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Reverse Engineering of Mechanical Parts: a Template-

Based Approach 

 

Abstract 
Template-Based reverse engineering approaches represent a relatively poorly explored strategy in the field 

of CAD reconstruction from polygonal models. Inspired by recent works suggesting the 

possibility/opportunity of exploiting a parametric description (i.e. CAD template) of the object to be 

reconstructed in order to retrieve a meaningful digital representation, a novel reverse engineering 

approach for the reconstruction of CAD models starting from 3D mesh data is proposed. The reconstruction 

process is performed relying on a CAD template, whose feature tree and geometric constraints are defined 

according to the a priori information on the physical object. The CAD template is fitted upon the mesh data, 

optimizing its dimensional parameters and positioning/orientation by means of a particle swarm 

optimization algorithm. As a result, a parametric CAD model that perfectly fulfils the imposed geometric 

relations is produced and a feature tree, defining an associative modelling history, is available to the 

reverse engineer. The proposed implementation exploits a cooperation between a CAD software package 

(Siemens NX) and a numerical software environment (MATLAB). Five reconstruction tests, covering both 

synthetic and real-scanned mesh data, are presented and discussed in the manuscript; the results are 

finally compared with models generated by state of the art reverse engineering software and key aspects to 

be addressed in future work are hinted at.   

 

Keywords: Reverse engineering; CAD reconstruction; CAD template; 3D mesh; Constrained Fitting; 

Particle Swarm Optimization.  
 

1. Introduction 
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The reconstruction of digital geometric models of physical objects, usually indicated as Reverse Engineering 

(RE) in the Computer Aided Design (CAD) field, has been extensively studied in recent years, due to the 

development and spreading of 3D scanning technologies and the increase in number of potential 

applications [1–3]. Most advanced processes, in fact, exploit 3D data acquired on the physical object and 

describing its surfaces as starting point for the reconstruction framework [4,5] (Figure 1).  

Considering engineering applications, the main goal of the RE process is to extract information from the 

acquired raw data to reconstruct a proper parametric CAD model that is as close as possible to the original 

design of the object. The composing CAD features are specifically required to be correct in dimensions, 

combinatorial structure and in the existing relations (i.e. geometric constraints, symmetries, regularities) 

between them.  

 

 
Figure 1 – Traditional RE framework. 

 

The practical usefulness of the model obtained at the end of the RE process depends on multiple factors, 

the most important being the ability to recover the intrinsic design intent defining the part. The 

achievement of a “close representation” is, in fact, usually not sufficient for engineers, because a model 

defined with the correct set of geometric relations and properties, as well as the correct dimensions, is 

needed.  

The correct functioning of mechanical parts, as an example, often depends on geometric relations between 

functional surfaces or features (e.g. parallelism of two planes, orthogonality between axes, etc.) and their 

retrieval is in most cases fundamental [6]. 

The state of the art of RE approaches is wide and assorted, as proved by multiple surveys recently 

presented at the state of the art [5,7–9]; nevertheless, fundamentally two approaches have been proposed 

to achieve the previously described goal by integrating geometric constraints in the reconstruction: 

Constrained Fitting [6,10] and Beautification [11–13].  

Constrained fitting methods [6,10] pursue a more meaningful reconstruction introducing a set of 

geometrical constraints that are defined among the identified geometric features and enforced during the 

“Surface Fitting” step (Figure 1) by formulating a constrained optimization problem.  Satisfactory results are 

achievable with this technique, but a considerable effort is required to obtain a suitable set of constraints, 

either by using an automatic recognition algorithm or relying on the user contribution. The definition of a 

solvable non-contradictory and convenient constraint set is a non-trivial task that greatly influences the 

efficiency of the method. In most constrained fitting formulations, furthermore, the constraints are 

implemented only up to a certain tolerance [9]. Even though the entailed reconstruction errors are usually 

dimensionally negligible for practical purposes, such imprecisions may be inconvenient in the subsequent 

editing of the obtained model. 

Beautification-based approaches, instead, perform an independent fitting of surfaces to build a first-
attempt model. A set of constraints and relations, directly inferred from the reconstructed model, is then 
enforced as a by changing the surface parameters values; during this phase the original 3D 
data is ignored, greatly reducing the mathematical complexity of the procedure but also limiting its efficacy 
[14]. 
Other important aspects that need to be considered to evaluate the performances of a RE method are the 

type of model generated at the end of the reconstruction process and its usability [15]. Generally, a 

parametric representation compatible with at least one major renowned CAD/CAE software package is the 

result desired by reverse engineers; moreover, a significant feature tree and a particular file format may be 

required: these are usually obtained by means of an intense post-processing phase.  



  

In this context, possible improvements for RE of mechanical parts may be obtainable applying a knowledge-

based paradigm. As explained in [16], the shapes of common mechanical parts “follow standard 

conventions arising from tradition, utility or engineering design”; accordingly, it may be convenient to 

spend the prior information about the object at the start of the process. The designer, in fact, has a deep 

knowledge about the part, which goes beyond the mere geometric analysis that may be carried out on the 

acquired data by automatic algorithms. In fact, several information sources and clues are available to the 

reverse engineer and may guide the reconstruction of a correct CAD model: for what purpose was the part 

designed in the first place, what was its production process [17], how it needs to interact with other parts. 

This information can help the reverse engineer defining the correct topology of the CAD model, its 

composing features and even to identify geometric constraints and exact dimensions.  

One of the most effective knowledge-based approaches is the template-based reconstruction [18–21]; in 

this class of techniques, some kind of CAD template, containing known features and geometric relations, is 

defined at the start of the RE process and used to guide the reconstruction. The template provides an 

archetypal description of the shape that has to be found within the acquired data, by imposing a-priori 

desired restrictions in the search process. 

In [21], a template-based reconstruction is used to deal with poor quality 3D data pre-processed using a 

RANSAC approach [22]; a series of models which are known in topology (i.e. cylindrical slotted part, square 

slotted part, etc.), defined with a priori known geometric constraints, are sought and fitted by means of a 

genetic algorithm [23] to the raw data. Satisfying results are shown when dealing with noisy data that 

would be otherwise difficult to analyse applying traditional techniques; the reconstructed models, 

however, are still distinguished by loosely-imposed constraints, with a tolerance controlling the constraints 

strictness.  

Analogously, a genetic algorithm [24] is used in [18] by Fayolle and Pasko, to perform a reconstruction 

process based on CAD models generated by CSG (Constructive Solid Geometry). A CAD model obtained 

with a first independent fitting of identified surfaces is used to start the reconstruction on different point 

clouds: the values of a set of parameters controlling the model dimensions are obtained by minimizing a 

least square error function.  

