∈ A1 (5g)

β
a1a2a′

2
2 � 0 ∀a1 ∈ A1, a2 ∈ A2, a

′
2 ∈ A2 (5h)

ya1a2 � 0 ∀a1 ∈ A1, a2 ∈ A2 (5i)
xa33 � 0 ∀a3 ∈ A3. (5j)

Proof By relying on Lemma 2, we first introduce the linear programming dual of the
linear programming relaxation of Problem (4). Thanks to Constraints 4b, ya1,a2 ∈
{0, 1} can be relaxed w.l.o.g. into ya1,a2 ∈ Z

+ for all a1 ∈ A1, a2 ∈ A2. This way,
we do not have to introduce a dual variable for each of the constraints ya1,a2 � 1
which would be introduced when relaxing ya1,a2 ∈ {0, 1} into ya1,a2 ∈ [0, 1]. Letting
α, β

a1a2a′
1

1 , and β
a1a2a′

2
2 be the dual variables of, respectively, Constraints (4b), (4c),

and (4d), the dual reads:

max
α,β1,β2

α

s.t. α +
∑

a′
1∈A1

β
a1a2a′

1
1

∑

a3∈A3

(Ua1a2a3
1 −U

a′
1a2a3

1 )xa33

+
∑

a′
2∈A2

β
a1a2a′

2
2

∑

a3∈A3

(Ua1a2a3
2 −U

a1a′
2a3

2 )xa33
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�
∑

a3∈A3

Ua1a2a3
3 xa33 ∀a1 ∈ A1, a2 ∈ A2

α free

β
a1a2a′

1
1 � 0 ∀a1 ∈ A1, a2 ∈ A2, a

′
1 ∈ A1

β
a1a2a′

2
2 � 0 ∀a1 ∈ A1, a2 ∈ A2, a

′
2 ∈ A2.

A set of optimality conditions for Problem (4) can then be derived by simultaneously
imposing primal and dual feasibility for the sets of primal and dual variables (by
imposing the respective constraints) and equating the objective functions of the two
problems.

The dual variable α can then be removed by substituting it by the primal objective
function, leading to Constraints (5e).

The result in the claim is obtained after introducing the leader’s utility as objective
function and then casting the resulting problem as a maximization problem (in which
a supremum is sought). ��

Since, as shown in Proposition 3, the problem of computing a P-SPNE in a normal-
form game may only admit a supremum but not a maximum, the same must hold for
Problem (5) due to its correctness (established in Theorem 3).

We formally highlight this property in the following proposition, showing in the
proof how this can manifest in terms of the variables of the formulation.

Proposition 8 In the general case, Problem (5) may not admit a finite optimal solution.

Proof Consider the game introduced in the proof of Proposition 3 and let x3 =
(1 − ρ, ρ) for ρ ∈ [0, 1]. Adopting, for convenience, the notation (a11, a

1
2) = (1, 1),

(a11, a
2
2) = (1, 2), (a21 , a

1
2) = (2, 1), and (a21, a

2
2) = (2, 2), Constraints (5e) read:

y11(0) + y12(5 + 5ρ) + y21(1) + y22(0) � 0 − β112
1 (0.5 − ρ) − β112

2 (−1 − ρ)

y11(0) + y12(5 + 5ρ) + y21(1) + y22(0) � 5 + 5ρ − β122
1 (1 + ρ) − β121

2 (1 + ρ)

y11(0) + y12(5 + 5ρ) + y21(1) + y22(0) � 1 − β211
1 (−0.5 + ρ) − β212

2 (−0.5 + ρ)

y11(0) + y12(5 + 5ρ) + y21(1) + y22(0) � 0 − β221
1 (−1 − ρ) − β221

2 (0.5 − ρ).

Note that the left-hand sides of the four constraints are all equal to the objective
function (i.e., to the leader’s utility).

Let us consider the case ρ < 0.5 for which, as shown in the proof of Proposition 3,
(1, 2) is the unique pure NE in the followers’ game. (1,2) is obtained by letting y12 = 1
and y11 = y21 = y22 = 0, for which the left-hand sides of the four constraints become
equal to 7.5− 5ε. Note that such value converges to the supremum as ε → 0. For this
choice of y and letting ρ = 0.5 − ε for ε ∈ (0, 0.5] (which is equivalent to assuming
ρ < 0.5), the constraints read:

7.5 − 5ε � 0 − εβ112
1 + (1.5 − ε) β111

2

7.5 − 5ε � 7.5 − 5ε − (1.5 − ε) β122
1 − (1.5 − ε) β121

2
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7.5 − 5ε � 1 + εβ211
1 + εβ212

2

7.5 − 5ε � 0 + (1.5 − ε) β221
1 − εβ221

2 .

Rearrange the four constraints as follows:

β111
2 � 7.5 − 5ε + εβ112

1

1.5 − ε

(1.5 − ε) (β122
1 + β121

2 ) � 0

β211
1 + β212

2 � 6.5 − 5ε

ε

β221
1 � 7.5 − 5ε + εβ221

2

1.5 − ε
.

The second constraint implies β122
1 = β121

2 = 0. Letting β112
1 = β221

2 = 0, which
corresponds to the least restriction on the first and fourth constraints, we derive:

β111
2 � 7.5 − 5ε

1.5 − ε

β211
1 + β212

2 � 6.5 − 5ε

ε

β221
1 � 7.5 − 5ε

1.5 − ε
.

As ε → 0, we have a finite lower bound for β111
2 and β221

1 , but we also have β211
1 +

β212
2 � 6.5−5ε

ε
→ ∞, which prevents β211

1 and β212
2 from taking a finite value.

With a similar argument, one can verify that there is no other way of achieving
an objective function value approaching 7.5 as, for ρ � 5, the third constraint in the
original system imposes an upper bound on the objective function value of 1. ��

5.2 A Restricted Single-Level (MILP) Formulation

As state-of-the-art numerical optimization solvers usually rely on the boundedness of
their variables when tackling a problem, due to the result in Proposition 8 solving the
single-level formulation in Problem (5) may be numerically impossible.

We consider, here, the option of introducing an upper bound of M on both β
a1a2a′

1
1

and β
a1a2a′

2
2 , for all a1 ∈ A1, a2 ∈ A2, a′

1 ∈ A1, a′
2 ∈ A2. Due to the continuity of

the objective function, this suffices to obtain a formulation which, although being a
restriction of the original one, always admits a maximum (over the reals) as a con-
sequence of Weierstrass’ extreme-value theorem. Quite conveniently, this restricted
reformulation can be cast as an MILP, as we now show.

Theorem 4 One can obtain an exact MILP reformulation of Problem (5) for the case

where β
a1a2a′

1
1 � M and β

a1a2a′
2

2 � M hold for all a1 ∈ A1, a2 ∈ A2, a′
1 ∈ A1, a′

2 ∈
A2, and a restricted one when these bounds are not valid.
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Proof After introducing the variable za1a2a3 , each bilinear product ya1a2xa33 in Prob-
lem (5) can be linearised by substituting za1a2a3 for it and introducing the McCormick
envelope constraints [24], which are sufficient to guarantee za1a2a3 = ya1a2xa33 if ya1a2

takes binary values [1].

Assuming β
a1a2a′

1
1 ∈ [0, M] for each a1 ∈ A1, a2 ∈ A2, a′

1 ∈ A1, we can restrict

ourselves to β
a1a2a′

1
1 ∈ {0, M}. This is the case also in the dual (reported in the proof

of Theorem 3). Indeed, the dual problem asks for solving the following problem:

max
β1,β2�0

⎧
⎨

⎩
min

(a1,a2)∈A1×A2

⎧
⎨

⎩

∑
a′
1∈A1

β
a1a2a′

1
1

∑
a3∈A3

(Ua1a2a3
1 −U

a′
1a2a3

1 )xa33 +
∑

a′
2∈A2

β
a1a2a′

2
2

∑
a3∈A3

(Ua1a2a3
2 −U

a1a′
2a3

2 )xa33

⎫
⎬

⎭

⎫
⎬

⎭
.

