
Journal of Systems Architecture 60 (2014) 770–781
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
An architectural approach with separation of concerns to address
extra-functional requirements in the development of embedded
real-time software systems
http://dx.doi.org/10.1016/j.sysarc.2014.06.001
1383-7621/� 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

⇑ Corresponding author. Tel.: +39 0498271359.
E-mail addresses: panunzio@math.unipd.it (M. Panunzio), tullio.vardanega@

math.unipd.it (T. Vardanega).
Marco Panunzio ⇑, Tullio Vardanega
Department of Mathematics, University of Padova, via Trieste 63, 35121 Padova, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 February 2012
Received in revised form 22 March 2014
Accepted 9 June 2014
Available online 19 June 2014

Keywords:
Embedded real-time systems
Extra-functional properties
Software architecture
Component-based software engineering
Separation of concerns
A large proportion of the requirements on embedded real-time systems stems from the extra-functional
dimensions of time and space determinism, dependability, safety and security, and it is addressed at the
software level. The adoption of a sound software architecture provides crucial aid in conveniently appor-
tioning the relevant development concerns. This paper takes a software-centered interpretation of the
ISO 42010 notion of architecture, enhancing it with a component model that attributes separate concerns
to distinct design views. The component boundary becomes the border between functional and extra-
functional concerns. The latter are treated as decorations placed on the outside of components, satisfied
by implementation artifacts separate from and composable with the implementation of the component
internals. The approach was evaluated by industrial users from several domains, with remarkably posi-
tive results.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Embedded real-time systems in general are characterized by
two distinctive features: (1) they are resource-constrained, since
most often only scarce processing power and memory space are
available; and (2) the growing incidence of requirements that
address concerns over and above system functionality, in the
dimensions of time and space determinism, dependability, safety
and, increasingly, security [1].

In this work we collectively refer to those requirements as
extra-functional, to signify that, while they do not concur to the
functional activity of the system, they crucially contribute to the
ultimate quality of the system. We also use the term property for
a feature of an implementation item that provably meets a require-
ment placed on the specification of that feature. We therefore have
extra-functional requirements and extra-functional properties. In
this paper we refer to the latter by the shorthand EFP.

Understanding, providing and asserting EFP has an increasingly
large and costly effort footprint on the development process in a
variety of application domains. The embedded real-time software
systems industry therefore seeks ways to accommodate attention
for EFP in their otherwise consolidated development practices
without breaking the integrity of the overall process.

The central tenet of this work is that the adoption of a sound
software architecture helps achieve a clear-cut and composable
apportionment of development concerns. With that, EFP can be
addressed aside from, yet in coordination with, the functional
dimension, in keeping with the established principle of separation
of concerns [2].

Interestingly, once the step is taken to put the software archi-
tecture at the center of the development strategy, product line con-
cerns can be accommodated by elevating that notion to the
stipulation of a reference software architecture. We draw from [3]
that the reference software architecture is a common and agreed
architectural framework capable of addressing all the relevant
industrial needs, providing a recurrent solution to the develop-
ment of a certain class of software systems. To that we add the
capability of operating as a single and consistent basis for address-
ing EFP.

This paper reports on the lessons learned in pursuit of that
vision in a large and encompassing research program that pro-
gressed along two parallel and complementary lines. One line of
the research took place as part of an initiative launched by the
European Space Agency (ESA) targeting the definition and realiza-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.06.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.sysarc.2014.06.001
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:panunzio@math.unipd.it
mailto:tullio.vardanega@ math.unipd.it
mailto:tullio.vardanega@ math.unipd.it
http://dx.doi.org/10.1016/j.sysarc.2014.06.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781 771
tion of a reference software architecture that should steer the
development of on-board software for satellites across all of its
software supply chain, using the component-based approach
described in [4,5]. That initiative started from the capture of all
product-line needs by the domain stakeholders and concluded
with their validation mapping to the chosen reference software
architecture. The other line of research occurred within the ARTE-
MIS JU CHESS project1 (‘‘Composition with Guarantees for High-
integrity Embedded Software Components Assembly’’ 2009–2012),
which aimed at the realization of a model-based component-ori-
ented approach for the development of embedded real-time soft-
ware systems for telecom, space, and railway applications [6]. All
industrial parties from both actions subscribed from the outset to
the principle of addressing EFP separately from the functional
dimension. In doing so, they were witness to the unifying power of
the software architecture concept and to the evidence that EFP were
indeed addressed at a distinct level of abstraction as well as at a dis-
tinct step in the development process, in overlay to the functional
specification of the software.

The remainder of the paper is organized as follows. Section 2
recalls the essential aspects captured in the concept of software
architecture and argues why that concept is useful to address con-
cerns in dimensions other than functional. That discussion pro-
ceeds into an original interpretation of the notion of reference
software architecture and of its founding principles. Section 3
relates the work presented in this paper with state-of-the-art
approaches that address similar goals. Section 4 describes the
essential details of the proposed approach, with special focus on
the way it assists the specification and assures the fulfilment of
the extra-functional properties expected of the system. Section 5
presents an instantiation of the reference software architecture
to a variety of industrial domains, and discusses how it meets
the stakeholders’ needs captured as part of the research effort.
Section 6 discusses four extensive industrial case studies on which
the approach presented in this paper was applied and successively
evaluated. Section 7 draws some conclusions and outlines future
work.

2. The role and potential of the software architecture

2.1. Common understanding

At odds with its intrinsic centrality, the software engineering
practice harbors an exceedingly informal and liberal interpretation
of the concept of software architecture. Most practitioners regard
software architecture as a synonym to software design: reference
[7] collects a large set of community definitions that portray the
confusion. In actual fact, the software architecture is a much larger
scope than that, with ample bearing on the principles that guide
the design and evolution of the software system. The definition
given in IEEE 1471, later promoted to ISO 42010 [8] clarifies, to
our satisfaction, that an architecture is ‘‘the fundamental organiza-
tion of a system embodied in its components, their relationships to
each other, and to the environment, and the principles guiding its
design and evolution’’. When applied to software systems, the def-
inition of software architecture captures well the following
concerns:

� Software decomposition: the organization of the software in
terms of parts, so that every individual part has its own archi-
tectural cohesiveness (it addresses a single well-defined part
of the problem), and the interactions between parts are mini-
mized so as to reduce unnecessary dependencies (i.e., coupling),
1 http://www.chess-project.org/.
hence reducing incidental complexity of understanding, verifi-
cation and validation, operation and maintenance;
� Externally visible attributes of software ‘‘components’’: those attri-

butes represent features or needs that are specific to individual
components yet can influence other parts of the software or
determine properties of the whole. The other attributes, if
any, shall remain as (externally invisible) internal details and
will not be used for the overall reasoning at the level of the soft-
ware architecture;
� Relationship between software ‘‘components’’: how components

relate to one another in providing services and fulfilling needs;
� Extra-functional concerns: the abstraction level at which extra-

functional concerns are to be addressed;
� External interfaces: the way the software interacts with the

external environment (e.g., by commanding sensors or actua-
tors, or serving external interrupts);
� Principles for the development and evolution of the software: the

software design process that fixes the rules for development,
maintenance and evolution, and dictates the supported form
of software reuse;
� The rules in place to warrant the consistent relationship between

all of the above concerns: a methodology capable of encompass-
ing and consistently harmonizing all the aspects listed above;
additionally, the methodology shall provide criteria to deter-
mine whether a software part can be included in the system,
as it conforms to the principles sustained by the architecture,
or it shall be rejected, as its inclusion would break system
integrity.

A reference software architecture prescribes the concrete form of
the software architectures that shape the specific systems for which
it was originally developed. The reference software architecture can
thus be regarded as a sort of ‘‘generic’’ software architecture that
prescribes the founding principles, the underlying methodology
and the architectural practices recognized by the domain stakehold-
ers as the baseline solution to the construction of a certain class of
software systems in that domain. Symmetrically, the software
architecture of one particular system for a given domain can then
be regarded as an ‘‘instantiation’’ to the specific system needs of
the reference software architecture for that domain.

