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Abstract:
Background: 3-Iodothyronamine (T1AM) is an endogenous messenger chemically related to thyroid hormone.
Recent results indicate significant transcriptional effects of chronic T1AM administration involving the protein
family of sirtuins, which regulate important metabolic pathways and tumor progression. Therefore, the aim of
this work was to compare the effect of exogenous T1AM and 3,5,3′-triiodo-L-thyronine (T3) chronic treatment
on mammalian sirtuin expression in hepatocellular carcinoma cells (HepG2) and in primary rat hepatocytes at
micromolar concentrations.
Materials and methods: Sirtuin (SIRT) activity and expression were determined using a colorimetric assay and
Western blot analysis, respectively, in cells treated for 24 h with 1–20 μM T1AM or T3. In addition, cell viability
was evaluated by the MTTtest upon 24 h of treatment with 0.1–20 μM T1AM or T3.
Results: In HepG2, T1AM significantly reduced SIRT 1 (20 μM) and SIRT4 (10–20 μM) protein expression, while
T3 strongly decreased the expression of SIRT1 (20 μM) and SIRT2 (any tested concentration). In primary rat hep-
atocytes, T3 decreased SIRT2 expression and cellular nicotinamide adenine dinucleotide (NAD) concentration,
while on sirtuin activity it showed opposite effects, depending on the evaluated cell fraction. The extent of MTT
staining was moderately but significantly reduced by T1AM, particularly in HepG2 cells, whereas T3 reduced
cell viability only in the tumor cell line.
Conclusions: T1AM and T3 downregulated the expression of sirtuins, mainly SIRT1, in hepatocytes, albeit in
different ways. Differences in mechanisms are only observational, and further investigations are required to
highlight the potential role of T1AM and T3 in modulating sirtuin expression and, therefore, in regulating cell
cycle or tumorigenesis.
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Introduction

3-Iodothyronamine (T1AM) is an endogenous compound chemically related to thyroid hormone. At nanomo-
lar concentrations, it can activate G protein-coupled receptors [trace amine-associated receptors (TAARS)], in
particular TAAR1 [1], but it may also interact with other targets, such as transporters on plasma membrane,
vesicular biogenic amine transporters and mitochondrial proteins [2], [3]. Endogenous T1AM has been detected
in human and rodent blood and tissue samples [4], and circulating T1AM is largely bound to apolipoprotein
B100 (apoB100) [5]. Although the exact T1AM biosynthetic pathway is still unknown, it has been hypothesized
to derive from decarboxylation and deiodination of thyroxine (T4), and a tentative of biosynthetic pathway has
been suggested [6].

T4, the predominant form of thyroid hormones, in target tissues, is enzymatically deiodinated to 3,5,3′-
triiodo-L-thyronine (T3), which modulates the transcription of target genes via activation of thyroid hormone
receptor α (TRα) and TRβ. Non-genomic effects have also been described, concerning glucose and calcium up-
take, oxygen consumption, ion channel activation and cardiac function [7]. Moreover, evidences highlight the
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influence of T3 in the regulation of tumor development [8]. General consensus exists regarding the oncosup-
pressor role of TRβ1 in hepatocarcinoma; however, controversial data have been reported about its role upon T3
activation [9]. Furthermore, hypothyroidism has been reported to represent a risk factor for hepatocarcinoma
[10].

Several T1AM functional effects have been described, namely severe hypothermia [1], decrease in oxygen
consumption and in respiratory quotient, the latter resulting in a shift from carbohydrate to lipid as metabolic
energetic source [11]. Moreover, T1AM stimulates both gluconeogenesis and ketogenesis [12]. While hypother-
mia is observed only after administration of high T1AM dosages, metabolic effects occur at doses close to the
physiological range [13].

The molecular mechanisms underlying T1AM metabolic effects are still unknown. In liver of obese mice
(CD-1) evidence of changes in sirtuin expression has been reported [14]. The mammalian genome encodes for
seven sirtuins (SIRT1–7) whose activities are controlled directly by the cellular levels of nicotinamide adenine
dinucleotide (NAD+)and inhibited by nicotinamide [15]. Sirtuins regulate important pathways involved not
only in stress resistance, energy efficiency and metabolism during caloric restriction, but also in aging, regula-
tion of transcription, apoptosis and tumorigenesis [15].