Template-based reconstruction has been also studied and applied for civil engineering purposes, such as 

the tracking of the status of buildings and industrial facilities [19,20,26]. In [26], the authors focus on the 

reconstruction of cylindrical parts by means of a probabilistic approach: the template is used to guide the 

identification of piping elements within the acquired data. The designer knowledge is exploited to assure 

the consistency of the reconstructed model, such as the correctness of the piping system, which is required 

to respect a-priori known constraints. In [19] the method is extended to torus and cuboids. 

 

To the best of authors’ knowledge, the results obtained by means of state-of-art template-based RE 

methods still do not guarantee both the following requirements for usability: 1) the retrieval of a 

completely defined feature tree associated with a fully editable parametric CAD model; 2) the enforcement 

of perfect geometric constraints, respecting the user intent and retaining the editability of the model. 

Starting from these premises, we propose a RE method suitable for the reconstruction of mechanical parts 

that is well-integrated with the traditional product development process, exploiting tools that are already 

part of the “engineering culture” of designers (e.g. parametric CAD modelling software environment).  

 

In the present work, a new approach to RE involving the fitting of a priori defined CAD template to 3D 

scanned data is presented (Figure 2). The template includes the a priori information on the part to be 

reconstructed, that is, the feature tree of the object, the geometrical relations between the features and 

their known dimensions.  

 



  
 

Figure 2 – Fundamental elements of a template-based reconstruction approach. 

 

The process is performed within a well-established CAD environment (i.e. Siemens NX) thanks to an 

appositely devised software tool (named TCRT – Template-Based CAD Reconstruction Tool) allowing: i) a 

known and familiar environment for the designer, provided with state-of-the-art CAD modelling tools to be 

used in the template design and ii) the achievement of a fully parametric and editable model at the end of 

the reconstruction, which is defined with an editable and meaningful associative feature-tree, ready to be 

used for downstream applications.   

Specifically, an optimization process of the parameters controlling the shape, the position and the 
orientation of the template is carried out to fit the CAD model on the scanned data. The optimization jointly 
updates the parameters of the whole CAD template (hence implicitly exploiting the pre-determined 
geometric constraints), intervening directly on the CAD feature tree and minimizing the global fitting error.  
The objective function guiding the optimization is built considering deviation data evaluated between the 

CAD model and the original mesh, using built-in tools of Siemens NX. The proposed TCRT runs on an hybrid 

MATLAB-Siemens NX implementation to exploit MATLAB proprietary “Global Optimization Toolbox”: a 

metaheuristic optimization algorithm (I.e. Particle-Swarm Optimization – PSO  [27]) is responsible for the 

optimization/fitting step. 

The proposed method, as well as the algorithm controlling the entire process, are presented in Section 2; 

results obtained in a series of test cases are discussed in Section 3. Finally, strengths and weaknesses, along 

with plausible application scenarios, are described in Section 4; possible future improvements are discussed 

as well.  

2. Material and Methods 

 
2.1 Overview 

A CAD model is completely defined by its modelling history (i.e. the list of modelling functions 

chronologically ordered in the feature tree) and the parameters of its features (i.e. its dimensions or 

numerical values in general). Each feature is, in fact, characterized by means of one or more parameters, 

which account for physical dimensions, e.g. length, angle, number of elements in an array. 

We propose a RE approach that aims to fit the CAD template on mesh data by means of an iterative 

optimization procedure; such routine aims at finding the best CAD features parameters that minimize the 

global fitting error w.r.t. the acquired data. The method exploits CAD software functionalities such as 

associative-parametric modeling, enforcing of geometrical constraints and (possibly) evaluating distances 

between mesh/CAD surfaces. Here and in the following, we are assuming that the feature tree of the CAD 

template is fixed and suited to accomplish the task (i.e. topologically coherent w.r.t. the physical object). The 

introduction or the removal of CAD features in the optimization process is, at the moment, not considered.  



  

The main advantage of using a parametric representation based on fixed feature tree inside the CAD 

environment is the implicit adoption of a complete and meaningful set of geometrical constraints that are 

always enforced during the optimization process and, consequently, in the final CAD template. The 

implementation of modelling functions, as well as the compliance of constraints, is transparent to the 

optimization routine and to the user because it is completely demanded to the CAD software.  

As mentioned in introductory section, the proposed RE method has been implemented by using MATLAB 

and Siemens NX for the optimization routine and CAD environment, respectively. The former provides a 

ready-to-use developing environment and is supplied with the Global Optimization Toolbox and the 

Optimization Toolbox, which grant a fast and reliable access to several well-established optimization 

routines. The latter is a CAD software package equipped by language-neutral API to provide a complete 

access to CAD core application functionality; furthermore, it supports operations between mesh data and 

CAD features, such as the computation of distance between a mesh surface and a CAD surface. The 

interaction between MATLAB and NX has been realized by means of Microsoft .NET Framework and 

Component Object Model (COM). The principles exposed in this article could be generally extended to 

different software packages, provided that sufficient programming tools are available1.  

2.2 Implementation 

At the beginning of the procedure, the user is required to provide the following inputs: 

1) the initial CAD template representing the object that will be fitted to the acquired data; this object is 

equipped of both a feature tree and a parameters list defining the desired object topology; in this 

implementation, it is stored in a NX proprietary format file and it will be referred to as CAD template. 

Several origins can be imagined for the CAD template: in a possible framework, it could be designed 

specifically for the considered reconstruction by the reverse engineer using traditional NX modelling tools. 

In this hypothesis, the user should first carefully consider the shape of the part to be reconstructed and the 

possible geometric features and constraints that could have been used and imposed in the original design 

of the part. The user’s engineering skills, the purpose of the part, its functioning and relations, knowledge 

on the production process used to made it, should all contribute to a correct identification/interpretation of 

the geometry of the part. Exploiting this information, the user would design a possible CAD representation 

of the part within the Siemens NX environment, using traditional direct modelling tools, in a process 

familiar to him/her. It must be noted that the CAD template provided does not need to be characterized by 

dimensions or even proportions between the CAD features that are similar to the physical part ones; the 

algorithm is capable of handling every possible starting configuration. This greatly simplifies the designing 

process for the CAD template, as the user only needs to pay attention to the correct choice of geometric 

features and the imposition of the desired constraints; in Figure 3 is represented an example of the CAD 

template creation process beforehand described. As previously mentioned, different scenarios for the CAD 

template origin could be considered as well and are discussed in Section 5.   

                                                             
1
 Specifically, the optimization routine could be developed in any major programming language of choice (e.g. C++, Python, Visual 

Basic), provided that a viable interface to the CAD software of choice is available. The choice of a different CAD software, is more 
difficult as it must allow: 1) a parametric and associative modelling environment; 2) the ability to handle mesh data and perform 
distance measurement between mesh and CAD surfaces; 3) programming access to the CAD tools. Any CAD software that 
guarantees these three requirements is a good candidate for replicating the results described in this paper.  



