
Electronic Notes in Theoretical Computer Science 89 No. 4 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume89.html 16 pages

A BMC{Formulation for the Scheduling
Problem in Highly Constrained Hardware

Systems

Gianpiero Cabodi Sergio Nocco Stefano Quer
Politecnico di Torino

Dip. di Automatica e Informatica

Turin, ITALY

Alex Kondratiev Luciano Lavagno Yosinori Watanabe
Cadence Design Systems, Inc.

Berkeley, CA

Abstract

This paper describes a novel application for SAT{based Bounded Model Checking

(BMC) within hardware scheduling problems.

First of all, it introduces a new model for control-dependent systems. In this

model, alternative executions (producing \tree-like" scheduling traces) are managed

as concurrent systems, where alternative behaviors are followed in parallel. This

enables standard BMC techniques, producing solutions made up of single paths

connecting initial and terminal states.

Secondly, it discusses the main problem arising from the above choice, i.e., re-

writing resource bounds, so that they take into account the arti�cial concurrencies

introduced for controlled behaviors.

Thirdly, we exploit SAT-based Bounded Model Checking as a veri�cation tech-

nique mostly oriented to bug hunting and counter-example extraction. In order to

consider resource constraints, the solutions of modifying the SAT solver or adding

extra clauses are both taken into consideration.

Preliminary experimental results, comparing our SAT based approach to state-

of-the art BDD-based techniques are eventually presented.

1 Introduction

Synthesis of eÆcient and high performance control units and data paths from

high-level behavioral speci�cations has long been considered a very promising

technique for tackling the ever growing complexity of digital design. At the

same time, it is a very elusive goal, because after more than twenty years

of intensive research, and even the appearance on the market of some indus-

c
2003 Published by Elsevier Science B. V. CC BY-NC-ND license. Open access under

http://www.elsevier.nl/locate/entcs/volume89.html
http://creativecommons.org/licenses/by-nc-nd/3.0/

Cabodi et al.

trial CAD tools, high-level synthesis is still far from being widely used as its

predecessors, register-transfer level and logic synthesis.

Within this framework, BDD-based manipulations have recently attained

interesting results, as an alternative to ILP and heuristic techniques. In this

approach a non-deterministic �nite automata describes design alternatives

for highly-constrained control-dominated models. After that, the automata's

state space is symbolically visited, adopting model checking's state-of-the-art

techniques. These techniques are mix of forward and backward traversals,

aimed at �nding a scheduling solution as a trace connecting initial and termi-

nal states.

In the simplest case of systems without control choices (if-then-else con-

struct), a schedule is a path, and symbolic scheduling works just like invariant

checking with counter-example extraction. However, control-dependent be-

havior produces scheduling instances as DAGs (or trees), where fork and join

nodes are introduced to represent scheduling choices, depending on values

of control operands. This has required a speci�c backward traversal proce-

dure (called validation in [3]), which, albeit not far from standard BDD-based

traversals, is not directly mapped to standard Model Checking (e.g., CTL)

procedures.

In this work we propose to change the original automaton model introduced

in [2,3,4,11] for control-dependent systems, so that standard model checking

procedures are supported. More speci�cally we transform alternative sub-

traces to concurrent behaviors which are followed in parallel. In this way the

resulting scheduling is always a path (instead of a DAG) connecting initial

and �nal states. As a byproduct, we can exploit SAT-based Bounded Model

Checking. Indeed, as the designer's aim is to �nd a schedule, not to prove

its absence, we believe BMC can work at its best, as a veri�cation technique

mostly oriented to bug hunting and counter-example extraction, rather than

proof of correctness. Nevertheless, in order to enable this method, we also

must re-write the resource bounds, so that they take into account the arti�cial

concurrencies introduced for controlled behaviors.