So far, the effects of thyronamines and thyronines on sirtuins have not been fully unraveled. SIRT1 is a
coregulator of TRβ, enhancing T3 activity [16]. Transgenic mice, bringing a dominant-negative mutation in TRβ,
have higher hepatic SIRT1 activity, similar to hypothyroid wild-type mice [17], [18]. Conversely, in hypothyroid
mice, T4 supplementation reduces liver SIRT1 protein [18]. In liver of CD-1 mice, T1AM is able to increase SIRT6
and reduce SIRT4 expression [14].

The aim of the present study was to get a better understanding of the activity of exogenous thyroid hormone
and T1AM in liver, using two different cell lines: a cancer line, HepG2, hepatocellular carcinoma (HCC) cells,
and a primary line of rat hepatocytes. We analyzed their potential cytotoxic activity and then their action on
sirtuin activity and protein expression at pharmacological doses.

Materials and methods

Chemicals

Human heaptocellular carcinoma cells (HepG2) were obtained from American Type Culture Collection (Man-
assas, VA, USA). Unless otherwise specified, all reagents were obtained from Sigma Aldrich (St Louis, MO,
USA).

Cell culture and treatment

Primary rat hepatocytes were prepared as previously described [19] with minor modifications. Experimen-
tal procedures were approved by the Ethical Committee of the University of Pisa (protocol no. 51814/2016).
Briefly, adult Wistar rats (200–250 g; EnvigoRms, Udine, Italy) were sacrificed by exsanguination under diethyl
ether anesthesia. Livers were quickly perfused without recirculation through the vena cava at 20 mL/min for 5
min with calcium and magnesium-free Dulbecco’s phosphate-buffered saline, followed by 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) buffer containing collagenase 0.5% (w/v) and CaCl2 5 mm until the
tissue was softened. The partially isolated hepatocytes were then collected and incubated for 5 min in the same
collagenase-containing buffer. Hepatocytes were then washed 3 times by centrifugation in Dulbecco’s modified
Eagle medium/nutrient mixture F-12 (DMEM/F12) supplemented with 100 IU penicillin/mL, 100 μg strepto-
mycin/mL with 10% (v/v) fetal bovine serum (FBS), and suspended in fresh supplemented medium. The cell
yield and viability were about 107/mL and 85–90%, respectively, the latter being assessed by the trypan blue
exclusion test. The cells were then plated, and treated after 4 h of seeding.

HepG2 cells were cultured in DMEM supplemented with 10% (v/v) FBS, 1 mM pyruvate, 100 U/mL peni-
cillin and 100 μg/mL streptomycin at 37 °C in a humidified atmosphere containing 5% CO2 and subcultured
before confluence. Unless otherwise specified, cells were used after 6–8 passages in vitro, and treated after 24
h of seeding.

To start treatment, in any experimental procedure, medium was replaced with fresh medium supplemented
with exogenous T1AM, or T3, in the range from 1 to 20 μM, unless otherwise indicated; control cells were incu-
bated with supplemented DMEM containing equal volume of vehicle [dimethyl sulfoxide (DMSO) for T1AM
and NaOH 0.1 mM for T3].

To assess sirtuin expression, cells were seeded in six-well plates (3×105 cells/well). Upon treatment with
T1AM or T3, HepG2 cells or primary hepatocytes were lysed in ice-cold buffer, containing 20 mM Tris pH 7.5,
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150 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM ethylene glycol tetraacetic acid (EGTA),
2.5 mM sodium pyrophosphate, 1% Igepal CA-630, 1 mM sodium orthovanadate, 1 mM β-glycerophosphate, 1
mM phenylmethanesulfonyl fluoride (PMSF) and protease inhibitor cocktail. After sonication, cell lysates were
centrifuged at 10,000×g for 10 min at 4 °C to pellet cellular debris, and supernatants were collected and frozen
at −80 °C. The protein concentration in supernatant fraction was determined using the Bradford method [20].