  
 

Figure 3 – Possible CAD template generation process. In this hypothesis, the reverse engineer analyses the physical 

part, identifying possible geometric features (coloured in blue) and geometric constraints (coloured in red) to be used 

for the modelling of the template. The template has a definite topology, defined by the choice made during the 

modelling of the object (carried out using Siemens NX CAD tools) but does not need to be correct in dimensions or 

proportions. The CAD template in the example required 9 minutes to be modelled in Siemens NX.  

 

2) the acquired manifold mesh saved in an STL file, which will be referred to as manifold STL; 

3)   meshes representing   single features obtained by means of a suitable and topologically correct 

segmentation process of the manifold STL.  In this case, a commercial RE software (i.e. Rapidworks [28], a 

NextEngine® proprietary version of Geomagic Design X [29]) has been used to obtain a significant 

segmentation, but other methods and tools could be exploited in order to automate the process and to 

reduce the human interaction required. 

Ideally, every segmented region should correspond to a single surface of the CAD template; these objects 

are saved in   separated STL files and will be referred to as STL objects. In order to achieve this goal, the 

segmentation could be guided or manually adapted to adhere to the division established by the set of 

surfaces composing the CAD template; the modelling history of the CAD template represents, once again, 

the reverse engineer’s interpretation of the physical part topology; therefore, it is important that the 

regions identified during the segmentation are in accordance to the reverse engineer’ knowledge. 

Significant discrepancies between the set of CAD surfaces and the regions identified by using a semi-

automatic segmentation tool could be taken as hints for an inappropriate modelling of the CAD template 

(i.e. a forced representation of the physical object that results wrong after the segmentation). 

The output of the RE process is the CAD template updated with the set of optimal parameters, representing 

the actual shape and dimensions of the physical part. From a logical point of view, the procedure is divided 

in two stages: a preliminary phase and an optimization phase, hereby described. 

2.2.1 Preliminary phase 

The goals of the preliminary phase are: 1) registering the   STL objects w.r.t. the CAD template model; 2) 

matching (associate) each STL object to the surfaces of the CAD template; 3) provide an initial set of CAD 

parameters. A block diagram of the processing flow is depicted in Figure 4, where the main steps have been 

highlighted and displaced in the corresponding application domain. The preliminary phase is started in an 

interactive session of the NX application domain; the interaction with MATLAB is performed by means of 

the COM interface.  



  

 

Figure 4 - Processing flow (top-to-bottom) of the preliminary phase, displaced in the correspondent 
application domains. Orange rounded blocks indicate the input files; white rectangular blocks represent 
automatic processing, while yellow ones require user interaction; the output files of the procedure are 

reported in green rounded blocks. 

 

Registration, though not strictly required, allows to improve the performance of the subsequent 

optimization phase; in our implementation, a rigid transform that maps the manifold STL on the initial CAD 

model has been obtained by matching centroids and principal axes of inertia of the two models. This is a 

well-known basic approach (a more refined version based on the same principle, is proposed in [30]) that 

guarantees a good trade-off between obtained results and simplicity of implementation. Initially, a rotation 

matrix that aligns the principal axes of inertia of the manifold STL w.r.t. the principal axes of the initial CAD 

template is estimated and applied to the manifold STL itself2. Then a translation vector is estimated to align 

the centroids of both the manifold STL and the initial CAD template. Finally, the overall estimated rigid 

transform (rotation and translation) is applied to the   STL objects, obtaining the   registered STL objects 

that are separately saved in   corresponding files.  

The matching process covers a fundamental role in the preprocessing phase, because it determines which 

surfaces of the CAD template will be considered when evaluating the distance between the  -th STL object 

and the CAD template. This association will be kept constant during the entire RE process; it generally 

follows the many-to-many paradigm, that is, the  -th STL object can be bind to zero, one or more CAD 

surfaces, and vice versa. The matching process relies on human interaction, demanding the user to select 

the appropriate CAD surfaces for each STL object. At the end of this phase, a text file reporting the list of all 

the N STL object and their associated CAD surface is produced and saved. 
                                                             
2 Since this procedure is not capable to resolve three degrees of freedom (i.e. a rotation of 180 degrees for 
each axis), the user interaction in the NX domain is required to fix the ambiguity and to correctly finalize 
the estimation of the rotation matrix 



  

In the preliminary phase, a parameters list related to the features of the CAD template that will be 

optimized must be also returned and made available to MATLAB. Furthermore, in order to take into account 

possible rigid motion of the CAD template, parameters related to rotation and translation have to be 

included as well. According to NX functionalities, a complete list of all parameters related to the CAD 

template model can be edited in the application domain and exported in a text file. Since only a subset of 

the complete list usually has to be considered in the optimization phase, the user interaction is required to 

mark the parameters of interest with a special string flag. On the other hand, unflagged parameters will be 

kept constant during the remaining procedure. 

At the end of the preliminary phase the set of   registered STL objects, the matching scheme and the initial 

set of CAD parameters are obtained. Even though a considerable interaction of the user is demanded, the 

requested actions do not require particular expertise nor a deep knowledge of the specific CAD 

environment. Furthermore, the preliminary phase has to be repeated only if the initial CAD template or the 

acquired data or the   STL objects change. 

2.2.2 Optimization phase 

The optimization phase strictly aims at finding the best parameters such that the CAD template fits the N 

registered STL objects according to an optimality criterion. With this respect, the minimization of mean 

Euclidean distance (or mean square error) represents a straightforward choice. In this case, the objective 

function is defined as follows: 

    
 

 
   
 
                                   (1) 

Where    is the average distance of the n-th STL from the corresponding CAD surfaces, that is: 

   
 

  
      
  
                                         (2) 

being      the Euclidean distance between the  -th vertex of the n-th STL object and the corresponding 

CAD surfaces, and    the number of vertexes of the  -th STL object. Unfortunately, due to the complex 

relations between parameters and the actual surfaces of the CAD template, the analytical relation between 

the CAD parameters and the objective function is often cumbersome and    generally belongs to the class 

of the non-convex functionals [31]. In these cases, solutions based on local minimization could result 

inappropriate; thus, global strategies have to be relied on. In this paper, we relied on the Particle Swarm 

Optimization algorithm [27] that belongs to the class of Metaheuristic algorithms, whose adoption is 

widespread in practical applications (and already successfully applied to data-fitting problems as in [32,33]) 

due to the lower computational burden and lack of strict usage hypothesis w.r.t. exact methods, although 

the convergence to a global minimum cannot be guaranteed. Indeed, we observed that in considered 

scenarios the particle swarm algorithm is often misled by local minima when considering the metric of Eq. 

(2) in the initial period of the optimization routine; in such case an early exit of the procedure occurs, 

providing a final CAD template noticeably “far” from the target STL. 