2.2. Narrowing to our context

The reference software architecture chosen for the ESA initia-
tive – and later reflected in the whole span of investigation covered
in this work – has a number of distinctive features, which are best
introduced here before proceeding further.

First of all, the reference software architecture includes a com-
panion component-oriented development methodology. Software
systems in the industrial domains that adopt that methodology
are therefore developed by defining (or reusing) components
and by creating assemblies of them. The interpretation of compo-
nents varies with the specific goals of the approach they serve.
Numerous definitions for them indeed exist [9–11]. Suffice it to
say for now that a component is the unit of design and of encap-
sulation of our approach: we return to this definition later in this
paper.

Secondly, the reference software architecture was formulated
so as to support the principle of separation of concerns. This is a
long-known but much neglected practice first advocated by
Dijkstra in [2], which strives to part the various aspects of software
design and implementation so as to enable separate reasoning and
focused specification for each of them. Separation of concerns is
applied to the component model that rests at the very core of
the reference software architecture. We consequently pursue it at
a level of abstraction much higher than programming, as done

http://www.chess-project.org/

772 M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781
for example with aspect-oriented programming [12]. In our
approach:

1. Components comprise functional code only, which is to be
strictly sequential: extra-functional properties concerning task-
ing, synchronization and timing (and prospectively fault toler-
ance) are dealt with outside of the component by the
component infrastructure.

2. The extra-functional requirements that the user wishes to set
on components are declaratively specified by decoration of
component interfaces with an ad hoc annotation language;

3. The realization of extra-functional properties is performed by a
code generator, which uses a set of predefined and separately
compilable code patterns to generate all of the component
infrastructure code for components and their assemblies, and
for the entities that realize extra-functional properties. The
implementation of the functional code instead stays under the
responsibility of the user.

This extent of separation has two principal benefits: (1) it increases
the reuse potential of the software by enabling one and the same
functional specification to be reused under different extra-
functional requirements; (2) it facilitates the automated generation
of vast amounts of complex and delicate infrastructural code
addressing concurrency, real-time, communication and component
interfacing needs in accord with well-defined styles and fully deter-
ministic rules. Industrial experience shows that benefit (1) is only
occasionally achieved, as common and stable specifications, effec-
tive component breakdown, clean interface design and consolida-
tion are difficult goals to attain in practice for the functional part
of the system, which is intrinsically variable owing to its product-
specific nature. Benefit (2) instead becomes available much sooner
and at a fraction of the cost of (1), with immediate and tangible
benefits.

Finally, the reference software architecture shall help achieve
composability and compositionality in a by-construction manner,
as opposed to the by-correction style of common practice. With
[11] and a little narrowing to the context of this work, we have
that: composability is achieved when the properties (needs and
obligations) of individual components are preserved on component
composition and deployment on the target system; compositional-
ity is achieved when the properties of the system as a whole can be
derived (economically and conclusively) as a function of the prop-
erties of its constituting components. This work in fact seeks the
higher-level goal of composition with guarantees, which with [6]
we regard as a form of composability and compositionality assured
by static analysis, guaranteed throughout implementation, and
actively preserved at run time.

2.3. Our interpretation

In light of the preceding discussion, our interpretation of refer-
ence software architecture was centered on the following constit-
uents [13], as also captured by Fig. 1:

1. A component model, to design the software as a composition of
individually verifiable and reusable software units;

2. A computational model, to relate the design entities of the com-
ponent model, their execution needs and their extra-functional
properties for concurrency, time and space, to a framework of
analysis techniques which ensures that the architectural
description is statically analyzable in the dimensions of interest
[14]; this provision is essential to achieving by-construction
guarantees that the end-to-end behavior of component assem-
blies conforms with the underlying computational model (for
its execution and communication semantics), and can thus be
fully and soundly verified against the system requirements;
the solution adopted in this work follows the principles
enunciated in ([15]);

3. A programming model, which consists of a tailored subset of a
programming language and a set of code archetypes, and is
used to ensure that the implementation of the design entities
conforms with the semantics, the assumptions and the con-
straints of the computational model;

4. A conforming execution platform, which is in charge of preserv-
ing at run time the system and software properties asserted by
static analysis and is able to notify and react to possible viola-
tions of them.

5. A development process centered on Model Driven Engineering
(MDE), more specifically in conformance with the Model Driven
Architecture initiative by the OMG, much in the guise of the
ideas originally presented in [16];

6. The provisions for domain-specific aspects, which complement
the approach, yet are consistent with all its underlying
principles.

Casting the above boundaries of action into a model-driven compo-
nent-oriented development methodology, we can draw a direct par-
allel with the definition of software architecture given in
Section 2.1:

� The component model addresses the software organization, the
externally visible properties of software parts (i.e., compo-
nents), the relationship between software components, the
external interfaces of the software systems and the principles
that govern software development and evolution;
� The computational model: (i) addresses the relationships

between components, as their interaction shall conform exclu-
sively to the communication semantics explicitly allowed by
analysis theory in use; (ii) partly influences the principles on
which the software is developed (as it restricts the feasible
implementations to solely analyzable software systems); (iii)
and defines how the EFP (restricted to timing, concurrency,
communication and space in this work) shall be implemented
in the system at run time;
� The programming model and the relevant execution platform

fall within the development principles, may support the evolu-
tion of the software, and are related to the implementation of
EFP;
� Model-driven engineering feeds the principles for the develop-

ment and evolution of the software;
� Domain-specific concerns are mostly related to the external

interfaces of the system (interactions with sensors, actuators,
devices), the relationships between components and add
domain-specific extra-functional concerns or may reinterpret
how extra-functional properties shall be fulfilled in the soft-
ware system.

We can therefore contend that, by our choice of essential con-
stituents, we have provided an original interpretation of a refer-
ence software architecture that achieves the properties of
interest to our industrial stakeholders.

3. Related work

There are considerable relations and subtle yet important dif-
ferences between the premises we have laid down in the preceding
sections and the relevant state of the art. The discussion of related
work is best broken down in two parts: the state of the art on the
combination of component orientation with model-driven engi-
neering, and that which regards how extra-functional properties
are addressed in software construction.

Fig. 1. The goals we set to achieve and the constituents of the reference software architecture.

M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781 773
3.1. Component-oriented model-driven development

We acknowledged earlier in this paper that there is large com-
monality between our work and the research efforts proceeding
from [16]. We consider here those with the closest match.

CoSMIC (Component Synthesis using Model Integrated Comput-
ing) [17] addresses the grand challenge of using a modeling and
generative programming approach to statically configure and fine
tune component middleware tailored to meet quality of service
(QoS) requirements for distributed real-time embedded (DRE)
applications. As part of that work the authors identify multiple
points of integration of model driven techniques with DRE compo-
nent middleware frameworks, from: (1) configuring and deploying
application services end-to-end; (2) composing components into
component servers; and (3) configuring application component
containers, which fall in the design activity; to synthesizing: (4)
application component implementations, (5) dynamic QoS provi-
sioning and adaptation logic, (6) middleware-specific configura-
tions, and (7) middleware implementations, which collectively
cover production. Experience shows however that some restric-
tions and constraints have to be enacted at those points of interac-
tion to achieve ‘‘composition with guarantees’’ at bounded costs,
by construction instead of by verification and correction. The cited
authors have essentially the same intuition that we placed at the
center of our approach, i.e., that model-driven tools can be applied
to: (1) analyze relevant characteristics of system behavior, such as
scalability, predictability, safety, and security, by using tool-spe-
cific model interpreters to feed the analysis tools as needed; (2)
synthesize platform-specific code that is customized for particular
component middleware and DRE application properties.