The min operator ranges over functions (one for each pair (a1, a2) ∈ A1 × A2)
defined on disjoint domains (the β1, β2 variables contained in each such function
are not contained in any of the other ones). Therefore, we can w.l.o.g. set the value
of β1 and β2 so that each function be individually maximized. For each (a1, a2) ∈
A1 × A2, this is achieved by setting, for each a′

1 ∈ A1 (resp., a′
2 ∈ A2) β

a1a2a′
1

1

(resp., β
a1a2a′

2
2 ) to its upper bound M if

∑
a3∈A3

(Ua1a2a3
1 − U

a′
1a2a3

1 )xa33 � 0 (resp.,
∑

a3∈A3
(Ua1a2a3

2 − U
a1a′

2a3
2 )xa33 � 0), otherwise setting β

a1a2a′
1

1 (resp., β
a1a2a′

2
2 ) to its

lower bound of 0.
We can, therefore, introduce the variable p

a1a2a′
1

1 ∈ {0, 1}, substituting Mp
a1a2a′

1
1

for each occurrence of β
a1a2a′

1
1 . This way, for each a1 ∈ A1, a2 ∈ A2, a′

1 ∈
A1, the term β

a1a2a′
1

1

∑
a3∈A3

(Ua1a2a3
1 − U

a′
1a2a3

1 )xa33 becomes M
∑

a3∈A3
(Ua1a2a3

1 −
U

a′
1a2a3

1 )p
a1a2a′

1
1 xa33 . We can, then, introduce the variable q

a1a2a′
1a3

1 and impose

q
a1a2a′

1a3
1 = p

a1a2a′
1

1 xa33 via the McCormick envelope constraints. This way, the

term M
∑

a3∈A3
(Ua1a2a3

1 − U
a′
1a2a3

1 )p
a1a2a′

1
1 xa33 becomes the completely linear term

M
∑

a′
1∈A1

∑
a3∈A3

(Ua1a2a3
1 − U

a′
1a2a3

1 )q
a1a2a′

1a3
1 . Similar arguments can be applied

for β
a1a2a′

2
2 , leading to an MILP formulation. ��

The impact of bounding β
a1a2a′

1
1 and β

a1a2a′
2

2 by M is explained as follows. Assume
that those upper bounds are introduced into Problem (5). If M is not large enough for
the chosen x3 (remember that, as shown in Proposition 8, one may need M → ∞ for
x3 approaching a discontinuity point of the leader’s utility function), Constraints (5e)
may remain active for some (â1, â2) which is not an NE for the chosen x3. Let
(a1, a2) be the worst-case NE the followers would play and assume that the right-
hand side of Constraint (5e) for (â1, â2) is strictly smaller than the utility the leader
would obtain if the followers played the NE (a1, a2), namely,

∑
a3∈A3

Uâ1â2a3
3 xa33 −

∑
a′
1∈A1

β
â1â2a′

1
1

∑
a3∈A3

(Uâ1â2a3
1 −U

a′
1â2a3

1 )xa33 −∑
a′
2∈A2

β
â1â2a′

2
2

∑
a3∈A3

(Uâ1â2a3
2 −

U
â1a′

2a3
2 )xa33 <

∑
a3∈A3

Ua1a2a3
3 xa33 . Letting ya1a2 = 1, this constraint would be

violated (as, with that value of y, the left-hand side of the constraint would be
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∑
a3∈A3

Ua1a2a3
3 xa33 , which we assumed to be strictly larger than the right-hand side).

This forces the choice of a different x3 for which the upper bound of M on β
a1a2a′

1
1

and β
a1a2a′

2
2 is sufficiently large not to cause the same issue with the worst-case NE

corresponding to that x3, thus restricting the set of strategies the leader could play.
In spite of this, by solving the MILP reformulation outlined in Theorem 4 we are

always guaranteed to find optimal (restricted) solutions to it (if M is large enough
for the restricted problem to admit feasible solutions). Such solutions correspond to
feasible strategies of the leader, guaranteeing her a lower bound on her utility at a
P-SPNE.

6 Exact Algorithm

In this section, we propose an exact exponential-time algorithm for the computation
of a P-SPNE, i.e., of supxn∈Δn

f (xn), which does not suffer from the shortcomings
of the formulations we introduced in the previous section. In particular, if there is no
xn ∈ Δn where the leader’s utility f (xn) attains supxn∈Δn

f (xn) (as f (xn) does not
admit a maximum), our algorithm also returns, together with the supremum, a strategy
x̂n which provides the leader with a utility equal to an α-approximation (in the additive
sense) of the supremum, namely, a strategy x̂n satisfying supxn∈Δn

f (xn)− f (x̂n) � α

for any additive lossα > 0 chosenapriori.Wefirst introduce a version of the algorithm
based on explicit enumeration, in Sect. 6.1, which we then embed into a branch-and-
bound scheme in Sect. 6.3.

In the remainder of the section, we denote the closure of a set X ⊆ Δn relative to
aff(Δn) by X , its boundary relative to aff(Δn) by bd(X), and its complement relative
toΔn by Xc. Note that, here, aff(Δn) denotes the affine hull ofΔn , i.e., the hyperplane
in Rm containing Δn .

6.1 Enumerative Algorithm

6.1.1 Computing supxn∈1n f (xn)

The key ingredient of our algorithm is what we call outcome configurations. Letting
AF = Ś

p∈F Ap, we say that a pair (S+, S−) with S+ ⊆ AF and S− = AF\S+ is an
outcome configuration for a given xn ∈ Δn if, in the followers’ game induced by xn ,
all the followers’ action profiles a−n ∈ S+ constitute an NE and all the action profiles
a−n ∈ S− do not.

For every a−n ∈ AF , we define X(a−n) as the set of all leader’s strategies xn ∈ Δn

for which a−n is an NE in the followers’ game induced by xn . Formally, X(a−n)

corresponds to the following (closed) polytope:

X(a−n):=

⎧
⎪⎨

⎪⎩

xn ∈ Δn :
∑

an∈An

U
a−n ,an
p xann �

∑

an∈An

U
a′−n ,an
p xann ∀p ∈ F, a′

p ∈ Ap\{ap}

with a′−n = (a1, . . . , ap−1, a
′
p, ap+1, . . . , an−1)

⎫
⎪⎬

⎪⎭
.
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For every a−n ∈ AF , we also introduce the set Xc(a−n) of all xn ∈ Δn for which
a−n is not an NE. For that purpose, we first define the following set for each p ∈ F :

Dp(a−n, a
′
p):=

⎧
⎨

⎩

xn ∈ Δn :
∑

an∈An

Ua−n ,an
p xann <

∑

an∈An

U
a′−n ,an
p xann

with a′−n = (a1, . . . , ap−1, a′
p, ap+1, . . . , an−1)

⎫
⎬

⎭
.

Dp(a−n, a′
p), which is a not open nor closed polytope (as it has a missing facet, the

one corresponding to its strict inequality), is the set of all values of xn for which
player p would achieve a better utility by deviating from a−n and playing a differ-
ent action a′

p ∈ Ap. For every p ∈ F , a−n ∈ AF , and a′
p ∈ Ap, we call the

corresponding set Dp(a−n, a′
p) degenerate if Ua−n ,an

p = U
a′−n ,an
p for each an ∈ An

(recall that a′−n = (a1, . . . , ap−1, a′
p, ap+1, . . . , an−1)). In a degenerate Dp(a−n, a′

p),

the constraint
∑

an∈An
Ua−n ,an

p xann <
∑

an∈An
U

a′−n ,an
p xann reduces to 0 < 0. Since,

in principle, any player could deviate from a−n by playing any action not in a−n ,
Xc(a−n) is the following disjunctive set:

Xc(a−n):=
⋃

p∈F

⎛

⎝
⋃

a′
p∈Ap\{ap}

Dp(a−n, a
′
p)

⎞

⎠ .

Notice that, since any point in bd(Xc(a−n)) which is not in bd(Δn) would satisfy,
for some a′

p, the (strict, originally) inequality of Dp(a−n, a′
p) as an equation, such

point is not in Xc(a−n) and, hence, bd(Xc(a−n)) ∩ Xc(a−n) ⊆ bd(Δn). The closure
Xc(a−n) of Xc(a−n) is obtained by discarding any degenerate Dp(a−n, a′

p) and by
turning the strict constraint in the definition of each nondegenerate Dp(a−n, a′

p) into
a nonstrict one. Note that degenerate sets are discarded as, for such sets, turning their
strict inequality into a� inequality would result in turning the empty set Dp(a−n, a′

p)

(whose closure is the empty set) into Δn . An illustration of X(a−n) and Xc(a−n),
together with the closure Xc(a−n) of the latter, is reported in Fig. 6.

Fig. 6 An illustration of X(a−n), Xc(a−n), and Xc(a−n) for the case with m = 3. The three sets are
depicted as subsets (highlighted in gray and continuous lines) of the leader’s strategy space Δn . Dashed
lines and circles indicate parts of Δn which are not contained in the sets
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For every outcome configuration (S+, S−), we introduce the following sets:

X(S+):=
⋂

a−n∈S+
X(a−n)

and

X(S−):=
⋂

a−n∈S−
Xc(a−n).