As a �nal remark, notice that many High Level Synthesis tools use Con-

trol Data Flow Graphs (CDFGs) as their internal model and do not model

well constraints coming from input/output operations with the external world

(e.g., synchronization, min/max rate, jitter, etc.) and often mostly data de-

pendencies are handled, while control is either ignored or handled by complete

case splitting 1 . Although we use CDFGs as the input speci�cation for our

tool, we adopt the model introduced by [3], which is at the same time formal

(based on concurrent automata), eÆcient (it is possible to use symbolic repre-

sentation techniques with enhancements derived from concurrent speci�cation

models), control-oriented (condition evaluation and speculative execution are

1 Approaches that speci�cally address control-intensive CDFGs (such as [8]) have been
introduced only recently.

2

Cabodi et al.

speci�c features of [3]), and
exible (I/O constraints can be represented by

restrictions on the automata state space). As [3] we represent implicitly the

full solution space by means of the state space of a product of automata.

2 Background

We assume the reader is familiar with BDDs, SAT and Bounded Model Check-

ing. As a consequence we brie
y review only the basic concepts within our

application framework.

2.1 High-Level Synthesis Methodologies

Historically two basic approaches have been used for scheduling: Heuristics

algorithms and Integer Linear Programming. On the one hand, priority-based

heuristic methods (e.g., [10]) can accommodate a variety of data-dominated

and control-dominated behaviors, quickly �nding good solutions for large

problems. On the other hand, they may fail to �nd an optimal solution in

tightly constrained problems, where early pruning decisions may exclude can-

didates eventually leading to superior solutions. Integer Linear Programming

methods (e.g., [7]) can solve scheduling exactly. However, the ILP complex-

ity signi�cantly increases by considering control constraints (if-then-else and

loops), and thus may lead to unacceptable execution times. Moreover, they

consider only one solution at a time, and hence are not particularly suitable

for interactive synthesis.

2.2 Symbolic Scheduling

More recently [2,3,4,11] symbolic methods have been proved e�ective in �nding

exact solutions in highly constrained problem formulations.

In [11], the authors propose a symbolic formulation that allows speculative

operation execution and exact resource-constrained scheduling. In [2,3], the

authors improved the previous method by proposing a new eÆcient encoding

to reduce execution time. This encoding only indicates \whether or not" and

not \when" an operation has been scheduled. Finally, [4] handles loops in

Data Flow Graphs (DFGs).

Their scheduling technique (as well as ours) assumes an input in the form of

a CDFG. A CDFG is a directed acyclic graph describing both data-
ow and

control dependencies between the operations. Operation nodes are atomic

actions potentially requiring the use of hardware resources for one or more

clock cycles. Directed arcs establish a link between each operation and the

predecessors that produce data required by it. A source and a sink are added

before every operation without predecessors and after every operation without

successors. Conditional behavior is speci�ed by means of fork and join nodes,

and directed arcs also establish a link between the operation evaluating the

condition and the related fork/join pair. Operations that are neither connected

3

Cabodi et al.

by a directed path, nor mutually exclusive due to a preceding fork node, are

concurrent 2 .

Example 2.1 Figure 1 shows an example of CDFG. In particular Figure 1(a)

shows the pseudo-code for a conditional statement and Figure 1(b) the corre-

sponding CDFG.

else

if (x>0)
 y = x + 1

 y = x − 1

T F

y

x

>

CDFG source

op2 op3

CDFG sink

op1

Fork

Join

Data Dependency

Control Dependency

−+

(a)

(b)

Fig. 1. An example of CDFG.

2.3 Scheduling Automata

A scheduling problem, originally described as a CDFG, can be translated into

an automaton, de�ned by the four-tuple (V;TR; Si; Sf), where V is the �nite,

non-empty set of states, TR : V ! V 0 is the transition relation, and Si and

Sf are respectively the sets of initial and �nal states.

The generic i-th operation in the CDFG (excluding fork and join opera-

tions) is modeled by a two-state automaton. Its transition relation is encoded

with exactly two Boolean variables (pi for the present state and ni for the next

state), with the following meaning:

� pi = 0; ni = 0: operation i has not been scheduled previously and will not

be scheduled in the next cycle.

� pi = 0; ni = 1: operation i has not been scheduled previously and will be

scheduled in the next cycle.

� pi = 1; ni = 0: operation i has been scheduled previously but the result

will no longer be available in the next cycle; this is forbidden in [3], as well

as in our solution, in order to reduce the amount of equivalent schedules

generated.

� pi = 1; ni = 1: operation i has been scheduled previously and the result

remains available.