PICML (Platform-Independent Component Modeling Language),
a central part of CoSMIC [17], is a domain-specific modeling lan-
guage that enables developers to define component interfaces,
QoS parameters and software building rules, and also generates
descriptor files that facilitate system deployment. The authors
aim to support a component-oriented approach to DRE systems
that mitigates the complexity associated with the need to: (1)
design consistent component interface definitions; (2) specify valid
interactions and connections between components; (3) generate
valid component deployment descriptors; (4) ensure that require-
ments of components are met by target nodes where components
are deployed; and (5) guarantee that changes to a system do not
leave it in an inconsistent state. PICML has close relations with
our work, only we cast the various facets of the endeavor in a sin-
gle, consistent and coherent software architecture concept, which
provides the by-construction guarantees that we seek for our
industrial users.

Balasubramanian et al. [18] note that while component middle-
ware technologies raise the level of abstraction used for develop-
ment, they also promote the decomposition of monolithic
systems into assemblies of inter-connected individual compo-
nents. Functional decomposition of DRE systems into component
assemblies and monolithic components helps promote reuse
across product lines [19]; however, it can also increase the number
of components in the system, with consequences on size and per-
formance. In the cited work the authors propose a ‘‘fusion’’ of anal-
ysis and synthesis solutions that help mitigate the problem and
obtain a physical assembly, i.e., a component assembly ready for
deployment on the physical platform, that has considerably
reduced size and improved performance. Once again, this line of
work has evident overlaps with ours, with the important difference
that the cited works do not seem to pay much attention to achiev-
ing a clear-cut apportionment of concerns and responsibilities (and
consequently of by-construction guarantees) to distinct elements
of the software architecture that should underpin all development.

3.2. Addressing extra-functional properties in software construction

Interestingly, what properties are to be seen as composable and
what as compositional is not arbitrary, but it rather depends on

774 M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781
how a component is defined and on the development methodology
devised around that concept.

In recent years, a wealth of approaches studied ways to achieve
composability for timing properties. Approaches with composable
timing properties typically impose early (and often permanent)
constraints on the software architecture. As a consequence, any
extra-functional constraint imposed on the functionality provided
by a component remains as a permanent characteristic of it and
impairs the evolution or the reuse of that component. For example,
in the GENESYS project based on a Time-Triggered Architecture
[20], a component is a HW/SW subsystem that relates to other
components via a ‘‘linking interface’’ (LIF). The LIF shall specify at
what time instants communication messages are sent and received
by the component, how the messages are ordered, and the rate of
message arrival. Concurrency aspects (e.g., tasking) are included in
the component specification and are necessary for the correct
operation of the component function. Unfortunately, however,
they do not emerge at the level of the LIF.

In Integrated Modular Avionics (IMA) – as represented by the
ARINC 653 standard [21] (which is the predominant incarnation
of Time and Space partitioning) – composability for the schedula-
bility results of a task in a partition is achieved at the level of par-
tition, but the scheduling of partitions is rigidly enforced by a cyclic
executive, with all the long-known design vulnerabilities of that
decision [22].

As a consequence of our choice of seeking separation of
concerns, we treat timeliness properties (i.e., response time of
operations and end-to-end delay of an activity chain) as composi-
tionality concerns.

The following section expands on this matter and presents our
approach to it.
4. Addressing extra-functional properties

As a distinctive character of this work, EFP are dealt with in
accord with the principle of separation of concerns, enacted as
follows:

� In the implementation space, with the careful allocation of dif-
ferent concerns to designated software entities: the component,
the container and the connector, whose respective role is dis-
cussed later in this section;
� In the design space, with the use of design views.

4.1. Separation of concerns with different implementation entities

The concepts of component, connector and, less commonly,
container, are well-known in the component-oriented community.
In relation to them, we adopt a narrower definition that helps serve
the principle of separation of concerns [5].

In this work, the component [9,10] is the unit of composition.
The software system is built by creating an assembly of compo-
nents, deployed on an execution platform which takes care of their
correct execution. In actual fact, the definition by [9] also carries
the requirement of ‘‘independent deployment of components’’,
but the industrial needs considered in this work do not require
it, as also do many other component-oriented approaches.

A component provides a set of functional services and exposes
them through a ‘‘provided interface’’. All the services needed by
the component from other components or the environment in gen-
eral are declared in a ‘‘required interface’’. The component is
assembled with other components so as to completely satisfy the
functional needs of the required interfaces.

Components in this work are pure functional units; they only
contain functional code that specifies sequential behavior: time,
concurrency, synchronization, distribution and any other extra-
functional concerns thus are not included in the component code.
All extra-functional concerns are dealt with by the container and
the connector, or, via them, by the execution platform; in all cases
outside of the component itself.

The container is a software entity that can be regarded as a
wrapper around the component and is responsible for the realiza-
tion of all extra-functional properties that are specified for the
component that it embeds. As a consequence, no direct communi-
cation to a component can take place, as all communication to
them is mediated by the enclosing containers. The container also
mediates the access of the component to the executive services it
needs from the execution platform.

The connector [23] is the software entity responsible for the
interaction between components, which actually is a mediated
communication between containers. The role of the connector is
to decouple interaction concerns from functional concerns. Com-
ponents are consequently void of code that deals with interactions
with other components. They communicate with endpoints that
are set according to the deployment at system elaboration time.

In this way, the functional code of a component can be specified
independently of: (1) the components it will be later bound to; (2)
the cardinality of the communication; and (3) the location of the
other parties. This is necessary as components are designed in iso-
lation and their binding with other components is a later concern,
or may vary in different reuse contexts.

The application domains of interest (i.e., space, railways and
telecommunication) do not require complex connectors, owing to
the static nature of the target systems or of the operational modes
that are considered for system modeling. Therefore, support for
function/procedure calls, remote message passing through a com-
munication middleware, data access (I/O operations on files in
safeguard memory) and event and signals are sufficient to cover
virtually all needs. This also means that we do not require an
approach for the creation or composition of complex connectors
[24]. More complex connector kinds are nevertheless necessary
when stronger guarantees on remote communication are required
(e.g., by introducing domain-specific communication protocols),
for location and representation transparency in more heteroge-
neous systems.

Figs. 2 and 3 outline the envisaged development process.
The designer first creates or reuses a set of components, and

assembles them to fulfill their functional needs. In parallel, the
designer defines the hardware and the hardware topology of the
system. Then they attach to component interfaces a set of extra-
functional annotations.

We describe in detail the specification of extra-functional in the
next section, as it is of fundamental importance to our approach.
Finally, the designer specifies a set of deployment directives to
allocate components to computational nodes. At that stage, the
software systems description (the model) can be submitted to var-
ious extra-functional analysis; those currently of interest to our
industrial stakeholders include: schedulability analysis, state-
based dependability analysis; Failure Mode and Effect Analysis
(FMEA) and Failure Mode, Effects and Criticality Analysis (FMECA).

EFP are only declared on components. An example of declara-
tion syntax, for the concerns of tasking, concurrency and real-time
is presented in [5]. The semantics of those declarations is informed
by the chosen computational model, in our case the Ravenscar
Computational Model (RCM) [25]. The RCM postulates a concur-
rent mode of execution that restricts the classic sporadic task
model of real-time scheduling theory to a form directly amenable
to static analysis in the time and space dimension and efficiently
implementable by a small-footprint real-time kernel. By adopting
the RCM, the system resulting from the assembly of components
can be statically analyzed for its end-to-end response times,

Fig. 2. A sketch of the actions that the user performs in the design space in the proposed approach.

Fig. 3. An outline of the automated generation of implementation entities (containers and connectors).

M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781 775
including the overhead of containers and connectors, with
response-time analysis [26].

EFP are realised by model-to-text transformations that generate
containers and connectors according to a deterministic (hence
provable) mapping of the extra-functional annotations set on com-
ponents to code implementation artifacts [27].

Using the component bindings and the deployment informa-
tion, the same pass of model-to-text transformation generates
the connectors that realize the desired communication semantics
between components, possibly relying on the service stack of the
execution platform for transparent remote communication.