NAD concentration assay

HepG2 cells or primary rat hepatocytes were seeded in 96-well plates (10,000 cells/well) and treated with T3 or
T1AM for 24 h; then, NAD concentration was assessed using a NAD/NADH cell-based colorimetric assay kit
(Cayman Chemical, Ann Arbor, MI, USA), according to the manufacturer’s instructions. The absorbance was
measured at 450 nm using a microplate reader (BioRad) and NAD concentration in samples was calculated
according to standard curve. NAD concentration was measured as nM and plotted as % of control.

Sirtuin activity assay

Sirtuin activity was measured using a colorimetric assay kit (Universal SIRT Activity Assay Kit, Abcam, Cam-
bridge, UK), according to the manufacturer’s instructions. Cells were seeded in six-well plates and treated
with T1AM or T3 for 24 h. At the end of treatment, the cells were solubilized in the appropriate buffer, and
nuclear and cytoplasmic extracts were prepared according to the manufacturer’s protocol (Nuclear Extraction
Kit, Abcam, Cambridge, UK). Sirtuin activity was evaluated in 10 μg of nuclear or cytoplasmic extract. The
absorbance was read at 450 nm with a reference wavelength of 655 nm. The activity was calculated as optical
density (OD)/min/mg of protein and plotted as % of control.

Western blotting

Western blotting was performed according to the manufacturer’s instructions (BioRad Laboratories, Hercules,
CA, USA). In brief, 40 μg of proteins was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) (4–20% acrylamide separating gel, Criterion TGX Stain-Free precast gel, BioRad). The separated
proteins were transferred to a polyvinylidene fluoride (PVDF) membrane (Millipore Corporation, Billerica, MA,
USA). Membranes were then incubated using the appropriate primary and secondary antibodies. Immunoblots
were visualized by means of a chemiluminescence reaction (Millipore) using Image Lab™ Software (BioRad)
under a luminescent image analyzer (Chemidoc XSR+, BioRad). Chemiluminescence was expressed in terms
of OD of specific immunoreactive bands, and the protein level was normalized to the OD of total proteins in
each lane, previously acquired. The trihalo compounds included in the TGX stain-free gel (BioRad) react with
tryptophan residues in an ultraviolet (UV)-induced reaction, allowing total protein detection by fluorescence.
Only bands below the saturation limit were analyzed.

MTT staining

Cells were seeded in 96-well plates at a density of 5000–10,000 cells/well. After 24 h, T1AM and T3 were added at
different concentrations (0.1–20 μM), and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
staining was determined 24 h after incubation as described by Mossman [21]. Briefly, MTT (0.5 mg/mL) was
added to the medium, and after an additional 4 h of incubation, SDS-HCl (0.05 g/mL) was added to solubilize
formazan salt. After 18 h, the absorbance of the solution was read at 570 nm in a microplate reader (BioRad
Instruments). In this test, cellular staining requires MTT reduction by endogenous oxidoreductases, particu-
larly but not exclusively, mitochondrial dehydrogenases, using NADH or reduced nicotinamide adenine din-
ucleotide phosphate (NADPH) as reducing substrates. Therefore, MTT staining reflects the integrity and the
rate of oxidative metabolism.

Statistical analysis

Results are expressed as the mean ± standard error of the mean (SEM). Differences between groups were an-
alyzed by one-way analysis of variance (ANOVA). In experiments aimed at determining differences versus a
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single control group, Dunnett’s post-hoc test was used. The threshold of statistical significance was set at p <
0.05. GraphPad Prism version 6.0 for Windows (GraphPad Software, San Diego, CA, USA) was used for data
processing and statistical analysis.

Results

MTT staining

In order to evaluate the role of T1AM and T3 in liver cell damage, we treated HepG2 cells and primary hepato-
cytes with exogenous T1AM or T3 for 24 h.