As an alternative to Eq. (2), we empirically found that, in the early stage of the optimization, the following 

metric is preferable: 

                       (3) 

By comparing Eq. (2) and Eq. (3), the substitution of the average with max operator enforces a strict 

condition on the fitting error of the single STL object. A similar idea could have been used also in Eq. (1), 



  

whose minimization would have yielded to a complete MinMax approach; however, further tests have 

shown that the average operator is preferred to avoid an excessive insensitivity of the solver with respect to 

the optimization parameters. Moreover, it has to be noted that, mathematically, the minimization of Eq. (1) 

when Eq. (3) is used instead of Eq. (2) generally leads to a different solution; in practice, we observed that a 

bias in the final CAD model is introduced when dealing with STL objects affected by zero-mean stochastic 

noise. It must be noted that Eq.(3) was adopted over the Hausdorff distance (as in [34]) because the 

corresponding points (w.r.t. to the STL vertices) on the CAD surfaces are not explicitly available, and a 

possible evaluation of the Hausdorff distance between the two sets would have been more computationally 

costly. 

In accordance to the previous considerations, the optimization procedure has been divided in two stages, in 

a coarse-to-fine paradigm. In the first stage, the minimization is carried out considering Eq. (1) and the 

metric in Eq. (3). The parameters of the resulting CAD template are then used as starting point for the 

second stage, where Eq. (2) is considered as metric of Eq. (1). Hence, in the following description we will 

refer to the optimization phase by generally considering any of the two stages. 

The block diagram of the whole optimization phase is summarized in Figure 5. The user is required to 

provide the initial parameters file and the specific algorithm settings (which will be discussed in Section 4) 

in the MATLAB application domain, whereas the CAD template, the   registered STL objects and the 

matching list have to be given as initial input in the NX application domain. The entire procedure is led by 

MATLAB’s particle swarm algorithm without user’s interaction. Interfaces to the NX computing 

functionalities are provided through the .NET framework, according to a client-server paradigm: at the 

beginning of each iteration, a new swarm matrix is generated in MATLAB and, for each particle, the 

objective function is evaluated relying on the NX processing features to compute the distances between STL 

objects and corresponding CAD surfaces.  

 

Figure 5. Processing flow (top-to-bottom) of the optimization phase, in the correspondent application 
domains. Orange rounded blocks indicate the inputs; white rectangular blocks represent automatic 

processing; the diamond block represents a conditional evaluation. The optimal parameters are provided at 
the output of the procedure (green rounded block). 



  

 

Specific features of the implemented method are discussed in the following: 

1) Initialization of the swarm (MATLAB). The parameters of the initial CAD template are used as seed to 

randomly generate the initial swarm’s particles. For each particle, the value of an optimization parameter is 

obtained as a realization of a random variable uniformly distributed in a specific numeric interval; 

additionally, such interval is also enforced during all the optimization phase, that is, each newly generated 

particles is enforced to fulfill these bounds. Even though parameters space does not theoretically need to 

be bounded, the definition of upper and lower bounds prevents the particle swarm algorithm to explore 

useless or redundant regions. In the proposed method, metric parameters (e.g. lengths, diameters, etc.) are 

bounded between 0 and the main diagonal’s length of the manifold STL’s bounding box; angular parameters 

are free to move in the entire round angle. Finally, rigid transform parameters are bounded   

2) Passing parameters from MATLAB to NX. Swarm particles are reported on a specific NX parameters files 

using the initial parameters file as template. Specifically, a new file is created in the MATLAB domain for 

each particle by replacing the old values with the new ones, whereas constant parameters (unflagged) are 

simply left unchanged; the file is then loaded in the NX domain. Since the evaluation of particles is 

independent, the description of the following steps up to the “vectorization” one will be focused on the 

processing of a single particle. Furthermore, it is worth mentioning that parallel processing of particles by 

means of multiple NX instances can be carried out, in order to improve the overall performance of the 

procedure. 

3) Updating CAD template (NX). The loaded parameters are applied to the features tree in order to generate 

the complete CAD model. The algorithm is also capable of identifying invalid CAD configurations (i.e. 

configurations that due to specific parameters values, result in an undesired topology or a NX update 

failure); in such cases, the corresponding solution particles are marked as negative results in the 

optimization routine by assigning a high objective function value to them and the subsequent steps can be 

avoided. 

4) Computing CAD template – N STL objects distances (NX). According to the matching list, the distances of 

the vertexes of each STL object from the associated CAD surfaces is evaluated. The processing is performed 

by using the DeviationGauge tool provided by the NX API [35] and generally represents the most expensive 

step of the entire procedure, also depending on the complexity of the CAD template. The NX Deviation 

Gauge tool is responsible for the identification of corresponding points; specifically, for each STL vertex, the 

software searches for the closest point on the corresponding CAD surface, within a given distance and an 

angular aperture w.r.t. the mesh normal direction. The sub-sampling of STL vertices in the distance 

evaluation step could be beneficial for the reduction of computing times and it is a strategy that will be 

tested in the future.   

5) Passing distances from NX to MATLAB. The distances computed in the previous step are exported by the 

DeviationGauge tool in   separated text files. Whenever a single evaluation fails (e.g. due to an invalid CAD 

template configuration, characterized by missing surfaces and an incorrect feature tree), an empty list of 

distances is generated in the related file; in this case, the entire particle is classified as invalid and the 

following steps can be skipped. The files are subsequently parsed by MATLAB, in order to import the 

distances in the MATLAB workspace. 



  

6) Evaluating objective functions (MATLAB). For each particle, the objective function is evaluated as in Eq. 

(1). In order to isolate degraded configurations, a dummy high value is ascribed to invalid particles. 

7) Vectorization (MATLAB). All the values of the evaluated objective functions are reported to a single 

vector, being each element related to a corresponding particle. 

8) Updating best parameters set (MATLAB). The minimum value of the vectorized objective functions is 

compared to the previous best result. If the former is lower, the corresponding particle is stored as the new 

best configuration, otherwise the latter is retained. At the first iteration, the best particle of the vectorized 

objective functions is simply stored. 

9) Verifying final conditions. The procedure is stopped if at least one of the exit condition is met in 

accordance to the particle swarm options provided; otherwise the flows proceeds to “updating swarm”. Exit 

conditions are: 1) number of iterations have been exceeded a maximum value provided as an algorithm 

setting; 2) the value of objective function is below a provided threshold; 3) a stall condition is encountered, 

that is, the objective function’s decrement over the last iterations is lower than a specified value. 

10) Updating swarm. The particles are randomly updated according to the PSO core algorithm and the 

provided options (the options influencing the most the PSO behavior in this specific application will be 

discussed in Section 4; a complete list of the algorithm parameters is available in [36].) 