The complete scheduling is the Cartesian product of the above automata re-

stricted by several constraints, each one representing a particular allowed be-

2 The same model, if the sink is connected back to the source, can also be viewed as a safe
Petri Net. In this paper we use the automata-based notation for consistency with [11].

4

Cabodi et al.

havior.

TR(p; n) =
Y

i

(pi + ni) � TRdep(p; n) � TRres(p; n)

The modeling automaton described by TR encapsulates all legal execution

sequences of a system. Fundamentally, it represents multiple legal execution

sequences via nondeterministic choices, yet a real implementation must make

deterministic choices. If nondeterministic choices are pruned to leave only one

deterministic choice, or if multiple choices are made deterministic by condi-

tions, then a �nite state machine controller may be directly synthesized. The

criterion used to eliminate nondeterminism is usually minimum execution la-

tency. Variations of this exist for control-dependent behavior, where some

control cases might be more favored than others.

Let us brie
y summarize here dependency and resource constraints, since

they will be used in the sequel:

� TRdep represents data dependencies, i.e., it is illegal to schedule an operation

with a predecessor that has not yet been scheduled:

pinj is illegal for all i ! j data dependencies (dd)

TRdep(p; n) =
Y

i!j2dd

(pi + nj)

� TRres represents resource constraints. Let us have a resource set with b

resources of a given kind (e.g., multipliers) available, and a set � of opera-

tions competing for such a resource set. It is illegal to schedule more than

b concurrent operations from �.

(pini � : : : � pknk) with fi::kg 2 � is illegal if jfi::kgj > b

Let S0(p) be the initial state of the scheduling product automaton, in which

no operation has been scheduled. The set of states reachable at the i-th clock

cycle may be computed by a standard iterative image computation:

Si(n) = Img(TR; Si�1) = 9p[TR(p; n) � Si�1(p)](1)

Valid schedules are represented by state paths that reach a �nal set of states

in which terminal operations have been scheduled.

The exploration techniques presented here are directed by a minimum

latency objective. They determine whether, given all constraints imposed and

a target latency l, a valid execution sequence of length � l exists. With

control-dependent models, some additional validity criteria are imposed, and

speculative execution may allow some operations after a fork and before a join

to be scheduled before the condition evaluation has been scheduled.

5

Cabodi et al.

3 Handling control dependence through concurrency

Unlike the simpler case of data
ow graphs, a witness schedule for control-

dependent models is not a single path in a path set but rather a set of paths

from start to �nal states. Such a set of paths is called an ensemble schedule

in [3] and must include a path for each distinct control-dependent execution

sequence. For instance, a RISC processor must be able to execute all in-

structions and therefore an ensemble schedule for a RISC processor contains

sequences for every instruction. As a more speci�c example, consider some

control-dependent behavior that branches into two sets of behaviors depend-

ing on a true/false control resolution. An ensemble schedule for this example

must contain a path from the start state to the �nal one that represents exe-

cution of true control resolution behavior, and another path that covers false

control resolution behavior.

In BDD-based formulation, this requires the introduction of control guard

variables, representing non-deterministic choices of each controlling operation.

A guard is a binary abstraction of the data value controlling a branching

condition. A \completeness" check (i.e., all guard values have reached the

terminal state) is added to termination conditions.

Furthermore, a validation procedure operates a backward pruning over

the state sets computed by forward BFS. Validation is the most expensive

symbolic operation and the main cause for BDD blow-up. It consists of a

preimage routine with universal quanti�cation of control guards at control

resolution points. This is necessary to enforce causality (identical initial sub-

path) for outgoing paths at fork points.

Apart from complexity issues, branching schedules and the related vali-

dation steps are a major problem for a SAT-based formulation. In order to

avoid them, we interpret choice vertices as concurrent forks, and we transform

alternative branches into concurrent paths.

So we remove fork and join nodes from the CDFG, and we replace them

with unconditioned data dependencies. As a result, a CDFG becomes a DFG,

and SAT can explore simultaneously all conditional branches of the original

CDFG.

Figure 2 shows the above transformation applied to the example of Fig-

ure 1.