While the former is a closed polytope, the latter is the union of not open nor closed
polytopes and, thus, it is not open nor closed itself. Similarly to Xc(a−n), X(S−)

satisfies bd(X(S−)) ∩ X(S−) ⊆ bd(Δn). The closure X(S−) of X(S−) is obtained
by taking the closure of each Xc(a−n). Hence, X(S−) = ⋂

a−n∈S− Xc(a−n).
By leveraging these definitions, we can now focus on the set of all leader’s strategies

which realize the outcome configuration (S+, S−), namely:

X(S+) ∩ X(S−).

As for X(S−), X(S+) ∩ X(S−) is not an open nor a closed set. Due to X(S+) being
closed, the only points of bd(X(S+) ∩ X(S−)) which are not in X(S+) ∩ X(S−)

itself are the very points in bd(X(S−)) which are not in X(S−). As a consequence,
X(S+) ∩ X(S−) = X(S+) ∩ X(S−).

Let us define the set P:={(S+, S−) : S+ ∈ 2AF ∧ S− = 2AF \S+}, which contains
all the outcome configurations of the game. The following theorem highlights the
structure of f (xn), suggesting an iterativeway of expressing the problem of computing
supxn∈Δn

f (xn). We will rely on it when designing our algorithm.

Theorem 5 Let ψ(xn; S+):= min
a−n∈S+

∑

an∈An

Ua−n ,an
n xann . The following holds:

sup
xn∈Δn

f (xn) = max
(S+,S−)∈P:

X(S+)∩X(S−) �=∅
max

xn∈X(S+)∩X(S−)

ψ(xn; S+).

Proof Let Δ′
n be the set of leader’s strategies xn for which there exists a pure NE

in the followers’ game induced by xn , namely, Δ′
n :={xn ∈ Δn : f (xn) > −∞}.

Since, by definition, f (xn) = −∞ for any xn /∈ Δ′
n and the supremum of f (xn) is

finite due to the finiteness of the payoffs (and assuming the followers’ game admits
at least a pure NE for some xn ∈ Δn), we can, w.l.o.g., focus on Δ′

n and solve
supxn∈Δ′

n
f (xn). In particular, the collection of the sets X(S+) ∩ X(S−) �= ∅ which

are obtained for all (S+, S−) ∈ P forms a partition of Δ′
n . Due to the fact that at any

xn ∈ X(S+) ∩ X(S−) the only pure NEs induced by xn in the followers’ game are
those in S+, f (xn) = ψ(xn; S+). Since the supremum of a function defined over a
set is equal to the largest of the suprema of that function over the subsets of such set,
we have:
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sup
xn∈Δn

f (xn) = max
(S+,S−)∈P:

X(S+)∩X(S−) �=∅
sup

xn∈X(S+)∩X(S−)

ψ(xn; S+).

What remains to show is that the following relationship holds for all X(S+)∩X(S−) �=
∅:

sup
xn∈X(S+)∩X(S−)

ψ(xn; S+) = max
xn∈X(S+)∩X(S−)

ψ(xn; S+).

Since ψ(xn; S+) is a continuous function (it is the point-wise minimum of finitely
many continuous functions), its supremum over X(S+)∩ X(S−) equals its maximum
over the closure X(S+) ∩ X(S−) of that set. Hence, the relationship follows due to
X(S+) ∩ X(S−) = X(S+) ∩ X(S−). ��

In particular, Theorem 5 shows that f (xn) is a piecewise function with a piece for
each set X(S+) ∩ X(S−), each of which corresponding to the (continuous over its
domain) piecewise-affine function ψ(xn; S+). It follows that the only discontinuities
of f (xn) (due to which f (xn) may admit a supremum but not a maximum) are those
where, in Δn , xn transitions from a set X(S+) ∩ X(S−) to another one.

We show how to translate the formula in Theorem 5 into an algorithm by proving
the following theorem:

Theorem 6 There exists a finite, exponential-time algorithm which computes
supxn∈Δn

f (xn) and, whenever supxn∈Δn
f (xn) = maxxn∈Δn f (xn), also returns a

strategy x∗
n with f (x∗

n ) = maxxn∈Δn f (xn).

Proof The algorithm relies on the expression given in Theorem 5.All pairs (S+, S−) ∈
P can be constructed by enumeration in time exponential in the size of the instance.5

In particular, the set P contains 2m
n−1

outcome configurations, each corresponding to
a bi-partition of the outcomes of the followers’ game into S+ and S− (there are mn−1

such outcomes, due to having m actions and n − 1 followers).
For every p ∈ F , let us define the following sets, parametric in ε � 0:

Dp(a−n, a
′
p; ε):=

⎧
⎨

⎩

xn ∈ Δn :
∑

an∈An

Ua−n ,an
p xann + ε �

∑

an∈An

U
a′−n ,an
p xann

with a′−n = (a1, . . . , ap−1, a′
p, ap+1, . . . , an−1)

⎫
⎬

⎭
,

Xc(a−n; ε):=
⋃

p∈F

⎛

⎝
⋃

a′
p∈Ap\{ap}

Dp(a−n, a
′
p; ε)

⎞

⎠ ,

X(S−; ε):=
⋂

a−n∈S−
Xc(a−n; ε).

We can verify whether X(S+) ∩ X(S−) �= ∅ by verifying whether there exists some
ε > 0 such that X(S+) ∩ X(S−; ε) �= ∅. This can be done by solving the following
problem and checking the strict positivity of ε in its solution:

5 Recall that the size of a game instance is lower bounded by mn .

123



Algorithmica

max
ε,xn

ε

s.t. xn ∈ X(S+) ∩ X(S−; ε)

ε � 0
xn ∈ Δn .

(7)

Notice that degenerate sets Dp(a−n, a′
p) play no role in Problem (7). This is

because if Dp(a−n, a′
p) is degenerate, its constraint

∑
an∈An

Ua−n ,an
p xann + ε �

∑
an∈An

U
a′−n ,an
p xann reduces to ε � 0 and, thus, any solution to Problem (7) with

xn belonging to a degenerate set Dp(a−n, a′
p)would achieve ε equal to 0. Thus, ε > 0

can be obtained only by choosing xn not belonging to a degenerate Dp(a−n, a′
p).

Problem (7) can be cast as an MILP. To see this, observe that each Xc(a−n; ε) can
be expressed as an MILP with a binary variable for each term of the disjunction which
composes it, namely:

∑

an∈An

Ua−n ,an
p xann + ε �

∑

an∈An

U
a′−n ,an
p xann + M

a−n ,a′
p

p z
a−n ,a′

p
p

∀p ∈ F, a′
p ∈ Ap\{ap},with a′−n = (a1, . . . , ap−1, a

′
p, ap+1, . . . , an−1) (8a)

∑

p∈F

∑

a′
p∈Ap\{ap}

(1 − z
a−n ,a′

p
p ) = 1 (8b)

z
a−n ,a′

p
p ∈ {0, 1} ∀p ∈ F, a′

p ∈ Ap\{ap} (8c)

xn ∈ Δn (8d)
ε � 0. (8e)

InConstraints 8, the constantM
a−n ,a′

p
p ,which satisfiesM

a−n ,a′
p

p = maxan∈An {Ua−n ,an
p −

U
a′−n ,an
p }, is key to deactivate any instance of Constraints (8a) when the correspond-

ing z
a−n ,a′

p
p is equal to 1. The set X(S−; ε) is obtained by simultaneously imposing

Constraints 8 for all a−n ∈ S−.
After verifying X(S+) ∩ X(S−) �= ∅ by solving Problem (7), the value of

maxxn∈X(S+)∩X(S−)
ψ(xn; S+) can be computed in, at most, exponential time by solv-

ing the following MILP:

max
η,xn

η

s.t. η �
∑

an∈An

Ua−n ,an
n xann ∀a−n ∈ S+

xn ∈ X(S+) ∩ X(S−; 0)
η ∈ R

xn ∈ Δn,

(9)

where the first constraint accounts for the maxmin aspect of the problem. The largest
value of η found over all sets X(S+) ∩ X(S−) for all (S+, S−) ∈ P corresponds to
supxn∈Δn

f (xn).
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In the algorithm, to verify whether f (xn) admits maxxn∈Δn f (xn) (and to com-
pute it if it does) we solve the following problem (rather than the aforementioned
maxxn∈X(S+)∩X(S−)

ψ(xn; S+)):

lex–max
ε�0,xn∈X(S+)∩X(S−;ε)

[ψ(xn; S+); ε]. (10)

This problem calls for a pair (xn, ε)with xn ∈ X(S+)∩ X(S−; ε) such that, among all
pairs which maximize ψ(xn; S+), ε is as large as possible. This way, in any solution
(xn, ε) with ε > 0 we have xn ∈ X(S+)∩ X(S−) (rather than xn ∈ X(S+)∩ X(S−)).
Since, there, ψ(xn; S+) = f (xn), we conclude that f (xn) admits a maximum (equal
to the value of the supremum) if ε > 0, whereas it only admits a supremum if ε = 0.