3. Results and Discussion 
 

3.1 Overview 

The TCRT has been implemented and tested on a computer equipped with: i) Microsoft operating system 

(i.e. Windows 7), ii) Siemens NX 10 and iii) MATLAB R2016b.  All the algorithms described in the previous 

section have been tested on a 128 GBs RAM workstation supplied with a six-core Intel® Xeon® E5-2643 v3 

processor, which can manage up to 12 threads simultaneously at 3.40 GHz. All the tests hereby reported 

have been executed using 10 simultaneous NX instances running in parallel. Four CAD reconstruction tests 

starting from synthetic data (Drilled Plate, Bracket, Pin, Flange) and 1 from scanned data (i.e. Electrical 

Socket Adapter) have been performed (see Table 1 for details). Simple reconstruction tests have been 

included with propaedeutic purposes, hopefully to help the reader understanding the advantages of the 

described approach. The parts have been chosen and designed aiming at reproducing shapes and 

structures that are typical among mechanical parts. Both basic and advanced CAD features have been 

utilized in the modelling phase (e.g. extrusions, revolutions, circular arrays, etc.).  

Specifically, the most basic topologies tested are defined by 4 parameters; for instance, the Drilled Plate is 

defined by Extrusion Depth, the Base Diameter, the Hole Radial Distance and the Hole Diameter, as 

depicted in Figure 6. Instead, the largest number of parameters has been tested in the Electrical Socket 

Adapter, which is characterized by 20 parameters. For all tests, 7 additional parameters have been 

introduced to manage rigid transformations: rotations are controlled using 4 parameters in an axis-angle 

representation, whereas translations are described with X-Y-Z translations w.r.t. the coordinate system. 



  
 

Figure 6 – Drilled Plate ideal CAD model: parameters and corresponding dimensions [mm].  

3.2 Input of the method: reference data (mesh) and CAD Model Templates  

The workflow for the creation of the synthetic reference data is shown in Figure 7: a “perfect” STL model 

has been generated from the ideal CAD directly within Siemens NX 10, by setting both the triangle 

tolerance and the adjacency tolerance to 0.01 mm. The STL model has undergone a series of preparations 

steps simulating the data acquisition process: i) a “remesh” step, in order to optimize the triangles 

distribution and dimensions; ii) a decimation step; iii) a corruption step, where the STL is impaired by two 

different error sources, i.e. a random zero-mean Gaussian noise, having standard deviation σ = 0.10 mm, 

that simulates the acquisition process and a human-introduced error that accounts for manufacturing 

defects; this last operation is manually performed in a mesh-editing software by perturbing the STL vertices 

positions at most by 0.3 mm (simulating the accuracy of a realistic 3D optical scanner); iv) a segmentation 

step, which is interactively carried out by the user with the help of dedicated software tools.  

 

Figure 7 – Synthetic mesh creation process (Drilled Plate test case).  

In the specific case of the Electrical Socket Adapter, real scanned geometry has been obtained following a 

different process: the raw data has been acquired using a 3D optical scanner (i.e. a Romer RS1 mounted on 

a 7520-SI absolute arm by hexagon metrology [37]); the resulting mesh has been decimated keeping the 

number of triangles significantly higher than the synthetic STLs, in order to test the ability of TCRT to handle 

dense meshes.  

In all cases a priori knowledge on the object shape and topology has been subsequently used to generate 

the CAD templates to be used in the fitting process by means of NX modelling tools; for tests on synthetic 

data, the feature tree used for the realization of the perfect STL model, easily deducible even from the 

impaired STL, has been adopted; conversely, the template of the Electrical Socket Adapter has been 



  

designed relying on both the observation of the scanned data and the expertise of the reverse engineer. 

Plausible dimensions completely defining the models, although not directly inferred from the reference 

data, were chosen and introduced. The template models used as starting point for the reconstruction are 

depicted in Figure 8, along with the corresponding STL models. The positioning of showed CAD/STLs are the 

results of the preliminary registration phase; as can be appreciated in the figure, results were satisfactory in 

all the tested cases. In the following paragraphs, the results obtained applying the TCRT reconstruction on 

both synthetic and real-scanned data, respectively, are presented.  

 

 

Figure 8 -  Template CAD Models (grey) aligned with the corresponding reference STL models (blue) at the 

end of the preliminary phase described in Section 3. 

 

Table 1 – CAD models tested with the TCRT:  original CAD models and reference data. 

Original CAD Model Segmented mesh 
Number of 
Parameters 

Mesh 
Type 

Number 
of 

Triangles  

Number of 
Segmented 

regions 

Drilled Plate 

  

11 Synthetic 12964 8 

Pin 

  

11 Synthetic 5210 5 

Bracket 

  

13 Synthetic 4850 10 



  

Flange 

  

16 Synthetic 6308 13 

Electrical 
Socket 

Adapter 

*  

27 Scanned 147532 40 

*Actual physical model of the Electrical Socket Adapter that has been scanned to generate the reference data. 

 

3.3 Reconstruction from synthetic data 

The configuration of the PSO algorithm’s settings [36] has been kept constant for all the tested case. 

Specifically, the MinNeighborsFraction3 and MaxStallIterations4 values were set to 0.75 e 20, respectively. 

The only exceptions are represented by the SwarmSize and the InertiaRange, which define the dimension 

and dynamicity of the swarm, respectively: such values have been adapted case-by-case.  

For each test case, the specific optimization settings and the results obtained at the end of both the 

optimization stages (i.e. first and second optimization stages, which respectively make use of Eq. (3) and Eq. 

(2) in Eq. (1)), are reported in Table 2. Incidentally, all optimization stages ended under the same 

termination criterion, i.e. value of the objective function has not improved over MaxStallIterations 

consecutive iterations.  Moreover, the obtained results in terms of i) execution time, ii) iterations and iii) 

final values of the objective functions are reported in Table 2 as well. 

Some general considerations may be drawn from the analysis of the results: given enough computational 

power to the PSO algorithm, a CAD configuration sufficiently close to the global optimum (i.e. the original 

CAD model) has always been achieved. The optimization settings have been empirically determined, 

increasing the size of the particle swarm and tweaking the InertiaRange whenever needed. Generally, a 

higher value of InertiaRange has been considered and tested as beneficial with the increase of the number 

of parameters describing the CAD model topology. Unfortunately, even considering basic parametric 

representations, the time required to complete the reconstruction process using the developed tool is 

significant (the lowest value being 159 minutes achieved in the flange reconstruction). The second 

optimization phase has proved essential in all the tests, as it has always remarkably improved the result and 

drawn the reconstructed dimensions near to the corresponding original values.   

Table 2 – Optimization settings and algorithm results for the reconstruction tests starting from synthetic 

data. 