Fork and join have been removed, control dependency maintained (as data

dependency) for the operations following the join recombination. Therefore,

in our solution joins work as synchronization points, as no operation following

a join is allowed to be executed if both the branches of the control resolution

have not been completed yet. This means that our model does not allow

control prioritization (as we always have the worst delay), but we have no

loss if the objective is minimizing the worst case execution latency. Moreover,

since we remove the dependency at forks, speculation is still allowed.

6

Cabodi et al.

else

if (x>0)
 y = x + 1

 y = x − 1

y

x

>

CDFG source

op2 op3

CDFG sink

op1

Data Dependency

−+

Control Dependency
(a)

(b)

Fig. 2. A CDFG after fork/join removal.

4 Concurrent forks and resource constraints

The arti�cial fork concurrencies we have introduced have no side-e�ect in

the case of scheduling with unbounded resources. In fact, given any set of

concurrent operations, if a \large enough" set of resources can be allocated,

all operations may always be executed.

The case of bounded resources is less trivial. In this case not all concurrent

executions are \real" concurrencies, since some of them are just arti�cial. As a

consequence, not all concurrent operations are competing for resources. As a

direct outcome, we need to modify resource constraints, to take into account

that some operations could be allocated to the same resource at the same

execution time.

More speci�cally, let us work on a CDFG with a set of N operations

Op = fop1; :::; opNg, each one mapped to (i.e., executable by a resource of)

a resource class within the set R = fr1; :::; rMg. The generic resource class

ri is characterized by a bound bri , representing the amount of operation unit

available for that class, whereas nri is the total number of operations in Op

mapped to the ri resource class. The resource bound problem is obviously

trivial for class ri if nri � bri , since there can never be a request of resources

greater than the available ones (as for the case of in�nite resources).

A much more challenging problem is the case of resource bounds actually

reducing the amount of possible concurrencies. Let opi and opj be two opera-

tions mapped to the same resource class, scheduled for concurrent execution

(there is a state transition where pinipjnj holds). Then, resource allocation

may fall in one of the following three cases:

� Unconditioned concurrency. The two operations do not belong to di�erent

conditional branches in the original CDFG, so their concurrency is a \real"

one, requiring the allocation of two resources.

� Mutual exclusion. The two operations are controlled by mutually exclusive

conditions, i.e., they are on di�erent branches of some fork in the original

CDFG. Their concurrence is arti�cial, so just one resource is required.

7

Cabodi et al.

� Speculative execution. Speculation occurs whenever an operation is exe-

cuted before its controlling condition is resolved. If opi and opj are both

executed before their distinguishing condition is known, concurrence is real,

and two resources are required.

In other words, we may have couple of operations for which concurrency

might be unconditioned (�rst item in the above list), and other ones charac-

terized by conditioned concurrency (second and third item).

4.1 Resource bounds within the SAT solver

Resource bounds can be accounted for directly by a SAT solver. In this solu-

tion the SAT solver has to be properly modi�ed in order to count the allocated

resources while recursively building a scheduling solution. This is a special pur-

pose solution to follow only in the case the generated overhead is negligible.

It basically relies on identifying active operations through variable decisions

and implications, and keeping resource allocation counters. A resource con
ict

occurs whenever an allocation counter is greater than the allowed bound.

4.2 Resource bounds as a Boolean constraint

Although the above solution is feasible, we prefer exploring an alternative

one, that is compatible with a generic SAT solver, since no modi�cation to

the SAT algorithm is necessary. We simply follow BDD-based approaches,

by generating a resource constraint for the transition relation (TRres), which

�lters out invalid sets of concurrent executions.

There are various strategies for building such a constraint as a Boolean

function returning true on allowed sets of operation executions.

4.2.1 Cliques of concurrency graph

A straightforward approach works on the graph of possible concurrencies,

where operations are nodes and edges connect pairwise concurrent operations.

Such a graph can be generated as the transitive closure of a graph where pairs

of operations are concurrent if no data dependency connects them and no

resolved control makes them mutually exclusive. The graph can be viewed

as an upper bound of concurrencies within a schedule. Given the projection

of the concurrency graph to resource class ri, cliques of size larger than the

allowed bound (bri) are forbidden.

This is an attractive solution, especially for explicit enumeration, but it is

practically limited to small cases, due to its binomial complexity. In particular,

it blows up in problems with high degree of concurrency, such as, for example,

models of pipelined behaviors.