Fig. 2 depicts examples of EFP annotations. Owing to the model-
to-text transformation rules in place (see [27] for a full description
of them), the two sporadic operations declared on the two compo-
nents implemented in Ada and in C shown in the example, require
each the creation of a container which comprises: (1) a protected
object (a queue protected with the Immediate Ceiling Protocol
[28]) used to deposit incoming requests of execution; (2) a spo-
radic task released at every 250 ms. (so as to respect the minimum
separation between subsequent executions, called Minimum Inter-
arrival Time, MIAT for short), to fetch the first request in the queue
and execute it, or to block on an empty queue. The operation
marked as ‘‘protected’’ on the component implemented in Simu-
link, requires a protected object (or in alternative form, a sema-
phore) to provide execution of it in mutual exclusion. The
protected object is generated in the container, which also hosts a
cyclic task to periodically execute the operation marked as ‘‘cyclic’’.
Fig. 3 depicts the containers produced from applying model-to-text
transformation to the example.

Remarkably, the generated containers are invariant with
respect to chosen deployment of components: it is connectors that
take care of understanding it. In our example, the communication
between the component implemented in Ada and the one
implemented in C is resolved as a local asynchronous call (local,
as the components are deployed on the same node; asynchronous,
as the provided operation is sporadic, and therefore has its own
thread of execution). The call from the Ada component to the Sim-
ulink component is mapped instead to a remote communication
with message passing, as the destination component is deployed
on a remote node.

The Ravenscar Computational Model restricts the nature and
behavior of low-level implementation entities such as tasks, mon-
itors, semaphores, underneath components. By using annotations
on higher-abstraction entities such as components and interfaces,
which are bound to the RCM semantics via model transformations,
we are able to faithfully create lower-level analysis models on
which accurate model-based schedulability analysis can be per-
formed [29], while gaining the advantages of reasoning at the
abstraction level of components in the user model.

4.2. Design views and specification of extra-functional concerns

According to ISO 42010 [8], the architectural description ‘‘is
organized into one or more constituents called views’’, each of
them being ‘‘a representation of a whole system from the perspec-
tive of a related set of concerns’’. Continuing to quote, each view is
the expression of a specific viewpoint, that is ‘‘a specification of the
conventions for constructing and using a view. A pattern or tem-
plate from which to develop individual views by establishing the
purposes and audience for a view and the techniques for its crea-
tion and analysis’’.

Our work rests on these concepts, tailoring them to component-
oriented development supported by Model-Driven Engineering
tool environments.

In current approaches such as state-of-the-art SysML [30] tech-
nology, views and viewpoints can be defined by the user, and

Fig. 4. The design views provided by our approach.

776 M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781
consequently vary for distinct systems of the same class. This
contrasts with the choice made in this work – arguably more con-
sistent with the cited reference – whereby views are statically
defined by the developers of the methodology, in agreement with
the domain stakeholders.

If during the construction of the development approach, each
view can be ratified as the expression of a single concern, then
views become effective and powerful means to enforce separation
of concerns in the specification of the system.

Design views also are the means to enforce a given flow of activ-
ities for software development: a development process envisions
multiple design phases to be carried out – some in potential paral-
lelism, others in some specific ordering – quite possibly under the
responsibility of distinct development actors. If the passage from
one design phase to the next crosses the boundary of responsibility
between different actors with distinct concerns, then design views
come as a very handy means to enforce this boundary.

For example, it may be prescribed that the specification of cer-
tain design entities or attributes in one view cannot be made with-
out the prior definition of other entities in other views. The
corresponding methodological framework should explicitly recog-
nize this prescription and provide means to specify the desired
design views accordingly. In MDE terms, the corresponding design
views would be implemented by specifying visualization and mod-
ification rights for the metaclasses that refer to the entities in ques-
tion, as defined by the metamodel for the chosen design language.
Those rights would then be enforced in the various views to any
concrete instance of that metaclass in the design model under
development.

Technology solutions exist to evaluate constraints at model cre-
ation time, but they do not suffice to satisfy our needs. Not only in
fact we require the capability of evaluating constraints related to
entities in the model and their static relationships, but we also
need to maintain a ‘‘stateful context’’ of when and by whom a
model modification (e.g., creation of a new element, specification
of an attribute) is performed: we capture those needs in the active
design view. The present state of practice for MDE technology does
not provide a complete solution to those needs: any current provi-
sion for design views is unable to work at the level of the meta-
model – where this capability is best provided – and
consequently resorts to augmenting the model editor in manners
that are neither standard nor portable.

In this work the following design views were defined:

� Data view, for the description of data types and events (which
are messages generated or received by a component following
a publish/subscribe model);
� Component view, for the definition of interfaces, components

and the bindings between components to fulfill their functional
needs;
� Hardware view, for the specification of hardware and the net-

work topology;
� Deployment view, for the specification of the allocation of com-

ponents to nodes;
� Extra-functional view, where extra-functional annotations are

attached to the functional description of components. This view
may be further divided in sub-views in order to keep a cohesive
control on the concerns of interest: in the reported work, the
real-time view and the dependability view were defined as spe-
cific sub-views in the extra-functional dimension;
� Dependability view, a (sub-) view where specific extra-func-

tional annotations enable various forms of model-based
dependability analysis (i.e., error modeling, state-based analy-
sis, FMEA, FMECA) [31] [32]. This view was implemented for
industrial users in the CHESS project.
� Behavioral view, an optional view where the designer can spec-
ify in the model the functional code of component implementa-
tions using UML state machines and generate C++ code for it
[33]. This view was implemented for industrial users in the
CHESS project: in the absence of this view the designer can
associate Ada or C/C++ source code written manually to a com-
ponent implementation;
� Space-specific view, an optional view where the designer can

specify the use of services related to spacecraft commandability
and observability as defined in space-specific standards (e.g.,
[34]). This view was required for use by the European Space
Agency and its industrial suppliers;
� Railways-specific view, an optional view where specific extra-

functional decorations make it possible to address a number
of railways-specific connection protocol concerns.

No telecom-specific view was deemed necessary in CHESS. The
technical requirements of the domain were either already
addressed by the component model or – when not addressed yet
– carried sufficient interest for other industrial domains to be pro-
moted to the domain-neutral part of the component model. An
interesting example of a need promoted to core concern was for
the decoration for ‘‘multiplicities’’ with component instances and
ports. This was handy syntactic sugar to lessen the cluttering of
the design space and the burden of specification for the user.

Another reason for not needing a telecom-specific view in
CHESS reflects the specific case study chosen by the industrial part-
ner (see Section 5), which solely exercised the domain-neutral part
of the component model in conjunction with a reference execution
platform for the domain.

All in all, the experience gained from the industrial case studies
presented in Section 6 suggests that addressing domain-specific
protocols at the component level is best done via dedicated,
domain-specific views: their presence facilitates the specialized
implementation of the relevant needs in connectors and the asso-
ciated component infrastructure, and segregates their specification
away from the core domain-neutral part of the component model.

Fig. 4 recapitulates the design views of our approach, and high-
lights the precedence constraints between them (i.e., the entities to
be defined in a view depend on information from another view).

Some considerations are in order at this point.

Fig. 5. What the case studies picked as the four constituents of the reference
software architecture.

M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781 777
Firstly, the segregation of different concerns to different design
views proved to be an effective means to enact a determined
design flow across design activities.

Secondly, all domain-specific views were born in relation to
extra-functional concerns. This is interesting in two ways: (1) it
shows the goodness of fit of the core domain-neutral part of the
component model, which was effectively shared by three different
application domains; (2) it also shows that ease of activation of a
domain-specific view by simply adding domain-specific annota-
tions to the total catalog of extra-functional annotations.