Problem (10) can be solved in, at most, exponential time by solving the following
lex-MILP:

max
η,xn ,ε

[η ; ε]

s.t. η �
∑

an∈An

Ua−n ,an
n xann ∀a−n ∈ S+

xn ∈ X(S+) ∩ X(S−; ε)

η ∈ R

ε � 0
xn ∈ Δn,

(11)

where η is maximized first, and ε second. In practice, it suffices to solve twoMILPs in
sequence: one in which the first objective function is maximized, and then another one
in which the second objective function is maximized after imposing the first objective
function to be equal to its optimal value. ��

6.1.2 Finding an˛-Approximate Strategy

For those cases where f (xn) does not admit amaximum,we look for a strategy x̂n such
that, for any given additive loss α > 0, supxn∈Δn

f (xn)− f (x̂n) � α, i.e., for an (addi-
tively) α-approximate strategy x̂n . Its existence is guaranteed by the following lemma:

Lemma 3 Consider the sets X ⊆ R
n, for some n ∈ N, and Y ⊆ R, and a function

f : X → Y with s:= supx∈X f (x) satisfying s < ∞. For any α ∈ (0, s], there exists
then an x ∈ X : s − f (x) � α.

Proof By negating the conclusion, we deduce the existence of some α ∈ (0, s] such
that, for every x ∈ X , s − f (x) > α. Then, f (x) < s − α for all x ∈ X . This implies
s = supx∈X f (x) � s − α < s: a contradiction. ��

After running the algorithm we outlined in the proof of Theorem 5 to compute the
value of the supremum, an α-approximate strategy x̂n can be computed a posteriori
thanks to the following result:
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Theorem 7 Assume that f (xn) does not admit a maximum over Δn and that, accord-
ing to the formula in Theorem 5, s:= supxn∈Δn

f (xn) is attained at some outcome
configuration (S+, S−). Then, an α-approximate strategy x̂n can be computed for any
α > 0 in at most exponential time by solving the following MILP:

max
ε,xn

ε

s.t.
∑

an∈An

Ua−n ,an
n xann � s − α ∀a−n ∈ S+

xn ∈ X(S+) ∩ X(S−; ε)

ε � 0
xn ∈ Δn .

(12)

Proof Let x∗
n ∈ X(S+)∩X(S−)be the strategywhere the supremum is attained accord-

ing to the formula in Theorem 5, namely, where ψ(x∗
n , S

+) = maxxn∈X(S+)∩X(S−)

ψ(xn; S+) = s. Problem (12) calls for a solution xn of value at least s − α (thus, for
an α-approximate strategy) belonging to X(S+)∩X(S−; ε)with ε as large as possible,
whose existence is guaranteed byLemma3.Due to the lexicographic nature of the algo-
rithmLet (x̂n, ε̂) be an optimal solution to Problem (12). If ε̂ > 0, x̂n ∈ X(S+)∩X(S−)

(rather than x̂n ∈ X(S+) ∩ X(S−)). Thus, f (xn) is continuous at xn = x̂n , implying
ψ(xn; S+) = f (xn). Therefore, by playing x̂n the leader achieves a utility of at least
s − α. ��

6.1.3 Outline of the Explicit Enumeration Algorithm

The complete enumerative algorithm is detailed in Algorithm 1. In the pseudocode,
CheckEmptyness(S+, S−) is a subroutine which looks for a value of ε � 0 which is
optimal for Problem (7), while Solve-lex-MILP(S+, S−) is another subroutine which
solves Problem (11). Note that Problem (7) may be infeasible. If this is the case, we
assume that CheckEmptyness(S+, S−) returns ε = 0, so that the outcome configu-
ration (S+, S−) is discarded. Let us also observe that (in Algorithm 1) Problem (11)
cannot be infeasible, as it is always solved for an outcome configuration (S+, S−)

whose corresponding Problem (7) is feasible. Due to the lexicographic nature of the
algorithm, f (xn) admits amaximum if and only if the algorithm returns a solutionwith
best .ε∗ > 0. If best .ε∗ = 0, x∗

n is just a strategy where supxn∈Δn
f (xn) is attained

(in the sense of Theorem 5). In the latter case, an α-approximate strategy is found by
invoking the procedure Solve-MILP-approx(best .S+, best .S−, best_value), which
solves Problem (12) on the outcome configuration (best .S+, best .S−) on which the
supremum has been found.

In Appendix A.1, we report the illustration of the execution of Algorithm 1 on a
normal-form game with two followers.
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Algorithm 1 Explicit Enumeration
1: function Explicit Enumeration
2: best ← nil
3: best_val ← −∞
4: for all S+ ⊆ AF do
5: S− ← AF \ S+
6: (ε, ·) ← CheckEmptyness(S+, S−) � Solve MILP Problem (7)
7: if ε > 0 then
8: (η, ε∗, x∗

n ) ← Solve-lex-MILP(S+, S−) � Solve lex-MILP Problem (11)
9: if η > best_val then
10: best ← (S+, S−, x∗

n , ε∗)

11: best_val ← η

12: end if
13: end if
14: end for
15: if best .ε∗ > 0 then
16: x̂n ← best .xn
17: else
18: x̂n ← Solve-MILP-approx(best .S+, best .S−, best_val) � Solve MILP Problem (12)
19: end if
20: return best_val, best .x∗

n , x̂n
21: end function

6.2 On The Polynomial Representability of P-SPNEs

The algorithm that we have presented is based on solving Problem 11 a number of
times, once per outcome configuration (S+, S−) ∈ P .

As Problem 11 is anMILP, its solutions can be computed by a standard branch-and-
bound algorithm based on solving, in an enumeration tree, a set of linear programming
relaxations of Problem 11 inwhich the value of (some of) its binary variables is fixed to
either 0 or 1. We remark that both Problem 11 and its linear programming relaxations
with fixed binary variables contain a polynomial (in the size of the game) number of
variables and constraints. Moreover, all the coefficients in the problem are polynomi-
ally bounded, as they are produced by adding/subtracting the players’ payoffs.

Since the extreme solution of a linear programming problem can be encoded by a
number of bits which is also bounded by a polynomial function of the instance size
(see Lemma 8.2, page 373, in [9]), we have that any xn which (for some followers’
action profile a−n) constitutes a P-SPNE can be succintly encoded by a polynomial
number of bits. This observation completes the proof of Theorem 1, showing that
P-SPNE-d belongs to NP.

6.3 Branch-and-Bound Algorithm

As it is clear, computing supxn∈Δn
f (xn) with the enumerative algorithm can be

impractical for any game of interesting size, as it requires the explicit enumeration
of all the outcome configurations of a game—many of which will, incidentally, yield
empty regions X(S+)∩ X(S−). A more efficient algorithm, albeit one still running in
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exponential time in the worst-case, can be designed by relying on a branch-and-bound
scheme.

6.3.1 Computing supxn∈1n f (xn)

Rather than defining S− = AF\S+, assume now S− ⊆ AF\S+. In this case, we call
the corresponding pair (S+, S−) a relaxed outcome configuration.

Starting from any followers’ action profile a−n ∈ AF with X(a−n) �= ∅, the
algorithm constructs and explores, through a sequence of branching operations, two
search trees, whose nodes correspond to relaxed outcome configurations. One tree
accounts for the case where a−n is an NE and contains the relaxed outcome con-
figuration (S+, S−) = ({a−n},∅) as root node. The other tree accounts for the case
where a−n is not an NE, featuring as root node the relaxed outcome configuration
(S+, S−) = (∅, {a−n}).

If S− ⊂ AF\S+ (which can often be the case when relaxed outcome configurations
are adopted), solving maxxn∈X(S+)∩X(S−)

ψ(xn; S+) might not give a strategy xn for

which the only pure NEs in the followers’ game it induces are those in S+, even if
xn ∈ X(S+)∩X(S−) (rather than xn ∈ X(S+)∩X(S−)). This is because, due to S+ ∪
S− ⊂ AF , there might be another action profile, say a′−n ∈ AF\(S+ ∪ S−), providing
the leader with a utility strictly smaller than that corresponding to all the action profiles
in S+. Since, if this is the case, the followers would respond to xn by playing a′−n
rather than any of the action profiles in S+, maxxn∈X(S+)∩X(S−)

ψ(xn; S+) could be,
in general, strictly larger than supxn∈Δn

f (xn), thus not being a valid candidate for the
computation of the latter.