8

Cabodi et al.

4.2.2 R-combination �ltering function

A more eÆcient formulation, for the case of unconditioned concurrency, is

proposed in [2] for BDD representation. If we omit considering data depen-

dencies, and we simply work on operations of the same resource class, then

the resource bound constraint is an r-combination expression, selecting com-

binations of up to bri operations out of nri . We call this �ltering function

R�lter(Op; bound). Its size complexity, when expressed as a BDD instead of a

two level form, is O(nri � bri), i.e., number of operations mapped to the class

times the bound for the class. The function is easily translated to CNF format

(with intermediate additional variables), with similar complexity.

Unfortunately, as previously shown, we have conditioned (i.e., arti�cial)

concurrencies, that complicate our model compared to [2], and make the above

solution exponential in the number of control choices (forks): we should ex-

pand one instance of concurrency graph for each case of resolved/unresolved

control operation.

4.2.3 Hybrid two-level approach

Since none of the two previous approaches alone is able to eÆciently solve

our problem, we developed a hybrid technique, which follows the concurrency

graph strategy locally, within control components of the CDFG, and the r-

combination approach on a global perspective.

More in detail, we express the resource constraint function (for a given

resource class ri) as a composition of two sub-functions

TRri
res(p; n) = R�lter(Alloc(p; n); bri)

The outermost function is (a slight modi�cation of) the previously de-

scribed r-combination �lter, whereas Alloc is a function that remaps operation

transitions to a set of allocation variables, with the following rules:

� Each uncontrolled operation opi is remapped to an allocation variable ai =

pini, which evaluates true when the operation is executing.

� Controlled subsets of the CDFG (subgraphs included between fork and join

nodes) are globally remapped to a proper set of allocation variables, over

whom the Alloc functions returns a number of ones exactly corresponding

with the amount of resources required. So all arti�cial concurrencies and/or

speculations are taken into account by this function.

The composition is never computed explicitly, but intermediate allocation

variables are kept and transferred to the CNF formulation of TRres, which

allows us to face the main size bottlenecks: (1) The complexity of conditional

concurrency (function Alloc) is kept within small regions of the CDFG. Espe-

cially for the important case of looping and/or pipelined behaviors, modeled

by serial and parallel instances of the same reference CDFG, this makes the

size of Alloc linear in the number of serial/parallel instances. (2) R�lter, the

9

Cabodi et al.

function taking care of the overall problem, has size O(nri � bri), i.e., it is lin-

ear in the number of operations, for a given resource bound. As an overall

result, our result constraint function is scalable, and well suited for looping

and pipelined behaviors, which are the most diÆcult problems in BDD-based

approaches.

4.2.4 Implementation details

Figure 3 and 4 show the pseudo-code of the Alloc and R�lter functions respec-

tively. For sake of simplicity it is assumed that all operations in the CDFG are

mapped onto the same resource class, for which maxAlloc units are available.

In our implementation, every operation is labeled with two attributes: (1)

the set of all possibly concurrent nodes and (2) a BDD representing the control

case for which the operation is enabled. Actually, in order to cover speculation,

the meaning of such a BDD is that the operation is disabled if the evaluation

of the BDD for the already resolved controls returns 0.

As regards the Alloc function, all possible cliques (over the set of opera-

tions belonging to the received sub-graph) are recursively built by means of

the auxiliary generateCliques function. At each level of recursion, a new node

is added to the previously generated clique, checking for speculative execution.

In fact, the AND between the node's enable and the clique's enable returns a

0 result only if the current node and at least one node already belonging to the

clique are in two di�erent control branches. Therefore, the concurrency of the

node w.r.t. the clique is real only if the controlling operations discriminating

the branch are not resolved yet (i.e., the nodes in the new clique are exe-

cuted speculatively). Such controlling operations are therefore added to the

unresolved set. The transition corresponding to the new clique is then stored

as a BDD, and the cliques of bigger sizes are built (the set of possibly con-

current nodes being restricted as the clique has to be completely connected).

Eventually, the last loop in the Alloc function de�nes the allocation variables:

variable ai takes a value of 1 i� there is a transition in the current sub-graph

involving the usage of at least i resources of the current resource class.

Once all the resource cliques have been generated, the R�lter function

symbolically builds all valid transitions in terms of the allocation variables.