Thirdly, separation of concerns as interpreted in this work
enables the generation of functional code completely separate
from the rest of the component infrastructural code (i.e., interfaces,
component interfaces, containers, connectors). Because of this sep-
aration, functional code generation (or implementation) can be
performed independently of any later deployment and extra-func-
tional consideration. Moreover, the implementation of compo-
nents can be directly submitted to functional verification and
validation (V&V) (which encompasses unit testing and integration
testing of component assemblies) as dictated by the applicable
domain standards. The functional V&V results stay valid even if
later the extra-functional annotations of components change, as
the functional code does not suffer any impact. Only a few func-
tional tests must be performed only after deployment information
are specified: those related to the numerical precision of functional
algorithms, as they necessarily require execution on target.
5. Instantiation to multiple industrial domains

The vision and the technology described so far in this paper
were submitted to the evaluation of industrial users from three
distinct domains: space (by two distinct research actions, in the
contexts of the European Space Agency and of the CHESS projects),
telecom and railways; the latter two also from CHESS. It was there-
fore necessary to submit the notion of reference software architec-
ture and its constituents presented in Section 2.3 to the industrial
users to learn from them which would stay common and which
should require adaptations and changes.

Component Model. The same component model, defined in [4,5],
was retained in all industrial domains, though with two different
implementations.

The ESA side of the work created an incarnation of the compo-
nent model centered on a domain-specific metamodel (nicknamed
‘‘SCM’’, short for Space Component Model) and developed an asso-
ciated graphical editor based on the Obeo Designer framework.2

Obeo Designer supports the static definition of viewpoints, which
covered a sizeable part of the needs for design views. It was possible
to specify per-view diagrams, graphical representation for design
entities, automations and constraints.

In CHESS instead, industrial users required the use of open stan-
dards, which resulted in the adoption of UML and the MARTE pro-
file (augmented with project-specific stereotypes) and in the use of
the Papyrus3 technology. CHESS-specific plug-ins were developed so
as to provide automation capabilities, model validation checks, and
support for the design views specified in the previous section.

Computational Model. All industrial users, except for telecom,
converged on the adoption of the Ravenscar Computational Model
(RCM) [25]. The two space case studies and the one for railways
therefore explored the use of model-based schedulability analysis
[29]. The support they were offered allowed the results of the anal-
ysis to be seamlessly back propagated to the design model in the
2 http://www.obeodesigner.com.
3 http://www.eclipse.org/papyrus/.

4 http://public.ccsds.org/publications/SOIS.aspx.
5 http://www.enea.com/software/solutions/rtos/ose/.
form of decoration attributes of the design entities, which could be
inspected without needing access to external tools.

Programming Model. The two space case studies and the one for
railways choose the Ravenscar Profile as programming model,
which was rather natural after choosing RCM for a computational
model. A set of RCM-conformant and property-preserving code
archetypes programmed in Ada meet the requirements of the pro-
gramming model [35,27]. They are used for the automated gener-
ation of the component infrastructural software that comprises:
component skeletons, component interfaces, containers (including
tasking and synchronization code) and connectors for communica-
tion concerns, by which we provide for enforcement of the
extra-functional properties specified in the design model
communication.

Execution platform. This is where the differences appeared
among industrial domains.

In the European Space Agency case study, the execution plat-
form comprised: (i) an implementation of the Packet Utilization
Standard (PUS) services [34], which, in contrast to traditional
code-centric approaches [36], are configured in the PUS view sup-
ported in this work, thus at the level of abstraction of the user
model; (ii) the Spacecraft Onboard Interface Services4 (SOIS), a
set of standard services used for domain-specific message transmis-
sion on network/subnetworks, and communication with distribution
transparency; (iii) an open-source operating system conforming
with the RCM, for providing tasking, communication and synchroni-
zation primitives.

In the CHESS space case study, the target execution platform
included: (i) a proprietary implementation of the PUS services;
(ii) a proprietary middleware for distribution transparency and
communication; (iii) a proprietary operating system with execu-
tion semantics conforming with the RCM.

The railways case study used a representative open-source mid-
dleware for distributed communication and Ada-level Ravenscar
concurrency for execution on Linux.

Not conforming choices. The telecom case study made different
choices for all aspects other than the component model and yet
stayed broadly consistent with the notion of reference software
architecture promoted in this work. The main interest of the indus-
trial user was to try the component model for architectural model-
ing, the behavioral view for functional specification via state
machines, and direct C++ code generation to OSE, a telecom-spe-
cific target operating system.5 That choice covered the concerns
addressed in the reference software architecture by the computa-
tional model and the programming model, which however were
not of high interest of that industrial user.

Fig. 5 recapitulates the choices of each case study.

http://www.obeodesigner.com
http://www.eclipse.org/papyrus/
http://www.public.ccsds.org/publications/SOIS.aspx
http://www.enea.com/software/solutions/rtos/ose/

778 M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781
6. Case studies and industrial evaluation

Not all the case studies were end-to-end (from design to code
generation). Their common goal was to validate the core approach,
the common component model and its goodness of fit for the ref-
erence industrial process of interest. Additionally, each industrial
user focused on aspects of the methodology of their specific
interest.

The evaluation focused on assessing process-related results and
product-related results; the industrial teams were also asked to
evaluate the proposed approach according to some miscellaneous
criteria.

Process-related results

� PR-1: Adoption of design views in the design process;
� PR-2: Adoption of a component-oriented process with a set of

rigorous design steps;
� PR-3: Early schedulability analysis with back-propagation of

results;
� PR-4: Complete generation of extra-functional code related to

tasking, synchronization and time-related aspects;
� PR-5: Potential for model-based functional code generation;
� PR-6: Use of domain-specific views for separate specification of

domain-specific concerns.

Product-related results

� PD-1: Use of containers for realization of extra-functional prop-
erties separately from component code;
� PD-2: Use of connectors for implementing communication

needs and domain-specific properties;

Miscellaneous criteria

� M-1: Maturity of the methodology
� M-2: Increased productivity
� M-3: Learning curve

6.1. European Space Agency case study

This case study re-engineered a subset of the on-board software
of a small yet representative Earth Observation satellite, operating
in Low Earth Orbit and including an optical payload to capture
images on demand.

The involved industrial user focused on evaluating whether: (1)
the component model is able to express the needs for the develop-
ment of on-board software for satellites; (2) the component model
is able to accommodate space-specific needs (namely, the PUS ser-
vices) in a manner that is consistent with the rest of the approach,
and to provide the designer with specification means at the right
level of abstraction in the space-specific view.

The case study was performed over 6 calendar months by a
senior engineer without previous experience on model-driven,
component-oriented methodologies of a small-size on-board soft-
ware prime contractor, with support from a part-time consultant.
The conclusions of the investigation were reviewed by two large
software and system prime contractors of the space domain.

The experience provided some interesting feedback.
Firstly, fitting an existing, code-centered design baseline into

the novel approach may not be straightforward: the strict adher-
ence to separation of concerns at code level promoted with
our method may entail considerable re-engineering for a code
base that couples aspects that our approach views as orthogonal
and separately addressed (i.e., functional code vs. tasking and
synchronization code). Emancipation towards separation of con-
cerns also requires careful attention in determining the right level
of abstraction for expressing components in the new software
architectural design: all too often, code-centered mentality tends
to use components as tasks, which is a patent inversion of
abstraction.

Secondly, an important amount of architectural reflection is
needed to achieve a specification of components of the most con-
venient ‘‘size’’ (in quantity of provided services). Designing a great
number of ‘‘small’’ components, although individually more easily
amenable to reuse, may introduce a lot of complexity in the design
due to the bindings of their instances. ‘‘Bigger’’ components are
easier to manage as less effort for binding them is required to form
component assemblies; yes, they are harder to reuse (the func-
tional requirements of the new context of reuse shall be compati-
ble for reuse to occur), yet the advantage of potential reuse is much
more attractive (they represent a complete major function of the
system). Curiously, these considerations mirror the difficulties
encountered in all matters of software reuse in the last three dec-
ades, from object-oriented design and programming, to service
orientation.

6.2. CHESS: Space case study

The space case study hosted by the CHESS project was based on
Sentinel-3, an Earth observation mission within the Living Planet
Program by the European Space Agency. The case study modeled
a sizeable subset of the on-board subsystems of that satellite:
AOCS (Attitude and Orbit Control System), EM (Equipment Man-
agement), PM (Platform Management, an abstraction layer
between the SW applications and platform resources such as the
1553B command bus, the on-board time reference, etc.), TR (Ther-
mal Regulation), SADM (Solar Array Drive Mechanism).