 
First Optimization Phase Second Optimization Phase 

CAD Model 
Name 

Number of 
Parameters 

Number 
of 

triangles 
SwarmSize InertiaRange 

Time 
[min] 

Function Value 
after First 

Optimization 
Phase [mm] 

Number of 
Iterations 

Time 
[min] 

Function Value 
after Second 
Optimization 

Phase 
[mm] 

Number of 
Iterations 

Drilled 11 12964 100 [0.2 1.1] 114 0.3839 101 73 0.0857 54 

                                                             
3 MinNeighborsFraction: Minimum adaptive neighborhood size, a scalar from 0 to 1.  
4 MaxStallIterations: Iterations end when the relative change in best objective function value over the last 
MaxStallIterations iterations is less than an imposed tolerance value.   



  

Plate 

Pin 11 5210 100 [0.3 1.1] 435 0.7788 150 360 0.1151 117 

Bracket 13 4850 200 [0.2 1.1] 634 1.415 212 651 0.1883 177 

Flange 16 6308 200 [0.3 1.1] 87 1.6528 160 72 0.1865 91 

 

The dimensions of the reconstructed CAD models have been compared with the original ones to evaluate 

the reconstruction errors; for instance, in Table 3, reconstructed and original values of the parameters 

defining the shape of the flange have been reported5. The reconstruction of the synthetic models have 

been also carried out independently by two experienced reverse engineers, in order to test the 

performance of the TCRT with respect to an interactive reconstruction approach based on state of the art 

software packages; specifically, the environment and tools offered by a renowned RE software (i.e. 

Rapidworks®[28] - a NextEngine version of Geomagic Design X®) have been used to perform the 

reconstruction. The reverse engineers have shared the same information on the reconstructed object that 

have been used to generate the CAD templates driving the TCRT reconstruction (e.g. symmetries, geometric 

constraints, manufacturing constraints, etc.) and, accordingly, they have tried to achieve correct feature 

trees and enforce correct geometric relations.  

Table 3 – Dimensions of the reconstructed features in the Flange model: TCRT vs SoA reconstruction 

performed by two reverse engineers. The parameter “Extrusion2_draftangle” is an angle and 

corresponding values are to be intended in degrees.   

Flange: Original CAD TCRT 

Reverse Engineer  

#1 #2 

Parameter name 
Correct 
Value 
[mm] 

Value after 
First 

Optimizatio
n Phase 

[mm] 

Value after 
Second 

Optimizatio
n Phase 

[mm] 

Absolut
e Error 
[mm] 

Relativ
e Error 

Reconstructe
d Value [mm] 

Absolut
e Error 
[mm] 

Relativ
e Error 

Reconstructe
d 

Value [mm] 

Absolut
e Error 
[mm] 

Relativ
e Error 

Arrayholes_distance 
38.00 38.22 38.06 -0.06 0.001 38.25* -0.25 0.007 38.02 -0.016 0.000 

Base_diameter 100.0
0 

98.83 99.79 0.21 0.002 99.90 0.10 0.001 99.56 0.443 0.004 

Centralhole_diameter 
15.00 14.94 14.95 0.05 0.003 14.79 0.21 0.014 14.88 0.122 0.008 

Extrusion1 
15.00 14.69 14.93 0.07 0.004 14.78 0.22 0.014 15.06 -0.058 0.004 

Extrusion2 
40.00 39.85 39.90 0.10 0.002 40.03 -0.03 0.001 40.51 -0.510 0.013 

Extrusion2_draftangl
e 

10.00 11.65 10.27 -0.27 0.027 10.15 -0.15 0.015 10.12 -0.116 0.012 

Holes_diameter 
11.00 11.24 10.97 0.03 0.002 10.92* 0.08 0.007 10.93 0.067 0.006 

Side_flange 
40.00 38.51 40.11 -0.11 0.003 39.95 0.05 0.001 39.83 0.172 0.004 

* Values averaged across the corresponding CAD features, due to a non-perfect topology definition in the reconstructed model.   

A comparison of the absolute and relative errors6 measured in the four test cases following both the 

reconstruction approaches is reported in Figure 9 and in Figure 10. Noticeably, the TCRT performed 

comparably to the standard approach throughout all the tests, producing lower relative errors on the 

majority of parameters. Some statistics on the absolute and relative errors evaluated for each 

reconstructed model are reported in Table 4; moreover, the global statistics evaluated upon the 22 

                                                             
5 Rotation and translation parameters were excluded as they were judged not interesting to assess the quality of the 
reconstruction. 
6
 Both the errors are considered in magnitude (absolute values). 



  

geometric parameters across all the models are summarized in the bottom row. Overall, the TCRT exhibits 

lower median and mean values considering both the absolute and the relative errors.  

 

 

Figure 9 – Comparison of relative reconstruction errors obtained for Pin, Flange, Drilled Plate, Bracket 

models across each parameter: TCRT (green) vs traditional approach (Blue: Reverse Engineer #1, Yellow: 

Reverse Engineer #2) 

 

Figure 10 – Comparison of absolute reconstruction errors obtained for Pin, Flange, Drilled Plate, Bracket 

models across each parameter: TCRT (green) vs SoA approach (Blue: Reverse Engineer #1, Yellow: Reverse 

Engineer #2). Parameter #6 is an angle evaluated in degrees.  

Table 4 – Statistics of the absolute and relative reconstructions errors affecting Flange, Pin, Bracket, Drilled 

Plate models. Global statistics are reported in the last row. For the Flange model, the angular parameter 

has not been considered in the evaluation of the statistics for convenience.  

 
Absolute Error [mm] Relative Error 



  

Min Max Median Mean Dev.Std. Min Max Median Mean Dev.Std. 