To do this, it combines the allocation variables coming from the di�erent calls

to the Alloc function to form an expression representing all possible illegal

allocations (i.e., those requiring at least maxAlloc+1 resources). Then the

complementation of such expression, which indeed represents all allocations of

at mostmaxAlloc resources, is returned (and then directly used as a component

of TR).

4.2.5 A small example

Let us consider again the CDFG shown in Figure 1 and let us assume that

all the operations are mapped on a single ALU. The CDFG is divided by the

algorithm into two sub-graphs: the �rst is composed by the comparison only,

10

Cabodi et al.

Alloc (graph)
for (i 1 TO maxAlloc+ 1)

tList[i] BDD ZERO

for (node 2 graph:nodesSet)
cliqueSet ;

unresolved ;

enable BDD ONE

generateCliques(tList, node, cliqueSet, unresolved, enable, node:concur)
for (i 1 TO maxAlloc+ 1)

graph:ai new var

TR BDD AND(TR, BDD XNOR(graph:ai, tList[i]))

generateCliques (tList, node, cliqueSet, unresolved, enable, concurSet)
if jcliqueSetj > maxAlloc

return
newEnable BDD AND EXIST(enable, node:enable, unresolved)
newUnresolved unresolved

if BDD IS ZERO(newEnable)
newUnresolved unresolved [con
ictingControls(enable, node:enable)
newEnable BDD AND(BDD EXIST(enable, newUnresolved),

BDD EXIST(node:enable, newUnresolved))
newClique cliqueSet [node

tList[jnewCliquej] BDD OR(tList[jnewCliquej],
transition(newClique, newUnresolved))

newConcur concurSet \ node:concur

for (op 2 newConcur)
generateCliques(tList, op, newClique, newUnresolved, newEnable, newConcur)

Fig. 3. The Alloc function.

Rfilter ()
allocations[0] BDD ONE

for (k 1 TO maxAlloc+ 1)
allocations[k] BDD ZERO

for (i 1 TO Ngraphs)
newAllocations allocations

for (j 1 TO maxAlloc+ 1)
for (k 0 TO maxAlloc+ 1)

if j + k > maxAlloc+ 1
break

alloc BDD AND(allocations[k], graphi:aj)
newAllocations[j + k] BDD OR(newAllocations[j + k], alloc)

allocations newAllocations

return BDD NOT(allocations[maxAlloc+ 1])

Fig. 4. The R�lter function.

whereas the second includes both the ADD and SUBTRACT operations. Then

the relations de�ned by the two calls of the Alloc function are respectively:

aC1 = pCnC ; aC2 = 0

11

Cabodi et al.

and

aAS1 = pAnA + pSnS; aAS2 = pAnApSnSpC

Indeed the �rst sub-graph may present only a transition requiring 1 ALU

unit, whereas the second sub-graph might require 2 ALU units, but only in

the case that the ADD and SUBTRACT operations are both executed before

the control resolution has been solved. Eventually, the �nal constraint built

by the R�lter function is:

constraint = aC2 + aC1 a
AS
1 + aAS2

5 BMC Formulation

Once we have generated the transition relation of the CDFG, as previously

described, we have to produce the veri�cation problem which will give us the

scheduling solution. This is done by unrolling the transition relation a certain

number of times and then trying to prove the mutual reachability between

initial and �nal states.

The BDD representing the transition relation (in monolithic or conjunctive

form) is stored as a CNF formula as described in [13].

The veri�cation strategy usually starts with a path of length equal to 1 and

increases it till the problem is solved or computation resources are exceeded.

For the above reasons the technique works well in falsi�cation and partial

veri�cation, whereas full veri�cation is usually achieved by BMC with longer

and longer bounds.

Our problem is somehow simpler as, with a proper number of registers,

there is always a solution to the scheduling problem. Moreover, our experience

shows that unsatis�able problems are much harder to solve than satis�able

instances. To this respect SAT solvers often present an exponential behavior

as Figure 5 shows.