In order to detect whether one such a′−n exists, it suffices to carry out a feasibility
check (on xn). This corresponds to looking for a pure NE in the followers’ game
different from those in S− (which may become NEs on bd(X(S+) ∩ X(S−)) which
minimizes the leader’s utility—this can be done by inspection in O(mn−1). If the
feasibility check returns some a′−n /∈ S+, the branch-and-bound tree is expanded by
performing abranching operation. Twonodes are introduced: a left nodewith (S+

L , S−
L )

where S+
L = S+ ∪ {a′−n} and S−

L = S− (which accounts for the case where a′−n is
a pure NE), and a right node with (S+

R , S−
R ) where S+

R = S+ and S−
R = S− ∪ {a′−n}

(which accounts for the case where a′−n is not a pure NE). If, differently, a′−n ∈ S+,
then ψ(xn; S+) represents a valid candidate for the computation of supxn∈Δn

f (xn)
and, thus, no further branching is needed (and (S+, S−) is a leaf node).

The bounding aspect of the algorithm is a consequence of the following proposition:

Proposition 9 Solving maxxn∈X(S+)∩X(S−)
ψ(xn; S+) for some relaxed outcome con-

figuration (S+, S−) gives an upper bound on the leader’s utility under the assumption
that all followers’ action profiles in S+ constitute an NE and those in S− do not.

Proof Due to (S+, S−) being a relaxed outcome configuration, there could be out-
comes not in S+ which are NEs for some xn ∈ X(S+) ∩ X(S−). Due to ψ(xn; S+)

being defined as mina−n∈S+
∑

an∈An
Ua−n ,an
n xann , ignoring any such NE at any xn ∈
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X(S+) ∩ X(S−) can only result in the min operator considering fewer outcomes a−n ,
thus overestimating ψ(xn; S+) and, ultimately, f (xn). Thus, the claim follows. ��
As a consequence of Proposition 9, optimal values obtained when computing the value
of maxxn∈X(S+)∩X(S−)

ψ(xn; S+) throughout the search tree can be used as bounds as
in a standard branch-and-bound method.

Since maxxn∈X(S+)∩X(S−)
ψ(xn; S+) is not well-defined for nodes where S+ = ∅,

for themwe solve, rather than an instance of Problem (11), a restriction of the optimistic
problem (see Sect. 3) with constraints imposing that all followers’ action profiles in
S− are not NEs. We employ the following formulation, which we introduce directly
for the lexicographic case:

max
y,xn ,ε

[
∑

a∈A

Ua−n ,an
n ya−n xann ; ε

]

(13a)

s.t.
∑

a−n∈AF

ya−n = 1

ya−n
∑

an∈An

(Ua−n ,an
p −U

a′−n ,an
p )xann � 0 ∀p ∈ F, a−n ∈ AF , a′

p ∈ Ap\{ap} (13b)

with a′−n = (a1, . . . , ap−1, a
′
p, ap+1, . . . , an−1) (13c)

ya−n ∈ {0, 1}∀a−n ∈ AF (13d)

xn ∈ Δn (13e)

xn ∈ X(S−; ε). (13f)

The problem can be turned into a lex-MILP by linearising each bilinear product
ya−n xann by means of McCormick’s envelope constraints and by restating Con-
straint (13f) as done in the MILP Constraints 8.

6.3.2 Finding an˛-Approximate Strategy

In the context of the branch-and-bound algorithm, anα-approximate strategy x̂n cannot
be found by just relying on the a posteriori procedure outlined in Theorem 7. This is
because when (S+, S−) is a relaxed outcome configuration there might be an action
profile a′−n ∈ AF\(S+ ∪ S−) (i.e., one not accounted for in the relaxed outcome
configuration) which not only is an NE in the followers’ game induced by x̂n , but
which also provides the leader with a utility strictly smaller than ψ(x̂n; S+). If this is
the case, the strategy x̂n found with the procedure of Theorem 7 may return a utility
arbitrarily smaller than the supremum s and, in particular, smaller than s − α.

To cope with this shortcoming and establish whether such an a′−n exists, we first
compute x̂n according to the a posteriori procedure of Theorem 7 and, then, perform a
feasibility check. If we obtain an action profile a′−n ∈ S+, x̂n is then an α-approximate
strategy and the algorithmhalts. If, differently, we obtain some a′−n /∈ S+ forwhich the
leader obtains a utility strictly smaller than ψ(x̂n; S+), we carry out a new branching
operation, creating a left and a right child node in which a′−n is added to, respectively,
S+ and S−. This procedure is then reapplied on both nodes, recursively, until a strategy
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x̂n for which the feasibility check returns an action profile in S+ is found. Such a
strategy is, by construction, α-approximate.

Observe that, due to the correctness of the algorithm for the computation of the
supremum, there cannot be at x∗

n an NE a′−n worse than the worst-case one in S+. If
a new outcome a′−n becomes the worst-case NE at x̂n , due to the fact that it is not a
worst-case NE at x∗

n there must be a strategy x̃n which is a convex combination of x∗
n

and x̂n where either a′−n is not an NE or, if it is, it yields a leader’s utility not worse
than that obtained with the worst-case NE in S+. An α-approximate strategy is thus
guaranteed to be found on the segment joining x̃n and x∗

n by applying Lemma 3 with
X equal to that segment. Thus, the algorithm is guaranteed to converge.

6.3.3 Outline of the Branch-and-Bound Algorithm

The complete outline of the branch-and-bound algorithm is detailed in Algorithm 2.
F is the frontier of the two search trees, containing all nodes which have yet to
be explored. Initialize() is a subprocedure which creates the root nodes of the two
search trees, while pick() extracts from F the next node to be explored. Feasibil-
ityCheck(xn, S−) performs the feasibility check operation for the leader’s strategy
xn , looking for the worst-case pure NE in the game induced by xn and ignor-
ing any outcome in S−. CreateNode(S+, S−) (detailed in Algorithm 3) adds a
new node to F , also computing its upper bound and the corresponding values of
xn and ε. More specifically, CreateNode(S+, S−) performs the same operations
of a generic step of the enumerative procedure in Algorithm 1 for a given S+
and S−, with the only difference that, here, we invoke the subprocedure Solve-
lex-MILP-Opt(S+, S−) whenever S+ = ∅ to solve Problem (13), while we invoke
Solve-lex-MILP(S+, S−) to solve Problem (11) if S+ �= ∅. In the last part of the
algorithm, Solve-MILP-approx(best .S+, best .S−, best_val) attempts to compute an
α-approximate strategy as done in Algorithm 1. In case the feasibility check fails
for it, we call the procedure Branch-and-Bound-approx(best .S+, best .S−, best .x∗

n ),
which runs a second branch-and-bound method, as described in Sect. 6.3.2, until an
α-approximate solution is found.

In Appendix A.2, we report the illustration of the execution of Algorithm 2 on a
normal-form game with two followers.

7 Experimental Evaluation

We carry out an experimental evaluation of the equilibrium-finding algorithms intro-
duced in the previous sections, comparing the following methods:

– QCQP: the QCQP Formulation (5) solved with the state-of-the-art spatial-
branch-and-bound solver BARON 14.3.1 [30]. Since global optimality cannot be
guaranteed by BARON if the feasible region of the problem is not bounded [30],
the solutions obtained with QCQP are not necessarily optimal.