Flange 

TCRT 0.0272 0.2065 0.0664 0.0882 0.0603 0.0015 0.0044 0.0025 0.0027 0.0009 

Reverse Engineer 
#1 

0.0319 0.2533 0.1000 0.1346 0.0898 0.0008 0.0145 0.0067 0.0065 0.0059 

Reverse Engineer 
#2 

0.0163 0.4428 0.1224 0.1983 0.1973 0.0004 0.0128 0.0044 0.0057 0.0039 

Pin 

TCRT 0.0041 0.2646 0.1108 0.1226 0.1138 0.0001 0.0019 0.0011 0.0010 0.0009 

Reverse Engineer 
#1 

0.0130 0.4064 0.1377 0.1737 0.1886 0.0001 0.0049 0.0011 0.0018 0.0022 

Reverse Engineer 
#2 

0.1830 0.5968 0.3506 0.3702 0.1817 0.0010 0.0084 0.0045 0.0046 0.0037 

Bracket 

TCRT 0.0213 0.2433 0.0524 0.0799 0.0843 0.0007 0.0203 0.0011 0.0043 0.0078 

Reverse Engineer 
#1 

0.0036 0.2395 0.0669 0.0815 0.0840 0.0001 0.0200 0.0017 0.0045 0.0076 

Reverse Engineer 
#2 

0.0026 0.3020 0.1246 0.1418 0.1239 0.0001 0.0227 0.0030 0.0073 0.0092 

Drilled 
Plate 

TCRT 0.0000 0.0900 0.0500 0.0475 0.0369 0.0000 0.0061 0.0022 0.0026 0.0026 

Reverse Engineer 
#1 

0.0476 0.3290 0.0791 0.1337 0.1322 0.0017 0.0299 0.0049 0.0103 0.0133 

Reverse Engineer 
#2 

0.0210 0.2546 0.0714 0.1046 0.1054 0.0007 0.0231 0.0041 0.0080 0.0103 

Global 

TCRT 0.0000 0.2647 0.0641 0.0846 0.0748 0.0000 0.0203 0.0019 0.0028 0.0043 

Reverse Engineer 
#1 

0.0036 0.4064 0.0801 0.1267 0.1150 0.0001 0.0299 0.0022 0.0058 0.0078 

Reverse Engineer 
#2 

0.0026 0.5968 0.1337 0.1971 0.1754 0.0001 0.0232 0.0043 0.0064 0.0067 

 

As extensively discussed in Section 1, the reconstructed topology (i.e. feature tree of the model, complete 

of all geometric constraints) also influences the usefulness of the final result. In this regard, the possibilities 

of the traditional approach have proved to be rather limited. Although being aware of the desirable result 

in terms of geometric constraint and relations to be enforced, designers usually must settle for a 

compromise solution, in order to use the tools provided by the RE software. A significant example, with this 

respect, may be found in the Flange case (Figure 11): the reverse engineer #1 has deliberately chosen to 

neglect symmetries in the holes array, performing an independent fitting of each hole in order to try to 

minimize the errors in the identification of the holes diameters. Nevertheless, the reconstructed diameters 

(see Table 3) are comparable on average with the values obtained by reverse engineer #2; moreover, the 

final model is affected by an incorrect topology (i.e. the holes positions are not symmetric w.r.t. the central 

axis – see Figure 11b). The TCRT reconstruction, instead, performs slightly worse in the identification of the 

holes dimensions, but globally outperforms the other ones (see Mean and Dev.Std. columns in Table 4) and 

is characterized by a correct imposition of symmetries and geometric relations (Figure 11c). In fact, one of 

the great benefits of the proposed approach enabling to reach the described results, is that rigid transforms 

of the CAD template are allowed at each step of the fitting, seeking the best alignment to minimize global 

reconstruction errors. On the contrary, in the traditional RE software-based reconstruction, only a single 

alignment is initially performed exploiting symmetries (at best) and the main geometric features.  

a) b) 



  
 

c) 
Figure 11 – Front view of the Flange model with dimensions of the 4-holes array. a) original CAD model; b) 

traditional reconstruction, performed within Rapidworks® by reverse engineer #1, affected by an incorrect 

topology; c) reconstruction performed with the TCRT. 

 

A deviation analysis (Figure 12) has been additionally performed to analyse the error distribution on the 

reconstructed models relatively to the reference data; an allowable tolerance of ±0.05 mm, that is mapped 

in green in Figure 12, has been set. Evidently, most significant errors may be identified across the edges of 

the models, which are the areas mostly affected by the STL creation process described in Section 4.2: in the 

remesh step the original sharp edges have been, in fact, heavily modified and blunted in the process to 

simulate a typical acquisition effect. 

 

Figure 12 – Deviation maps of the four TCRT reconstructed models (from left to right, top to bottom): 

Bracket, Pin, Drilled Plate and Flange.  

 

3.4 Reconstruction from real-scanned data 

The Electrical Socket Adapter model has been reconstructed starting from data acquired on a real, physical 

object. Two main aspects distinguish this test from the ones previously described: 1) a high density of 

triangles, which implies an overall greater number of triangles; 2) a significantly more complicated feature 

tree, completely defined by 27 parameters (details are reported in Table 1). Both these aspects have deeply 

influenced the algorithm, imposing additional difficulties.  



  

The great number of points have heavily weighed down the second optimization phase (i.e. driven by Eq. 

(2)), resulting in a huge time per iteration needed (e.g. around 2 hours per iteration, using a 350 particles 

swarm); the high computational costs are associated with the evaluation of the mean deviation value, 

which requires a complete parsing of the distance text files. Conversely, the evaluation of the max distance 

that is carried out according to Eq. (3) in the first optimization phase, is cheaper since it is directly provided 

by NX’s DeviationGauge tool. 

As a result, the optimization on the Electrical Socket Adapter has been carried out applying Eq. (3) in both 

the first and second stage; details on the settings used in both the optimization stages are reported in Table 

5. Although Eq. (3) does not represent the ideal objective function, the obtained results are somehow 

satisfying: the algorithm correctly explored the high-dimensional solution space describing the shape of the 

model, providing a solution in the neighbourhood of the global solution. The final result, achieved at the 

end of both optimization phases, is reported in Figure 13 aligned with the raw data.  

 

Table 5 – Optimization settings and algorithm results for the Electrical Socket Adapter. 

Electrical Socket Adapter 
Number of parameters 27 

Number of triangles 147532 

First Optimization Phase 

SwarmSize 350 

InertiaRange [0.2  1.1] 

Time 1434 min 

Function Value after First Optimization Phase 15.021 mm 

Number of Iterations 358 

Second Optimization Phase 

SwarmSize 500 

InertiaRange [0.2  1.1] 

Time 
 

2760 min  

Function Value after Second Optimization Phase 
 

0.9424 mm 

Number of Iterations 192 

  

a) 
b) 

Figure 13 – Electrical Socket Adapter test case: a) Initial CAD template (grey); b) TCRT reconstruction result 

(grey), aligned with the acquired reference data (blue). 

The final CAD model shows macroscopic flaws which may be traced back to the incomplete exploration of 

the solution space, probably due to the high dimensionality induced by the 27 parameters defining the 

model. The most evident defects are reported in Figure 14 and may be summarized in: i) the overall height 



  

of the socket is sensibly greater in the reconstructed model; ii) the angle of the surface connecting the side 

elements and the main cylinder is different. A deviation map, representing the error distribution obtained 

at the end of the reconstruction of the Electrical Socket Adapter is depicted in Figure 15a.  

 

Figure 14 – Principal reconstruction errors for the Electrical Socket Adapter (highlighted in red): 1) 

erroneous position of the upper planar surface; 2) incorrect angle of the side extrusions. 