For these reasons the standard previously described technique proved to

be quite ineÆcient. On the contrary we do have an estimate of the maximum

latency, which is equal to the number of operations in the CDFG. This suggests

a second strategy, namely starting from the highest bound and decreasing it in

order to �nd the �rst unsatis�able instance. The drawback of this method is

that the estimate of the maximum latency can be extremely inaccurate. As a

direct consequence, we propose a solution adopting a binary search. Starting

with an estimate of the optimal latency, we create the corresponding CNF

problem and call the SAT solver giving it a (small) time limit. Accordingly

to the result produced by the solver, the estimate of the latency is corrected,

and a new bound is tried. Notice that if the SAT solver is unable to solve the

CNF problem within the time limit, we consider the instance as unsatis�able.

In general, this might lead to incorrect (i.e., sub-optimal) results, in the sense

that a satis�able instance may be considered as unsatis�able, but the problem

can be solved simply increasing the \unsat" threshold, with an at most linear

12

Cabodi et al.

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18

C
P
U

T
i
m
e

Bound

rotor benchmark

Fig. 5. SAT CPU Time Versus SAT Bound. The data are obtained with a run of

the scheduler on the rotor benchmark with two iterates and a resource availability

corresponding to the �rst row of table 2.

loss in performances.

6 Experimental Results

We show experimental results on well known benchmarks [2]. Table 1 shows

the complexity of the benchmark set in terms of number of operations, and

number of conditions checked.

Circuit # Operations # Conditions

rotor 28 3

s2r 48 6

fdct 42 0

Table 1

Circuit Complexity in terms of Number of Operations and Conditions Checked.

The data are referred to the acyclic version of the model, i.e., with just one iterate.

We ran our experiments on a 1700 MHz Pentium IV with 1 GByte of main

memory. For all the experiments we used BerkMin [12] as SAT engine.

Table 2 summarizes our results. We compare the results obtained with the

strategy presented in this paper with the software presented in [2] and locally

re-run. More in detail, our data are obtained adopting the binary search (as

described in the previous section) with a threshold of two minutes. Notice that

all the satis�able instances were well recognized by the SAT solver; indeed the

numbers of scheduled cycles represent the true optimal latencies.

The meaning of columns is the following: # Iterates indicates the num-

ber of parallel instances considered (when 1, we refer to the acyclic problem,

13

Cabodi et al.

Circuit # Iterates # Resources # Cycles BDD [2] SAT { This Paper

BDD Time # Vars # Clauses Time

[nodes] [s] [s]

rotor 1 1T,1C,1A 12 74606 0.7 994 4116 0.3

1 1T,1C,2A 8 74606 0.7 892 4232 0.3

1 1T,1C,2A,1� 10 84826 0.8 1142 4174 0.4

1 1T,1C,2A,2� 8 84826 0.7 920 4152 0.3

2 1T,1C,2A,1� 10 871766 4.6 4749 36047 10.0

2 1T,1C,2A,2� 9 1447152 6.8 4392 32873 10.8

2 1T,1C,2A,3� 9 1864128 8.2 4428 33026 8.6

2 1T,1C,3A,2� 8 415954 2.7 4299 31503 6.7

3 1T,1C,2A,1� 12 18635148 1524.0 9573 72436 118.9

3 1T,1C,2A,2� 12 OVF � 9861 73612 308.9

3 1T,1C,2A,3� 12 OVF � 9957 74008 288.3

3 1T,1C,3A,2� 9 OVF � 8229 59803 37.6

s2r 1 1T,1C,2A,1� 10 1006670 5.9 2532 12484 1.8

1 1T,1C,3A,2� 9 532462 4.1 2788 14774 2.2

1 1T,{C,2A,2� 8 411866 3.0 4749 12832 1.7

2 1T,1C,2A,1� 13 OVF � 12158 109623 328.6

2 1T,1C,3A,2� 10 OVF � 10839 87817 66.8

2 1T,{C,2A,2� 10 OVF � 10539 87137 62.9

fdct 1 1+,1�,1� 19 306600 1.5 2775 8362 133.7

1 1+,1�,2� 13 200312 1.2 2138 6772 1.1

2 1+,1�,1� 32 � OVF 19121 223433 522.0

2 1+,1�,2� 26 � OVF 17103 188719 454.6

Table 2

Schedule Results. Terminology for columns # Resources: ADD=+, ALU=A,

COMPARATOR=C, SUB=�, MULT=�, LookUpTable=T. MULT is a two-time

steps pipelined multiplier (when not present, multiplications are performed by the