– MILP: the MILP formulation derived according to Theorem 4 with dual vari-
ables artificially bounded by M , solved with the state-of-the-art MILP solver
Gurobi 7.0.2.
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Algorithm 2 Branch-and-Bound
1: function Branch- and- Bound
2: best ← nil, lb ← −∞, ub ← ∞
3: F ← Initialize()
4: while F �= ∅ do
5: node ← F .pick()
6: if node.ub > lb then
7: a−n ← FeasibilityCheck(node.x∗

n , node.S−)

8: if a−n ∈ node.S+ then
9: best ← (node.S+, node.S−, node.x∗

n , node.ε∗)

10: lb ← node.ub
11: else
12: S+

L = node.S+ ∪ {a−n}
13: F ← F + CreateNode(S+

L , node.S−)

14: S−
R = node.S− ∪ {a−n}

15: F ← F + CreateNode(node.S+, S−
R )

16: end if
17: ub ← max

node∈F {node.ub}
18: end if
19: end while
20: if best .ε∗ > 0 then
21: x̂n ← best .x∗

n
22: else
23: x̂n ← Solve-MILP-approx(best .S+, best .S−, best_val) � Solve MILP Problem (12)
24: a′−n ← FeasibilityCheck(x̂n , best .S−)

25: if a′−n /∈ best .S+ then
26: x̂n ← Branch-and-Bound-approx(best .S+, best .S−, best .x∗

n )

27: end if
28: end if
29: return ub, best .x∗

n , x̂n
30: end function

Algorithm 3 CreateNode
1: function CreateNode(S+, S−)
2: (ε, ·) ← CheckEmptyness(S+, S−) � Solve MILP Problem (7)
3: if ε > 0 then
4: node ← EmptyNode()
5: node.S+ ← S+
6: node.S− ← S−
7: if S+ = ∅ then
8: (η, ε∗, x∗

n ) ← Solve-lex-MILP-Opt(S+, S−) � Solve lex-MILP Problem (13)
9: else
10: (η, ε∗, x∗

n ) ← Solve-lex-MILP(S+, S−) � Solve lex-MILP Problem (11)
11: end if
12: node.ub ← η

13: node.x∗
n ← x∗

n
14: node.ε∗ ← ε∗
15: return node
16: end if
17: return ∅
18: end function
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– BnB-sup: the branch-and-bound algorithm we proposed, run for computing
supxn∈Δn

f (xn). The algorithm is coded in Python 2.7, relying on Gurobi 7.0.2 as
MILP solver.

– BnB-α: the branch-and-bound algorithm we proposed, run to find an α-
approximate strategy whenever there is no xn ∈ Δn at which the value of the
supremum is attained.

For MILP and Bnb-α, we report the results for different values of M and α.
BnB-sup and BnB-α are initialized with an outcome which results in an O-SPNE
for some leader’s strategy. Specifically, we add it to S+ in the starting node with
empty S− and to S− in the starting node with empty S+. The next node to explore
is always selected according to a best-bound rule. We generate a testbed of random
normal-form games with payoffs independently drawn from a uniform distribution
over [1, 100], using GAMUT [27]. The results are then normalized to the interval
[0, 1] for the sake of presentation. The testbed contains games with n = 3, 4, 5 players
(i.e., with 2, 3, 4 followers), m ∈ {4, 6, . . . , 20, 25, . . . , 70} actions when n = 3, and
m ∈ {3, 4, . . . , 14} actions when n = 4, 5. We generate 30 different instances per pair
of n and m.

We report the following figures, aggregated over the 30 instances per game with
the same values of n and m:

– Time: average computing time, in seconds (up to the time limit).
– LB: average value of the best feasible solution found (only considered for instances
where a feasible solution is found).

– Gap: average additive gap measured as UB − LB, where UB is the upper bound
returned by the algorithm.6

– Opt: percentage of instances solved to optimality (reported only for BnB-sup, as
QCQP and MILP are not guaranteed to produce optimal solutions).

– Feas: percentage of instances forwhich a feasible solution has been found (reported
only for QCQP and MILP as an alternative to Opt).

The experiments are run on a UNIX machine with a total of 32 cores working at 2.3
GHz, equipped with 128 GB of RAM. The computations are carried out on a single
thread, with a time limit of 3600 s per instance.

7.1 Experimental Results with Two Followers

Table 2 reports the results on games with two followers (n = 3) and m � 30,
comparing QCQP, MILP (with M = 10, 100, 1000), BnB-sup, and BnB-α (with
α = 0.001, 0.01, 0.1).

QCQP can be solved only for instances with up to m = 18 due to BARON running
out ofmemory on larger games.Withm � 18, feasible solutions are found, on average,

6 When solving QCQP and MILP, Gap corresponds to the gap “internal” to the solution method. Since
QCQP and MILP impose artificial restrictions (present by design in MILP and introduced automatically by
the solver in QCQP), such value is, in general, not valid for the original, unrestricted problem. This is not
the case for BnB-sup and BnB-α, for which Gap is a correct estimate of the difference between the best
found LB and the value of the supremum (overestimated by UB).
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Table 3 Results obtained with
BnB-sup for games with n = 3
players and 35 � m � 70

m BnB-sup

Time LB Gap Opt

35 3573 0.80 0.21 3

40 3560 0.63 0.37 0

45 3600 0.50 0.50 0

50 3600 0.49 0.51 0

55 3600 0.53 0.47 0

60 3600 0.49 0.51 0

65 3600 0.50 0.50 0

70 3600 0.50 0.50 0

in 91% of the cases, but their quality is quite poor (the additive gap is equal to 0.34 on
average). The time limit is reached on almost each instance, even those with m = 4,
with the sole exception of those with m = 18, on which the solver halts prematurely
due to memory issues.

MILP performs much better than QCQP, handling instances with up to m = 30
actions per player. M = 100 seems to be the best choice, for which we obtain, on
average, LBs of 0.68 and gaps of 0.28, with a computing time slightly smaller than
2600 s. For M = 1000, the number of feasible solutions found increases from 94%
to 97%, but LBs and gaps become slightly worse, possibly due to the fact that MILP
solvers are typically quite sensitive to the magnitude of “big M” coefficients (which,
if too large, can lead to large condition numbers, resulting in numerical issues).

BnB-sup substantially outperforms QCQP and MILP, finding not just feasible
solutions but optimal ones for every game instance with m � 25 and solving to
optimality 47% of the instances with m = 30. The average computing time is of 359
s, and it reduces to 126 if we only consider the instances with m � 25 (all solved to
optimality). BnB-sup shows that the supremum of the leader’s utility is very large
on the games in our testbed, equal to 0.96 on average on the instances with m � 25
for which the supremum is computed exactly.

The time taken by BnB-α to find an α-approximate strategy is, in essence, unaf-
fected by the value of α. Since, in its implementation, BnB-α requires a relaxed
outcome configuration on which the value of the supremum has been attained to com-
pute an α-approximate strategy, we have run it only on instances with m � 25 (on
which the supremum has always been computed by BnB-sup).

Table 3 reports further results obtained with BnB-sup for games with n = 3 and
up to m = 70 actions per player. As the table shows, while some optimal solutions
can still be found for m = 35, optimality is lost for game instances with m � 40.
Nevertheless, BnB-sup still manages to find feasible solutions for instances with up
to m = 70, obtaining solutions with an average LB of 0.55 and an average additive
gap of 0.44. Under the conservative assumption that games with 35 � m � 70 admit
suprema of value close to 1 (which is empirically true when m � 30), BnB-sup
provides, on average, solutions that are less than 50% off of optimal ones.
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Table 4 Results obtained with BnB-sup for games with n = 4, 5 players and m = 4, 6, 8, 10, 12, 14. For
the sake of comparison, the results for n = 3 are also reported

m BnB-sup n = 3 BnB-sup n = 4 BnB-sup n = 5

Time Gap Opt Time Gap Opt Time Gap Opt

4 0 0.00 100 3 0.00 100 8 0.00 100

6 2 0.00 100 17 0.00 100 137 0.00 100

8 5 0.00 100 126 0.00 100 2953 0.11 53

10 7 0.01 100 955 0.00 100 3461 0.46 13

12 15 0.00 100 2784 0.06 60 3600 0.53 0

14 20 0.01 100 3600 0.50 0 3600 0.52 0

7.2 Experimental Results with More Followers and Final Observations

Results obtained with BnB-supwith more than two followers (n = 4, 5) are reported
in Table 4 for m � 14. For the sake of comparison, we also report the results obtained
for the same values of m and n = 3 that are contained in Tables 2 and 3 .

As the table illustrates, computing the value of the supremum of the leader’s utility
becomes very hard already for m = 12 with n = 4, for which the algorithm manages
to find optimal solution in only 60% of the cases. For m = 14 and n = 4, no instance
is solved to optimality within the time limit. For n = 5, the problem becomes hard
already for m = 8, where only 53% of the instances are solved to optimality. With
m = 12 and n = 5, no instances at all are solved to optimality.

We do not report results on game instances with n = 4, 5 and m > 14 as such
games are so large that, on them, BnB-sup incurs memory problems when solving
the MILP subproblems.

In spite of the problem of computing a P-SPNE being a nonconvex pessimistic
bilevel program, with our branch-and-bound algorithm we can find solutions with an
additive optimality gap � 0.01 for three-player games with up to m = 20 actions
(containing three payoffs matrices with 8000 entries each), which are comparable, in
size, to those solved in previous works which solely tackled the problem of computing
a single NE maximizing the social welfare, see, e.g., [31].