As shown in Figure 1A, the results indicated that T1AM was slightly but significantly cytotoxic at any tested
concentration in HepG2 cells, decreasing MTT staining from 100 nM to 20 μM by 10–20% (100 nM, p < 0.01; 500
nM, p < 0.05; 1 μM, p < 0.0001; 10 μM, p < 0.0001; 20 μM, p < 0.001).

Figure 1: MTT staining results for T1AM in HepG2 cells (A) and primary rat hepatocytes (B) and for T3 in HepG2 cells
(C) and primary rat hepatocytes (D). Cells were seeded in 96-well plates and 24 h after they were treated with T1AM or
T3 at different concentrations (0.1–20 μM). MTT staining was performed 24 h after incubation Data are plotted as mean ±
SEM. Control and treated cells were infused with the same amount of vehicle (DMSO for T1AM and NaOH 0.1 mM for
T3). (one-way ANOVA, p < 0.01, Dunnett’s post-hoc test for multiple comparison *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001 vs. control (Con), n = 6–8 per group).

In primary rat hepatocytes, T1AM was cytotoxic starting from 500 nM (p < 0.05) to 20 μM (p < 0.05, Figure
1B) reducing MTT staining by about 30%. T3 exhibited a significant reduction of about 10–15% (p < 0.05) in
HepG2 cells starting from 1 μM (1 and 10 μM, p < 0.05; 20 μM, p < 0.001), but no effect was observed in primary
hepatocytes (Figure 1C and D). These results showed a different sensitivity of cell lines to the exposure of T1AM
or T3.

NAD concentration and sirtuin activity assays

As NAD+ functions as a cofactor in sirtuin enzyme activity, we measured first the total cellular NAD concen-
tration, and then we assessed sirtuin activity in the nuclear and cytoplasmic extracts, upon 24 h of treatment
with T1AM or T3, in both liver cell lines.

Values of NAD concentration in control cells averaged in each cell line as follows: in primary hepatocytes
0.221 ± 0.008 nM, and in the HepG2 cell line 0.785 ± 0.022 nM.

As shown in Figure 2A, in HepG2 cells, NAD concentration was reduced only by T3 by about 15–20% (1
μM and 10 μM both p < 0.001 vs. vehicle, Con), while T1AM was unable to affect NAD concentration. Similar
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results were obtained in primary rat hepatocytes (Figure 2B) where only T3 at 10 μM (p < 0.01 vs. vehicle, Con)
was able to reduce NAD concentration by about 25%.

Figure 2: NAD concentration assay results in HepG2 cells and primary rat hepatocytes (primary hep.) for T1AM (A) and
for T3 (B). HepG2 cells or primary rat hepatocytes were seeded in 96 well plates (10.000 cells/well) and treated with
T3 or T1AM for 24 h; then, NAD concentration was assessed by a NAD/NADH cell-based colorimetric assay kit in cell
lysates, according to manufacturer’s instructions. All treatments received the same amount of vehicle (DMSO for T1AM
and NaOH 0.1 mM for T3). Data are represented as mean ± SEM. (one-way ANOVA, p < 0.01, Dunnett’s post-hoc test for
multiple comparison, **p < 0.01; ***p < 0.001 vs. control (Con), n = 5 per group).

Sirtuin activity was measured in the nuclear extracts which contained, according to the handbook of nuclear
extraction kit, described in the Materials and methods, SIRT1, SIRT6 and SIRT7, and in the cytoplasmic extracts
containing SIRT2, SIRT4 (present also in mitochondria) and SIRT5. Baseline values of sirtuin activity in control
cells averaged in the nuclear and cytoplasmic extracts of each cell line, respectively, as follows: in primary rat
hepatocytes, 0.159 ± 0.011 OD/min/mg and 0.042 ± 0.006 OD/min/mg; in the HepG2 cell line, 0.086 ± 0.010
OD/min/mg and 0.0253 ± 0.004 OD/min/mg.