This case study focused on assessing whether: (1) the CHESS
methodology is compatible with the current process and practices
of the domain stakeholder; (2) the quality of the automated gener-
ation of code for containers and connectors, targeted towards a
proprietary modeling infrastructure of the industrial user; (3) the
use of timing-related extra-functional properties of the model
and the support for model-based analysis and back-propagation
to rapidly iterate the analysis.

The case study was performed by a software engineer with
experience on component-oriented methodologies in two itera-
tions: a shorter one for familiarization for the duration of 1 month,
and a second one for actual experimental use for the span of
2 months.

6.3. CHESS: Telecom case study

The telecom use case is based on the ‘‘Connectivity Packet Plat-
form’’ (CPP), a system to construct packet access nodes based on IP
and ATM transport technologies. The system provides cluster func-
tionalities, redundancy, and fault tolerance. It can be considered as
a soft real-time system with a few components with stringent time
requirements.

This case study focused on assessing: (1) the fitness of the com-
ponent model for their development process; (2) the effectiveness
of modeling functional code via state machines; (3) the quality and
performance of functional code generation from state machines.

The case study was performed by two junior engineers with
support by a senior engineer for the integration of their reference
execution platform in the approach. It was performed along a time
span of 9 months, in two iterations: one short, for familiarization,
and one longer for actual evaluation work.

Table 1
I (Demonstrated and considered interesting and promising); Ad (Demonstrated and considered Adequate); NA (Not applicable); HM (High-maturity); m (moderate); l (low); H
(high learning curve); M (moderate learning curve).

ID Result/criteria short name ESA case study CHESS: telecom CHESS: railways CHESS: space

PR-1 Adoption of design views I I I
PR-2 Component-oriented process Ad Ad Ad I
PR-3 Model-based schedulability analysis I
PR-4 Automated generation of extra-functional code I I
PR-5 Model-based functional code generation I
PR-6 Use of domain-specific views I NA I I
PD-1 Containers for separate realization of extra-functional properties I I I
PD-2 Connectors for communication needs and domain-specific properties I
M-1 Maturity of methodology HM HM HM HM
M-2 Increased productivity m m l l
M-3 Learning curve H H H M

M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781 779
6.4. CHESS: Railways case study

The railways case study was based on applications related to
the European Rail Traffic Management Systems (ERTMS).6 ERTMS
comprises two main constituents: (i) the ETCS (European Train Con-
trol System), which is used to transmit information to the train dri-
ver (train speed, calculation of breaking curves) and permit to
monitor the compliance of the driver with prescriptions; (ii) the
GSM-R standard, to enable bi-directional wireless communication
exchanges between the ground system and the train. The case study
concerns a commercial solution for the monitoring and analysis of
the strength of the up-link and down-link GSM-R signal in proximity
of a high-speed/high-capacity railway line. It analyzes possible inter-
ferences on the signal and can discriminate if the interference orig-
inates from outside the train or on board; in the latter case the train
driver is notified, so as to take appropriate actions.

The case study focused on modeling two subsystems: (a) an
‘‘analyzer’’, which performs the analysis of the GSM-R signal; (b)
a ‘‘receiver’’, which receives the analyzed data on signal quality
on board and performs the appropriate actions in response.

The ‘‘analyzer’’ is deployed on a laptop, the ‘‘receiver’’ on a ded-
icated board (simulated with a laptop in the case study).

The case study was small-sized, yet centered on several key fea-
tures: (i) support for the creation of components written either in C
or Ada; (ii) support for multi-node systems; (iii) support for a rail-
ways-specific communication protocol to regulate communication
from (a) to (b).

Also this case study was based on the re-engineering of an
existing code base, and was performed by a software engineer
without previous experience in component-oriented methods, plus
support from a lead engineer on dependability-related modeling.
The case study was performed in two iterations for a total duration
of 4 months.

6.5. Summary and evaluation

Table 1 recapitulates the key aspects of the proposed methodol-
ogy and how they were evaluated by the feedback obtained from
the four industrial case studies.

Process-related results
PR-1 is cited as an important factor in the telecom and space

domain feedback of the CHESS project and in the ESA investigation.
PR-2 is cited by all case studies as adequate or interesting for

the realization of their target system. It helps to split the intellec-
tual work in manageable parts that can be realized (or further
refined) independently by the designers.
6 http://www.ertms.net/.
PR-3 was successfully exercised in the space case study of
CHESS, which highlighted its potential if it were introduced in
the stakeholder’s industrial process.

PR-4 was successfully achieved in the railways case study of
CHESS. The code generation was also evaluated by the CHESS space
case study, and deemed satisfactorily and promising.

PR-5 was demonstrated successfully on the CHESS telecom case
study, where C++ code was generated for functional state machines
associated to component implementations ([33]). The approach
explored in the cited publication is very promising indeed, though
it currently lacks integration with the techniques in place for the
generation of extra-functional code (for containers, connectors,
and component infrastructure). The difficulty with filling that gap
is purely technical, with no bearing on fundamentals, contingent
on the stabilization of the heterogeneous technologies used for
the various steps of required transformations. Achieving this inte-
gration is part of our future work in a recently started follow-on
project to CHESS.

PR-6 was realized for the space and railways domains. The three
involved case studies confirmed the usefulness of the concept,
which was considered interesting for specifying in a coherent man-
ner their domain-specific needs directly in the user model, where
the software is being specified.

Product-related results
PD-1 was demonstrated in the CHESS space and railways case

studies and in the ESA investigation, and considered a key result.
PD-2 was demonstrated by implementing a basic communica-

tion protocol for the railways use case. The protocol can be param-
etrized by activating the railways view and applying railways-
specific annotations to component bindings. Notably, no code of
components and containers needed modification, as the only
changes when the protocol is activated are carefully isolated in
the code generated for the involved connectors. Furthermore, in
the ESA case study, we realized a sizeable set of the PUS services,
and demonstrated that it is possible to control and parametrize
them directly at the abstraction level of the design space.

Miscellaneous evaluation criteria
For what concerns M-1, the maturity of the methodology is con-

sidered high by the feedback of all case studies.
For what concerns M-2, the productivity gains are still consid-

ered low to moderate. This feedback is mostly due to the proto-
typal nature of the two toolsets and to the lack of collaborative
features for the modeling activity. We however are satisfied by this
fair evaluation, as the feedback by industrial users highlights how
this is exclusively a technological problem (and in fact the method-
ology itself was considered mature).

Finally, the learning curve of the approach (M-3) is considered
from moderate to high. This highly depends on the previous

http://www.ertms.net/

780 M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781
exposure of the project partner to MDE and component-oriented
approaches (the CHESS space partner is quite familiar with those
paradigms, the space partner of the ESA investigation and the tele-
com and railways partners of CHESS were not). We maintain that
most of the difficulty stems from the raised abstraction level
proper of any model-driven engineering approach, which can be
hard to master for an engineer exposed to it for the first time or
after using UML and its derivatives only for documentation.

Furthermore, the difficulty of fitting a novel development
approach into the pre-existent industrial process of a stakeholder
– an aspect often ignored or downplayed in the scientific literature
– shall not be underestimated. In particular, experimenting the
novel approach in the place of a ‘‘traditional’’ approach (i.e., not
already based on model-driven engineering and without separa-
tion of concerns) by re-engineering an existing code base. instead
of starting a new architectural design from scratch, bears much
hidden risk: the mindset of the actors stays more oriented to
‘‘twisting and bending’’ the novel approach to fit the existing
design and code, rather than to applying it to ripe its full
advantages.