8 Conclusions and FutureWorks

We have shown that the problem of computing a pessimistic Stackelberg equilibrium
with multiple followers playing pure strategies simultaneously and noncooperatively
(reaching a pure Nash equilibrium) is NP-hard with two or more followers and inap-
proximable in polynomial time (to within multiplicative polynomial factors and
constant additive losses) when the number of followers is three ormore unlessP = NP.
We have proposed an exact single-level QCQP reformulation for the problem, with
a restricted version which we have cast into an MILP, and an exact exponential-time
algorithm (which we have then embedded in a branch-and-bound scheme) for finding
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the supremum of the leader’s utility and, in case there is no leader’s strategy where
such value is attained, also an α-approximate strategy.

Future developments include establishing the approximability status of the problem
with two followers, the generalization to the case with both leader and followers play-
ing mixed strategies, partially addressed in [4,5] (even though we conjecture that this
problem could be much harder, probably �

p
2 -hard), and the study of structured games

(e.g., congestion games beyond the special case of singleton games with monotonic
costs which are shown to be polynomially solvable in [11,20]).

The algorithms we have proposed can constitute a useful framework for develop-
ing solution methods for games in which the normal-form representation cannot be
assumed as input. Retaining the main structure of our algorithms, such games could
be tackled by adapting the subproblems that are solved for each (relaxed) outcome
configuration to the case where the followers’ actions cannot be all taken into account
explicitly. For outcomes in S+, a cutting plane method could be employed to generate
a best response for each of the followers iteratively, without having to generate all of
them a priori. For outcomes in S−, one could adopt a column generation approach
to iteratively add sets Dp(a−n, a′

p) for different followers p ∈ F and action pro-
files a−n ∈ S−, thus iteratively enlarging the set of strategies the leader could play to
improve her utilitywhile guaranteeing that the outcomes in S− are notNash equilibria.

One could also address solution concepts in which, in case the followers’ game
admitted multiple Nash equilibria, the followers would choose one which maximizes
a sequence of objective functions in the lexicographic sense. For instance, they could,
first, look for an equilibrium which maximizes the social welfare or their total utility,
breaking ties by choosing one which also maximizes (optimistic case) or minimizes
(pessimistic case) the leader’s utility. Our algorithm could be extended to this case
by casting the subproblem which is solved for each (relaxed) outcome configuration
as a bilevel programming problem where the leader looks for a strategy xn which
maximizes her utility at either the best (optimistic case) or the worst (pessimistic case)
equilibrium for the followers among those which maximize their collective utility
(social welfare or total utility).

Acknowledgements We thank three anonymous reviewers whose comments helped us improve the quality
of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Illustration of the Algorithms

We show how the exact algorithms proposed in Sect. 6 (namely the explicit enumer-
ation algorithm in Algorithm 1 and its branch-and-bound extension in Algorithm 2)
work by providing detailed examples of their execution on a normal-form game.

We consider the following game with n = 3 players (two followers), where A1 =
{a11, a21}, A2 = {a12, a22}, and A3 = {a13, a23}. (The first and second matrices represent
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the followers’ games resultingccg actions a13 and a23 , respectively, while the third
matrix is the resulting game when the leader’s commitment is the mixed strategy
x3 = (1 − ρ, ρ) for ρ ∈ [0, 1].)

a12 a22

a11
1
2 ,

1
2 ,0

1
4 ,

1
4 ,0

a21 1,1, 16 0,0,0

a13

a12 a22

a11 0,0,0 1
4 ,

1
4 ,1

a21 1,1, 13
1
2 ,

1
2 ,0

a23

a12 a22

a11
1
2−ρ

2 ,
1
2−ρ

2 ,0
1
4 ,

1
4 ,ρ

a21 1,1, 16+ρ
6

ρ
2 ,

ρ
2 ,0

x3 = (1−ρ, ρ)

The followers’ game admits the NE (a21 , a
1
2) for all values of ρ (with leader’s

utility 1
6 + ρ

6 ) and the NE (a11, a
2
2) for ρ = 1

2 (with leader’s utility 1
2 ). Therefore,

the game admits a unique O-SPNE, achieved at ρ = 1
2 (utility 1

2 ), and a unique P-
SPNE, achieved at ρ = 1 (utility 1

3 ). See Fig. 7 for an illustration of the leader’s utility
function.

A. 1 Illustration of the Explicit Enumeration Algorithm

We show how Algorithm 1 works on the example provided above. The algorithm
iterates over all the outcome configurations (S+, S−) ∈ P by enumerating all the
subsets of followers’ action profiles S+ ⊆ AF , with S− = AF\S+. For the ease of
presentation, we denote by 1 , 2 , 3 , and 4 the followers’ action profiles (a11, a

1
2),

(a11, a
2
2), (a

2
1 , a

1
2), and (a21, a

2
2), respectively.When convenient, we represent a leader’s

strategy x3 ∈ Δ3 via a single parameter ρ ∈ [0, 1], letting x3 = (1 − ρ, ρ). The
following is a detailed description of all the iterations performed by the algorithm.
Note that the iteration corresponding to S+ = ∅ can always be omitted, as, in that
case, S− = { 1 , 2 , 3 , 4 } = AF and f (x3) = −∞ for any x3 ∈ X(S−) since the
followers’ game for x3 has no pure NEs.

Fig. 7 The leader’s utility in the
normal-form game used for the
illustration of the algorithms,
plotted as a function of ρ, where
the leader’s strategy is
x3 = (1 − ρ, ρ)
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Iteration S+ = { 1 }. The resulting outcome configuration (S+, S−) is discarded
since it yields ε = 0, as Problem 7 is infeasible. This is because there is no leader’s
strategy for which 1 in an NE in the resulting followers’ game. Formally, X(S+) is
empty since (among others) the constraint 1

2 − ρ
2 � 1 (encoding the fact that the first

follower should have no incentive to deviate from a11 by playing a21) is violated for
every value ρ ∈ [0, 1].

Iteration S+ = { 2 }. As in the previous iteration, the outcome configuration is
discarded since Problem 7 is infeasible. Indeed, X(S+) contains only one strategy
x3 = ( 12 ,

1
2 ), as the two NE constraints for 2 , namely 1

4 � ρ
2 and 1

4 � 1
2 − ρ

2 , imply
ρ = 1

2 . On the other hand, membership to X(S−; ε) requires that at least one between
1+ ε � 1

2 − ρ
2 = 1

4 and 1+ ε � ρ
2 = 1

4 be satisfied (since 3 must not be an NE for
x3), which is impossible due to ε � 0.

Iteration S+ = { 3 }. Let us consider Problem 7. First, X(S+) = Δ3, as the
constraints imposing that 3 is an NE, namely 1 � 1

2 − ρ
2 (first follower) and 1 � ρ

2
(second follower), are satisfied for every ρ ∈ [0, 1].Moreover, x3 ∈ X(S−; ε) requires
the following conditions to be met:

1 : 1

2
− ρ

2
+ ε � 1 ∨ 1

2
− ρ

2
+ ε � 1

4

2 : 1

4
+ ε � ρ

2
∨ 1

4
+ ε � 1

2
− ρ

2

4 : ρ

2
+ ε � 1

4
∨ ρ

2
+ ε � 1.

Recalling that the objective of Problem 7 is to maximize ε, an optimal solution is
obtained by setting ρ = 1 (so that x3 = (0, 1)), for which we find ε = 1

4 . Thus,
CheckEmptyness(S+, S−) returns an ε greater than zero and the outcome config-
uration is not discarded. Then, the lex-MILP defined by Problem 11 is solved. The
first-level objective calls for themaximumvalue ofη subject to the constraintη � 1

6+ ρ
6

(as 3 is the unique followers’ action profile in S+), where x3 = (1 − ρ, ρ) must
belong to X(S+) ∩ X(S−; ε). An optimal solution is achieved for ρ = 1. Solve-lex-
MILP(S+, S−) returns the optimal solution η = 1

3 , ε
∗ = 1

4 (which is optimal for the
second-level objective of maximizing ε, given η = 1

3 ), and x∗
3 = (0, 1).

Iteration S+ = { 4 }. The outcome configuration is discarded since Problem 7 is
infeasible, as there is no leader’s strategy for which 4 is an NE in the followers’
game. Formally, X(S+) is empty as (among others) the constraint ρ

2 � 1 (encoding
the fact that second follower should have no incentive to deviate by playing a12 instead
of a22) is violated for every value ρ ∈ [0, 1].

Iterations S+ = { 1 , 2 }, S+ = { 1 , 3 }, S+ = { 1 , 4 }, S+ = { 1 , 2 , 3 },
S+ = { 1 , 2 , 4 }, S+ = { 1 , 3 , 4 }. Since 1 ∈ S+, the resulting outcome
configurations (S+, S−) are discarded (see iteration S+ = { 1 }).