As shown in Figure 3A, T1AM significantly reduced sirtuin activity only in the nuclear extracts of primary
rat hepatocytes by about 40% (T1AM 10 μM, p < 0.05), without inducing any change in the HepG2 cell line.
Conversely, in the nuclear extract of primary rat hepatocytes, T3 exhibited opposite effects on sirtuin activity
(Figure 3B), being decreased at 20 μM (−60%, p < 0.01 vs. Con) and enhanced at 1 μM by about 50% (p < 0.01 vs.
Con). In HepG2 cells, the nuclear extract showed a remarkable increase in activity at any T3 tested concentration
(+150% with T3 1–20 μM, p < 0.05 vs. vehicle, Figure 3B). Lastly, cytoplasmic activity was never affected by T3.
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Figure 3: Sirtuin activity assay results in primary rat hepatocytes (prim. hep.) and HepG2 cells. Enzymatic activity was
measured in nuclear (n.e.) and cytoplasmic (c.e.) extracts for T1AM (A) and for T3 (B). Cells were seeded in 6-well plates
and treated with T1AM or T3 for 24 h. At the end of treatment, cells were solubilized in the assay buffer, and nuclear and
cytoplasmic extractions were performed according to manufacturer’s protocol. Sirtuin activity was evaluated in 10 μg
of each extract. Control groups received only vehicles in the same amount (DMSO for T1AM and NaOH 0.1 mM for T3).
Data are represented as mean ± SEM (one-way ANOVA, p < 0.05, Dunnett’s post-hoc test for multiple comparison, *p <
0.05; **p < 0.01 vs. control (Con), n = 3–4 per group).

Western blot analysis

To investigate and compare the effect of T1AM and T3 on mammalian sirtuin protein expression, we exposed
HepG2 cells and primary hepatocytes to T1AM or T3.

In HepG2 cells (Figure 4A), 24 h of infusion of T1AM significantly reduced SIRT1 expression (20 μM, p <
0.05) by 47% and SIRT4 expression (10 μM, p < 0.05; 20 μM, p < 0.05) by 45%, whereas T3 strongly decreased
SIRT1 (20 μM, p < 0.05) by 70%, and SIRT2 expression by 55%, 65% and 45%, respectively, at 1 μM (p < 0.05), 10
μM (p < 0.001) and 20 μM (p < 0.05). In this tumor cell line, other sirtuins were unaffected.
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Figure 4: Western blot analysis of T1AM and T3 effects on sirtuin expression in (A) HepG2 cells and (B) primary rat hepa-
tocytes. Cells were seeded in six-well plates (3×105 cells/well). Upon treatment with T1AM or T3, HepG2 cells or primary
hepatocytes were lysed in ice-cold buffer. Proteins were then subjected to SDS-PAGE, transferred to a PVDF membrane
and incubated using the appropriate primary and secondary antibodies. Representative blots of sirtuins, which reached
significance, were showed. Histograms represent mean ± SEM. All results are normalized against total protein densito-
metric values in each lane, previously acquired by fluorescence. (one-way ANOVA, p < 0.05, Dunnett’s post-hoc test for
multiple comparison *p < 0.05 vs. control group (Con), DMSO for T1AM and NaOH 0.1 mM for T3, n = 3–4 per group).

As shown in Figure 4B, in primary rat hepatocytes, sirtuin expression was unchanged by T1AM while T3
decreased SIRT2 levels by 62% (10 μM, p < 0.05).

Discussion

In this study, we compared the effect of T1AM on sirtuin activity and protein expression and cell viability in
HepG2 cells and primary rat hepatocytes. We observed a reduction in SIRT1 and SIRT4 levels in HepG2 cells
and in nuclear sirtuin activity in primary rat hepatocytes. As for MTT-estimated cell viability, the HepG2 cell
line resulted more sensible to T1AM than primary hepatocytes. Given the structural similarity between T1AM
and thyronines, investigations were extended to T3 by using the same in vitro model. We observed a reduction
in the expression of SIRT1 and SIRT2 in HepG2 cells, and SIRT2 in primary hepatocytes, while cell viability
was affected by T3 only in the HepG2 cell line. Furthermore, T3 was able to reduce cellular NAD concentration
and enhance nuclear sirtuin activity.