ALU). All other resources are single time step. OVF indicates over
ow (in terms

of memory or CPU time). We use a time limit equal to 1 hour and a memory

limit equal to 500 MBytes.

otherwise we are handling a looping behavior); column # Resources indicates

the number and type of resources allowed; # Cycles is the �nal solution in

term of scheduled cycles. For each experiment we report the data obtained

with [2], i.e., the number of BDD nodes and the CPU time required, and with

our method (number of variables and clauses generated for the CNF problem

corresponding to the solution, and the total CPU time).

Overall, we can make the following observations. For acyclic problems, the

times required by the two compared methods are quite similar (with only one

exception, the �rst experiment for fdct). However, when we move to looping

behaviors, while the method used in [2] becomes unfeasible, our strategy still

produces the optimal result in a limited amount of time. These experiments

14

Cabodi et al.

demonstrate that our solution can be very e�ective.

7 Conclusions and Future Work

We present a new approach for symbolic scheduling based on a new problem

formulation and the use of SAT solvers and BMC veri�cation methodology.

Experimental results on DFGs and CDFGs show that our solution can be

very e�ective and competitive with symbolic BDD-based techniques.

Future work will include investigation of better strategies for the CNF

problem generation and solution searching.

References

[1] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara,

A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-

Vincentelli, \Hardware-Software Co-design of Embedded Systems { The POLIS

Approach," Kluwer Academic Publishers, 1997.

[2] S. Haynal, \Automata-Based Symbolic Scheduling," PhD thesis, University of

California Santa Barbara, Dec. 2000.

[3] S. Haynal and F. Brewer, \EÆcient Encoding for Exact Symbolic Automata{

Based Scheduling," Proc. IEEE ICCAD'98, pages 477{481, San Jose, California,

Nov. 1998.

[4] S. Haynal and F. Brewer, \Automata-Based Scheduling for Looping DFGs",

Internal Report EC99 14, Oct. 1999.

[5] http://ftp.ics.uci.edu/pub/hlsynth/fHLSynth92,HLSynth95g.

[6] http://www.synopsys.com/products/logic/design compiler.html.

[7] C. T. Hwang, J. H. Lee, and Y. C. Hsu, \A Formal Approach to the Scheduling

Problem in High-Level Synthesis," IEEE Trans. on Computer-Aided Design,

10:464{475, Apr. 1991.

[8] K. Khouri, G. Lakkshminarayana, and N. Jha, \High-level synthesis of low-

power control-
ow intensive circuits," IEEE Trans. on Computer-Aided Design,

18(12):1715{1729, Dec. 1999.

[9] A. C. Parker, J. T. Pizzarro, and M. Mlinar, \MAHA: A Program for Datapath

Synthesis," Proc. IEEE/ACM ICCAD'91, pages 461{466, Las Vegas, June 1986.

[10] P. G. Paulin and J. P. Knight, \Force{Directed Scheduling for the Behavioral

Synthesis of ASICs," IEEE Trans. on Computer-Aided Design, 8:661{679, June

1989.

[11] I. Radivojevic and F. Brewer, \A New Symbolic Technique for Control-

Dependent Scheduling," IEEE Trans. on Computer-Aided Design, C{15(1):45{

57, Jan. 1996.

15

Cabodi et al.

[12] E. Goldberg and Y. Novikov, \BerkMin: a Fast and Robust SAT-Solver," Proc.

IEEE/ACM DATE'02, pages 142{149 Paris, Feb. 2002.

[13] G. Cabodi and S. Nocco and S. Quer, \Improving SAT-based Bounded Model

Checking by Means of BDD-based Approximate Traversals," Proc. IEEE/ACM

DATE 2003, pages 898{903, Munich, Germany, March 2003.

16

	Introduction
	Background
	High-Level Synthesis Methodologies
	Symbolic Scheduling
	Scheduling Automata

	Handling control dependence through concurrency
	Concurrent forks and resource constraints
	Resource bounds within the SAT solver
	Resource bounds as a Boolean constraint

	BMC Formulation
	Experimental Results
	Conclusions and Future Work
	References