An increase of the swarm size and the use of a higher StallIterations value may represent strategies to 

reach a better result by increasing the computational resources granted to the algorithm; however, it has 

to be noted that the inability of using Eq. (2) in this case represented the most limiting factor. The use of 

Eq. (3) in the final optimization phase is, in fact, not ideal: plausible errors in the acquisition and 

segmentation of data heavily affect the results (e.g. a single triangle erroneously segmented may 

jeopardize the correct retrieval of a model parameter). Possible solutions, with this respect, are 

represented by: i) the study and application of a different objective function, capable to tolerate a higher 

number of triangles compatibly with the tools offered by NX and offering, at the same time, a more 

appropriate “guide” to the final result; ii) a more significant decimation step, which may allow the use of 

Eq. (2) as in the tests previously discussed. 

In order to prove the effectiveness of the latter strategy, a severe decimation step has been applied to the 

original reference data and a new reconstruction using the TCRT has been performed, this time using Eq. 

(2) as metric within the Eq. (1). The retrieved model is depicted in Figure 15b; as it can be noted, the 

reconstruction result is significantly improved considering the dimensional accuracy; evidently, the 

optimization has been concluded without being trapped in the local minimum previously found.  

  
a) b) 

 

Figure 15 – Deviation map of the Electrical Socket Adapter test case reconstructed using the TCRT. a) 

original mesh b) decimated mesh. 

 

4. Conclusions and Future Work 



  

 
In this paper a novel method for the reconstruction of CAD models starting from pre-segmented mesh data 

has been presented; the key-factor of the proposed framework is the generation of a fully editable 

parametric CAD model, dimensionally faithful to the reference data and perfectly compliant to any type of 

geometrical constraint. 

The proposed implementation partially relies on a user-guided framework to exploit a priori known 

information about the object to be reconstructed as well as the expertise of the designer in charge of the 

reconstruction process. A template model, parametrically designed using a CAD software package, is used 

as input to provide a complete description of the object topological information. As a matter of fact, there 

are theoretically no restriction on the number and type of CAD parameters the reverse engineer can adopt.   

The proposed method has been shown to perform slightly better with respect to SoA commercial RE 

software tools in terms of dimensional accuracy of the reconstructed objects. Moreover, compared with 

the traditional constrained fitting approaches, it allows the retrieval of “perfect” CAD models, i.e. with hard 

constraints flawlessly imposed. This aspect is a long-term goal of RE approaches (see Beautification 

approaches [11–13]) and it represents one of the main achievements of the described framework. 

Moreover, the retrieval of an associative-parametric modelling history is an achievement that entails 

multiple advantages in CAD applications [38]. 

From the point of view of the practical applicability, we have imagined two possible usage scenarios. In a 

first situation, relying on the traditional software-based RE framework, the described method could be 

integrated as an additional fitting step to be performed at the end of the reconstruction. The parametric 

CAD model generated by means of RE software could be used as template in the TCRT. This "refinement" 

step could minimize the overall global reconstruction error without imposing potentially any additional user 

involvement; moreover, the CAD template would be already closely fitted to the reference data, hence 

heavily abating the computational costs of the optimization phase and likely reducing the convergence to 

spurious local minima.  

In an alternative situation, the template could come from an a priori available collection of CAD models. In 

such a case, the template dimensions and proportions could significantly differ from the ones of the mesh 

data with a consequent exacerbation of the issues related to computation time and convergence solution. 

In both the described scenarios the presented method could be applied with significant advantages in 

terms of "quality" of the final result (i.e. a CAD model that is in compliance with known geometric 

constraints and dimensionally accurate) and manual work required to the reverse engineer. Generally, it 

must be noted that the effectiveness of the proposed method relies on the available knowledge of the part 

to be reconstructed. Major limitations may be perceived in the need for the user to provide a custom CAD 

template for each object to be reconstructed. However, regardless of the chosen application scenario, the 

proposed framework empowers the user with a flexible tool: a first attempt template can be initially used; 

the obtained result can be eventually adjusted (i.e. editing the feature tree, adding or removing geometric 

constraints, changing the parameters included in the optimization routine) and used as starting point for a 

new optimization. 

As far as the implementation of the described method is concerned, there is room for improvements 

referring both to the preliminary and the optimization phases. Indeed, the former significantly relies on 

user interaction, especially for the template design and the matching between the CAD and the acquired 

data. It is authors’ opinion that the reverse engineer’s contribution is precious and irreplaceable for the 

generation of the template and the determination of its topology; however, different approaches might be 

hypothesized to reduce the user's burden. For instance, semantic mapping of 3D data [39] might allow the 

recognition of a CAD template corresponding to a scanned object directly from a pre-built library of CAD 



  

models, implementing, in fact, a CAD model retrieval [40–42] process. Furthermore, given a valid 

segmentation of the 3D original data, graph isomorphism techniques are deemed to be able to retrieve the 

corresponding CAD object from a model database and, analysing connected surfaces and their geometric 

properties, even to perform the matching between corresponding surfaces [43]. An interesting 

development could be achieved by introducing a CAD template with a fully editable modelling history and 

allowing the optimization routine to introduce or remove additional geometric features; a promising 

implementation of such strategy would be to rely on a master model as suggested in [44], realizing a 

variational design approach. 

Considering the optimization phase, the adoption of an unconventional error metric (i.e. Eq. (3)) rather 

than the more common mean Euclidean distance (i.e. Eq. (2)) and the choice of the PSO algorithm have 

been proved to be effective for the considered application. It is worthy to note that the proposed approach 

does not rely on a particular class of optimization algorithms; thus, future tests will be oriented towards the 

implementations of alternative population-based procedures [45,46] (which, in our opinion, represent the 

class of algorithms best suited to tackle the described problem) or the development of ad-hoc strategies 

and metrics.  

The efficiency of the proposed method is a critical factor for its applicability. The current computational 

time needed on the tested workstation is significant higher if compared to commercial reconstruction 

tools. Efficiency improvements might be achieved by conveniently tuning both the optimization algorithm 

and the distance metric. Nevertheless, more than 90% of the current computational cost is ascribable to 

two external sources: i) the internal NX processing, needed to compute the required distances, ii) passing 

the distances’ values from NX to MATLAB. It is authors’ hope that these limitations might be amended by 

relying on NX future releases (allowing, for instance, to skip the writing/reading of a text file to pass 

parameters from NX to MATLAB and vice versa) or by using alternative commercial software packages for 

the distances computation step.  

Finally, future tests will be oriented towards the reconstruction of models composed also by freeform 

surfaces that usually introduce additional computational complexity due to the higher number of 

controlling parameters; with this respect, satisfying results have been obtained by using genetic algorithms 

(e.g. 2D spline fitting in [47]) or PSO itself [32], proving the effectiveness of nature-inspired algorithms 

when dealing with data fitting problems in RE.  
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Highlights  

 A novel CAD reconstruction method fitting a CAD template model to mesh data 

 A feature-based parametric-associative modelling history is retrieved 

 Fitting process is controlled by a Particle Swarm Optimization algorithm 

 Accuracy of reconstructed models is comparable/better than state of the art results 

 Computational costs and required time are at the moment considerable. 
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