This feedback also highlighted that an increasing effort shall be
devoted to training and dissemination activities, especially in the
form of tutorials or reference guides (for example, with the
description of architectural patterns for solving recurrent design
problems using the component model and the reference software
architecture).
7. Conclusions and future work

This paper presented the results of two closely interconnected
research efforts targeting embedded real-time systems: one effort
was set to establish a reference software architecture for the
on-board software of future satellite missions procured by the
European Space Agency; the other defined a component-oriented
methodology fit for use in the development of telecommunication,
space, and railways software applications.

The industrial users in both efforts concurred from the start to
the idea of separating out the treatment of extra-functional con-
cerns from the rest of development issues. What was needed to
that end was a systematic way to guarantee that the resulting
products would meet the requirements by construction as opposed
to by correction. The proposed solution centered on the formula-
tion and the adoption of a reference software architecture based
on four distinct yet closely related constituents: a component
model, a computational model, a programming model and a
execution platform. Specific instances were then proposed for each
of those architectural constituents.

Separation of concerns was enacted at two levels of
development.

At the design level, by segregating distinct concerns to separate
design views, where design views are a manifest asset of the
adopted component model. Each design view enforces specific cre-
ation, visualization and modification rights on design entities.
Those rights are attributed according to the concern that the entity
in question is an expression of. An entity relevant to a concern will
allow creation and modification rights on itself in the design view
attached to that concern: entities not relevant of that concern will
instead be just read-only or even possibly plainly invisible in that
particular design view. Extra-functional properties are defined as
annotations attached to the outside of the component specification
or to its exposed interfaces. The component boundary thus
becomes the border between functional and extra-functional
concerns.

At the implementation level, the realization of extra-functional
concerns is delegated to two other software entities that pertain to
the real-time architecture of the component framework: the
container (which addresses tasking, synchronization and time-
related concerns among others); and the connector (which
addresses communication and interaction concerns). In the
proposed approach, containers and connectors are automatically
generated via model transformations, in a manner that conforms
by construction to the programming model that implements the
computational model chosen in the reference software architec-
ture, and that preserves the desired execution semantics when
on the target platform.

The industrial users involved in the research effort adopted a
single component model and used all of its domain-neutral core
features in their respective case studies. They were able to address
a selection of their domain-specific needs via the addition of
domain-specific views to the component model. This capability
provided convincing evidence of the successful enactment of sepa-
ration of concerns and of its ability to produce fully composable
parts, all individually conforming to common design principles,
and all consistently and verifiably contributing to end-to-end
performance.

In the proposed approach the handling of extra-functional con-
cerns stays strictly under the control by the design environment
and it is performed via automated model transformation. This pro-
vision ensures the consistency of the approach and in particular –
because of the congruent adoption of a computational model, a
programming model and a conforming execution platform – war-
rants consistency between the software system as analyzed and
the system implementation at run time.

The authors are now working on an extension of the component
model that supports hierarchical components, with particular
attention to ensuring that the specification and realization of
extra-functional properties can work with top-down decomposi-
tion as well as bottom-up composition. Future plans also include
further enhancement to the domain-specific extension capabilities
of the component model.
Acknowledgments

This work was supported by the Networking/Partnering Initia-
tive of the European Space Agency and by the CHESS project under
ARTEMIS JU grant No. 216682.
References

[1] I. Crnkovic, M. Larsson, O. Preiss, Concerning predictability in dependable
component-based systems: classification of quality attributes, in: Architecting
Dependable Systems III, Vol. 3549 of Lecture Notes in Computer Science,
Springer, Berlin Heidelberg, 2004, pp. 257–278.

[2] E.W. Dijkstra, On the role of scientific thought, in: E.W. Dijkstra (Ed.), Selected
Writings on Computing: A Personal Perspective, Springer-Verlag, New York
Inc, 1982, ISBN 0-387-90652-5, pp. 60–66.

[3] P. Kruchten, The Rational Unified Process: An Introduction, third ed., Addison-
Wesley Longman Publishing Co. Inc., 2003, ISBN 0-321-19770-4.

[4] M. Panunzio, T. Vardanega, A component model for on-board software
applications, in: Proceedings of the 36th Euromicro Conference on
Software Engineering and Advanced Applications, IEEE Computer Society,
2010, pp. 57–64.

[5] M. Panunzio, Definition, Realization and Evaluation of Software Reference
Architecture for Use in Space Application, Ph.D. Thesis, University of Bologna,
Italy, 2011, <http://www.informatica.unibo.it/it/ricerca/technical-report/
2011/UBLCS-%2011-07>

[6] T. Vardanega, Property preservation and composition with guarantees: from
ASSERT to CHESS, in: Proc. of the 12th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, IEEE
Computer Society, 2009, pp. 125–132.

[7] Software Engineering Institute (Ed.), Defining Software Architecture – Modern,
Classic, and Bibliographic Definitions, SEI – Carnegie Mellon <http://
www.sei.cmu.edu/architecture/start/definitions.cfm>

[8] ISO/IEC, Systems and software engineering – Architecture description, ISO/IEC
42010:2011 (2011).

[9] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd
ed., Addison-Wesley Professional, Boston, 2002, ISBN 0-201-74572-0.

http://refhub.elsevier.com/S1383-7621(14)00082-4/h0050
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0050
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0050
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0050
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0050
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0055
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0055
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0055
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0055
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0055
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0060
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0060
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0060
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0065
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0065
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0065
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0065
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0065
http://www.informatica.unibo.it/it/ricerca/technical-report/2011/UBLCS-%2011-07
http://www.informatica.unibo.it/it/ricerca/technical-report/2011/UBLCS-%2011-07
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0070
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0070
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0070
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0070
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0070
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0075
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0075
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0075

M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781 781
[10] M. Chaudron, I. Crnkovic, Component-based software engineering, in: H. van
Vliet (Ed.), Software Engineering: Principles and Practice, Wiley, 2008, ISBN 0-
470-03146-8 (chapter 18).

[11] J. Sifakis, A framework for component-based construction extended abstract,
in: Proceedings of the 3rd IEEE International Conference on Software
Engineering and Formal Methods, IEEE Computer Society, 2005, ISBN 0-
7695-2435-4, pp. 293–300.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J.
Irwin, Aspect-oriented programming, in: Proceedings of the 11th European
Conference on Object-Oriented Programming, Vol. 1241 of Lecture Notes in
Computer Science, Springer, Berlin Heidelberg, 1997, ISBN 978-3-540-63089-
0, pp. 220–242.

[13] M. Panunzio, T. Vardanega, On component-based development and high-
integrity real-time systems, in: Proceedings of the 15th International
Conference on Embedded and Real-Time Computing Systems and Applications,
IEEE Computer Society, 2009, ISBN 978-0-7695-3787-0, pp. 79–84.

[14] T. Vardanega, Development of on-board embedded real-time systems: an
engineering approach, Technical Report ESA STR-260, European Space Agency,
ISBN 90-9092-334-2, 1999.

[15] M. Bordin, T. Vardanega, Correctness by construction for high-integrity real-
time systems: a metamodel-driven approach, in: Proceedings of the 12th
International Conference on Reliable Software Technologies – Ada-Europe, Vol.
4498 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg, 2007,
ISBN 978-3-540-73229-7, pp. 114–127.

[16] D.C. Schmidt, Model-driven engineering, IEEE Comput. 39 (2) (2006) 25–31.
[17] K. Balasubramanian, J. Balasubramanian, J. Parsons, A.S. Gokhale, D.C. Schmidt,

A platform-independent component modeling language for distributed real-
time and embedded systems, in: Proceedings of the 11th IEEE Real-Time and
Embedded Technology and Applications Symposium, IEEE Computer Society,
2005, ISBN 0-7695-2302-1, pp. 190–199.

[18] K. Balasubramanian, D.C. Schmidt, Physical assembly mapper: a model-driven
optimization tool for QoS-enabled component middleware, in: Proc. of the
14th IEEE Real-Time and Embedded Technology and Applications Symposium,
IEEE Computer Society, 2008, ISBN 978-0-7695-3146-5, pp. 123–134.