Iteration S+ = { 2 , 3 }. Let us consider Problem 7. First, X(S+) contains only
one strategy x3 = ( 12 ,

1
2 ), as the two NE constraints for 2 , namely 1

4 � ρ
2 and

1
4 � 1

2 − ρ
2 , imply ρ = 1

2 (whereas 3 does not impose additional constraints, as it
is always an NE). Furthermore, x3 ∈ X(S−; ε) for any ε � 3

4 , as the following two
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conditions need to be met:

1 : 1

2
− ρ

2
+ ε � 1 ∨ 1

2
− ρ

2
+ ε � 1

4

4 : ρ

2
+ ε � 1

4
∨ ρ

2
+ ε � 1.

Thus, CheckEmptyness(S+, S−) returns ε = 3
4 > 0. As to Problem 11, η � ρ (since

2 ∈ S+) and η � 1
6 + ρ

6 (since 3 ∈ S+) must hold. Moreover, it must be ρ = 1
2 in

order to have x3 ∈ X(S+). Thus, the optimal value is η = 1
4 . As a result, Solve-lex-

MILP(S+, S−) returns η = 1
4 , ε

∗ = 3
4 (which is optimal for the second-level objective,

given η = 1
4 ), and x∗

3 = ( 12 ,
1
2 ).

Iterations S+ = { 2 , 4 }, S+ = { 2 , 3 , 4 }, S+ = { 3 , 4 }. Given that 4 ∈
S+, the resulting outcome configurations (S+, S−) are discarded (see iteration S+ =
{ 4 }). In conclusion, a P-SPNE is realized for the outcome configuration resulting
from S+ = { 2 } (which gives the highest value of η = 1

3 ), and it is achieved for the
leader’s strategy x̂3 = (0, 1). Notice that for S+ = { 2 } we have ε∗ = 1

4 > 0, which
shows that x̂3 is also a maximum.

A.2 Illustration of the Branch-and-Bound Algorithm

We show how Algorithm 2 works on the same example used for Algorithm 1. We
assume that nodes are picked from the frontier F giving priority to those with larger
upper bounds. Moreover, as for Algorithm 1 we denote the followers’ action profiles
by 1 , 2 , 3 , and 4 , whereas a leader’s strategy is x3 = (1−ρ, ρ) with ρ ∈ [0, 1].
What follows is a detailed description of the steps performed by the algorithm. We
report a picture of the search tree built during the execution in Fig. 8.

Initialization.We assume that the two search trees are initialized using the follow-
ers’ action profile 2 . Thus, the frontierF initially contains two root nodes node1 and
node2 corresponding to the outcome configurations ({ 2 },∅) and (∅, { 2 }), respec-
tively. They are created with Algorithm 3, as follows:

– node1. Letting S+ = { 2 } and S− = ∅, CheckEmptyness(S+, S−) returns ε > 0,
as, in Problem 7, x(S−; ε) = Δ3 (since S− = ∅) and X(S+) only contains x3 =
( 12 ,

1
2 ) (which is the only leader’s strategy for which 2 is an NE). Then, Solve-

lex-MILP(S+, S−) returns node1.ub = 1
2 , node1.x

∗
3 = ( 12 ,

1
2 ), and node1.ε

∗ > 0.
– node2. Let S+ = ∅ and S− = { 2 }. In Problem 7, X(S+) = Δ3 holds (as

S+ = ∅), while x3 ∈ X(S−; ε) if one between 1
4 + ε � 1

2 − ρ
2 (second follower)

and 1
4 + ε � ρ

2 (first follower) is satisfied. As a result, CheckEmptyness(S+, S−)

returns ε = 1
4 (which is the maximum value that ε can take, achieved for ρ = 1).

Then, since S+ = ∅, Solve-lex-MILP-Opt(S+, S−) returns an optimal solution to
Problem 13, which is achieved for x3 = (0, 1) and ε = 1

4 by letting the variables y
select the followers’ action profile 3 as NE (note that 1 and 4 cannot be NEs
in the followers’ game, and the leader’s utility in 3 is 1

6 + ρ
6 , which is maximized

for ρ = 1). Thus, we find node2.ub = 1
3 , node2.x

∗
3 = (0, 1), and node2.ε∗ = 1

4 .
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Fig. 8 Example of search tree built by Algorithm 2 for the normal-form game used as example. The root of
the tree represents the initialization step. The symbol × indicates that the subtree rooted at the preceding
node is pruned (as its upper-bound is lower than the value of the current best solution). The symbol F
indicates that a feasible solution has been found in its preceding node. The numbers inside the rectangles
in the top-right corners of the nodes indicate the iteration in which the nodes are selected

First Iteration. F .pick() selects node1, as it enjoys the highest upper bound (as
node1.ub = 1

2 > node2.ub = 1
3 ). As node1.ub > lb = −∞, the algorithm invokes

the function FeasibilityCheck(node1.x∗
3 , node1.S

−) (with node1.S− = ∅), which
returns the worst (for the leader) NE in the followers’ game resulting from node1.x∗

3 =
( 12 ,

1
2 ), namely, the followers’ action profile 3 . Given that 3 /∈ node1.S+, the

following two new nodes are created:

– node3. The node satisfies node3.S+ = S+ = { 2 , 3 } and node3.S− = S− = ∅.
Thus, X(S+) contains only one leaders’ strategy, namely, x3 = ( 12 ,

1
2 ), whereas

X(S−; ε) = Δ3 for any ε > 0. As a result, CheckEmptyness(S+, S−) returns
ε > 0 and Solve-lex-MILP(S+, S−) returns node3.ub = 1

4 , node3.x
∗
3 = ( 12 ,

1
2 ),

and node3.ε∗ > 0 (note that, in Problem 11, η must satisfy the constraints η � 1
2

and η � 1
4 , corresponding to 2 and 3 , respectively).

– node4. The node satisfies node4.S+ = S+ = { 2 } and node4.S− = S− = { 3 }.
Thus, X(S−; ε) is empty for any value of ε � 0, since there is no way of satisfying
any constraint among 1+ε � 1

2 − 1
2ρ and 1+ε � ρ

2 . Thus, Problem 7 is infeasible
and the node is discarded.
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Second Iteration. F .pick() selects node2, as the node enjoys the highest upper
bound (as node2.ub = 1

3 > node3.ub = 1
4 ). Since node2.ub > lb = −∞, running

the procedure FeasibilityCheck(node2.x∗
3 , node2.S

−) with node2.x∗
3 = (0, 1) and

node2.S− = { 2 } returns the followers’ action profile 3 ,which is anNEandprovides
the leader with a utility of 1

3 . Since 3 /∈ node2.S+, the following two new nodes are
created:

– node5. The node satisfies node5.S+ = S+ = { 3 } and node5.S− = S− = { 2 }.
Thus, X(S+) = Δ3 and x3 ∈ X(S−; ε) if any constraint among 1

4 + ε � ρ
2

and 1
4 + ε � 1

2 − ρ
2 is satisfied. Thus, CheckEmptyness(S+, S−) returns ε = 1

4
(achieved for ρ = 1). Then, in Problem 11, η � 1

6 + ρ
6 must hold, which leads to

an optimal value of η = 1
3 (for ρ = 1). Thus, we find node5.ub = 1

3 , node5.x
∗
3 =

(0, 1), and node5.ε∗ = 1
4 .

– node6. The node satisfies node6.S+ = S+ = ∅ and node6.S− = S− = { 2 , 3 }.
Hence, the node is discarded for the same reason as node4.

Third Iteration. F .pick() selects node5 (as node5.ub = 1
3 > node3.ub =

1
4 ). Then, FeasibilityCheck(node5.x∗

3 , node5.S
−) with node5.x∗

3 = (0, 1) and
node5.S− = { 2 } returns the followers’ action profile 3 ∈ node5.S+. Thus,
a feasible solution is found and best is set to (node5.S+ = { 3 }, node5.S− =
{ 2 }, node5.x∗

3 = (0, 1), node5.ε∗ = 1
4 ), while lb = node5.ub = 1

3 .
Fourth Iteration. The remaining node in F is node3, with node3.ub = 1

4 <

lb = 1
3 . Thus, it is discarded. This concludes the algorithm. The optimal solution

is found for the relaxed outcome configuration with S+ = { 3 } and S− = { 2 },
and the optimal leader’s strategy is x̂3 = (0, 1) (which is where the unique P-SPNE
is achieved). Note that the algorithm does not need to search for an α-approximate
strategy, as best .ε∗ = 1

4 > 0.
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