[19] R. van Ommering, Building product populations with software components,
in: Proceedings of the 24th International Conference on Software Engineering,
ACM Press, 2002, ISBN 1-58113-472-X, pp. 255–265.

[20] H. Kopetz, N. Suri, Compositional design of RT systems: a conceptual basis for
specification of linking interfaces, in: Proceedings of the 6th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, IEEE
Computer Society, 2003, ISBN 0-7695-1928-8, pp. 51–60.

[21] Aeronautical Radio, Incorporated, ARINC Specification 653–1: Avionics
Application Software Standard Interface (2003).

[22] G. Douglass, Locke, software architecture for hard real-time applications:
cyclic executives vs. fixed priority executives, Real-Time Syst. 4 (1) (1992)
37–53.

[23] N.R. Mehta, N. Medvidovic, S. Phadke, Towards a taxonomy of software
connectors, in: Proceedings of the 22nd International Conference on Software
Engineering, ACM, 2000, ISBN 1-58113-206-9, pp. 178–187.

[24] B. Spitznagel, D. Garlan, A compositional approach for constructing
connectors, in: Working IEEE/IFIP Conference on Software Architecture, IEEE
Computer Society, 2001, ISBN 0-7695-1360-3, pp. 148–157.

[25] A. Burns, B. Dobbing, T. Vardanega, Guide for the use of the Ada Ravenscar
profile in high integrity systems, Technical Report YCS-2003-348, University of
York, 2003.

[26] J.C. Palencia, M. González, Harbour, schedulability analysis for tasks with static
and dynamic offsets, in: Proceedings of the 19th IEEE Real-Time Systems
Symposium, IEEE Computer Society, 1998, ISBN 0-7803-5243-2, pp. 26–37.

[27] M. Panunzio, T. Vardanega, Ada Ravenscar code archetypes for component-
oriented development, in: Proceedings of the 17th International Conference on
Reliable Software Technologies – Ada-Europe, Vol. 7308 of Lecture Notes in
Computer Science, Springer, 2012, ISBN 978-3-642-30597-9, pp. 1–17.

[28] J.B. Goodenough, L. Sha, The priority ceiling protocol: a method for minimizing
the blocking of high priority Ada tasks, in: Proceedings of the 2nd International
Workshop on Real-time Ada Issues, ACM, 1988, ISBN 0-89791-295-0, pp. 20–31.

[29] M. Bordin, M. Panunzio, T. Vardanega, Fitting schedulability analysis theory
into model-driven engineering, in: Proceedings of the 20th Euromicro
Conference on Real-Time Systems, IEEE Computer Society, 2008, ISBN 978-0-
7695-3298-1, pp. 135–144.

[30] Object Management Group, SysML specification – version 1.3, <http://
www.omg.org/spec/SysML/1.3/(2012)>

[31] L. Montecchi, P. Lollini, A. Bondavalli, Dependability concerns in model-driven
engineering, in: Proceedings of the 14th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, IEEE Computer Society, 2011, ISBN 978-0-7695-4377-2, pp. 254–263.

[32] L. Montecchi, P. Lollini, A. Bondavalli, Towards a MDE transformation
workflow for dependability analysis, in: Proceedings of 16th IEEE
International Conference on the Engineering of Complex Computer Systems,
IEEE Computer Society, 2011, ISBN 978-0-7695-4381-9, pp. 157–166.

[33] F. Ciccozzi, A. Cicchetti, M. Krekola, M. Sjödin, Generation of correct-by-
construction code from design models for embedded systems, in: Proceedings
of the 6th IEEE International Symposium on Industrial Embedded Systems,
IEEE, 2011, ISBN 978-1-61284-818-1, pp. 63–66.

[34] European Cooperation for Space Standardization (ECSS), Space Engineering –
Ground systems and operations – Telemetry and telecommand packet
utilization, ECSS-E-70-41A, 2003.

[35] E. Mezzetti, M. Panunzio, T. Vardanega, Preservation of timing properties with
the Ada Ravenscar profile, in: Proceedings of the 15th International Conference
on Reliable Software Technologies – Ada-Europe, Vol. 6106 of Lecture Notes in
Computer Science, 2010, pp. 153–166, ISBN 978-3-642-13549-1.

[36] T. Vardanega, G. Caspersen, Engineering software reuse for on-board
embedded real-time systems, Softw. – Pract. Exp. 32 (3) (2002) 233–264.
ISSN 0038-064.

Marco Panunzio received the Laurea Specialistica (MSc)
in Computer Science (full marks cum laude) from the
University of Padova, Italy in 2006. He received the
Ph.D. in Computer Science from the University of Bolo-
gna, Italy in 2011. During the Ph.D. and later as a post-
doc research fellow at the University of Padova, Italy, he
has been a visiting researcher at the European Space
Research and Technology Centre (ESTEC) of the Euro-
pean Space Agency (ESA) in the scope of the Network-
ing/ Partnering Initiative (NPI). Since May 2012, he
joined Thales Alenia Space – France, where he works as
R&D engineer in the area of on-board software devel-

opment. His main research interests are: schedulability analysis of real-time sys-
tems, Model-Driven Engineering, Component-Based Software Engineering and
software reference architectures.
Tullio Vardanega graduated with a degree in computer
science at the University of Pisa, Italy, in 1986 and
received the Ph.D. degree in computer science from the
Technical University of Delft, The Netherlands, in 1998,
while working at the European Space Research and
Technology Centre (ESTEC) of the European Space
Agency (ESA). At ESTEC, over the period 1991–2001, he
held responsibilities for research and technology
transfer projects as a lead person in the area of onboard
embedded real-time software. In January 2002, he was
appointed Lecturer in Computer Science, Faculty of
Science, University of Padova, Italy, before becoming

Associate Professor in October 2004. At Padova, he took on teaching and research
responsibilities in the areas of high-integrity real-time systems, quality-of-service
under real-time constraints and software engineering methods, including model-

driven engineering, and processes for such environments. He has authored
numerous papers and technical reports on these subjects. He runs a range of
research projects in these areas on funding from international and national
organizations.

http://refhub.elsevier.com/S1383-7621(14)00082-4/h0080
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0080
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0080
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0080
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0080
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0085
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0085
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0085
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0085
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0085
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0090
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0090
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0090
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0090
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0090
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0090
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0095
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0095
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0095
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0095
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0095
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0100
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0100
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0100
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0100
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0100
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0100
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0105
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0110
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0110
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0110
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0110
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0110
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0110
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0115
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0115
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0115
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0115
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0115
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0120
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0120
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0120
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0120
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0125
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0125
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0125
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0125
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0125
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0130
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0130
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0130
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0135
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0135
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0135
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0135
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0140
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0140
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0140
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0140
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0145
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0145
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0145
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0145
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0150
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0150
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0150
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0150
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0150
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0155
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0155
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0155
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0155
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0160
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0160
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0160
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0160
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0160
http://www.omg.org/spec/SysML/1.3/(2012)
http://www.omg.org/spec/SysML/1.3/(2012)
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0165
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0165
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0165
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0165
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0165
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0170
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0170
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0170
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0170
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0170
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0175
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0175
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0175
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0175
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0175
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0180
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0180
http://refhub.elsevier.com/S1383-7621(14)00082-4/h0180

	An architectural approach with separation of concerns to address extra-functional requirements in the development of embedded real-time software systems
	1 Introduction
	2 The role and potential of the software architecture
	2.1 Common understanding
	2.2 Narrowing to our context
	2.3 Our interpretation

	3 Related work
	3.1 Component-oriented model-driven development
	3.2 Addressing extra-functional properties in software construction

	4 Addressing extra-functional properties
	4.1 Separation of concerns with different implementation entities
	4.2 Design views and specification of extra-functional concerns

	5 Instantiation to multiple industrial domains
	6 Case studies and industrial evaluation
	6.1 European Space Agency case study
	6.2 CHESS: Space case study
	6.3 CHESS: Telecom case study
	6.4 CHESS: Railways case study
	6.5 Summary and evaluation

	7 Conclusions and future work
	Acknowledgments
	References