Sirtuins (SIRT1–7) are a class of enzymes which catalyze NAD-dependent substrate deactivation, mainly
removing an acetyl group from a variety of substrates which are involved in critical processes such as stress re-
sponse, cellular metabolism, DNA repair, cancer and aging. All the members of the sirtuin family are expressed
in liver and, among them, SIRT1–4 and SIRT6 are sirtuins whose functions have been extensively investigated
and reviewed, especially their implication in cancer (i.e. [22], [23]).

In our investigation, both tested compounds downregulated SIRT1 only in the tumor cell line, and they
slightly reduced MTT staining. The role of SIRT1 in tumorigenesis is still controversial. Several reviews debate
about SIRT1 as an oncogene or tumor suppressor and it has been reported to be overexpressed in HCC, when
compared to the normal cell line [24]. SIRT1 modifies the activity of many molecules which play pivotal roles in
cell proliferation, senescence, apoptosis and angiogenesis [25]. On one hand, SIRT1 acts as a tumor suppressor,
inhibiting inflammation, proliferation, oxidative stress and multistage carcinogenesis [26]. On the other hand,
SIRT1 accelerates tumorigenesis via multiple mechanisms, which promote genomic instability, and develop
microenvironments suitable to growth and survival of cancer cells [24]. These controversial roles of SIRT1 in
tumorigenesis have been attributed to different circumstances, such as distribution of up- and downstream
inhibiting factors, subcellular localization and different experimental models [27].
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The concept of inhibiting SIRT1 as an antitumor strategy has been explored by several groups, which have
developed various SIRT1 inhibitors as alternative approaches to cancer therapy [28], [29]. In HCC, SIRT1 co-
operates with the oncogene c-Myc in the tumorigenesis process, promoting cancer cell survival and reducing
tumor prognosis [30]. Considering the above, in our experimental model, T1AM and T3, if infused at pharma-
cological doses, may function as regulators of SIRT1, decreasing its protein expression when upregulated. On
the other hand, cell viability was reduced by T1AM or T3 also at lower concentrations, which did not affect
SIRT1 expression, indicating that other mechanisms might have been involved. In sharp contrast with protein
expression results, nuclear sirtuin activity was increased: this could be explained considering the presence of
various sirtuins, namely SIRT1, SIRT6 and SIRT7 [22] (even though SIRT1 is well known to shuttle from nu-
cleus to cytoplasm under specific circumstances [31]), which might have differently contributed to the total
enzymatic activity in the nuclear fraction.

In HepG2 cells, T1AM downregulated mitochondrial SIRT4. These results are consistent with previous
observations of SIRT4 downregulation in livers, obtained from mice or rats treated with T1AM [32], [14].
SIRT4 functions mainly as a negative regulator of fatty acid oxidative metabolism, facilitating glycolytic
metabolism [33], albeit SIRT4 may also act as a potential tumor suppressor, by inhibiting mitochondrial glu-
tamine metabolism [34]. This may indicate a cancer-promoting role for T1AM, selectively in tumor cells, because
primary hepatocytes were unaffected.

Different from T1AM, T3 was able to reduce also SIRT2 protein expression and intracellular NAD concen-
tration in both cell lines, without affecting, in cytoplasm, total enzyme activity. Other sirtuins, which included
SIRT4 as indicated by the enzymatic assay kit and usually located in mitochondria, might have contributed to
the total cytoplasmic activity, counteracting a negative effect. Literature regarding SIRT2 expression in HCC
is quite contradictory. Several evidences suggest a dual role for SIRT2 in carcinogenesis, similar to SIRT1: it
turns out to be an oncogene when it promotes epithelial-mesenchymal transition and motility of cancer cells
[28], whereas it acts as a tumor suppressor by maintaining genomic stability [35]. For this reason, the concept of
inhibiting SIRT1 and SIRT2 using a dual SIRT1/SIRT2 inhibitor has been proposed [28], and T3 could be one of
the potential molecules to test as a novel strategy for targeted therapy of tumor overexpressing these sirtuins.

In conclusion, we compared the effects of exogenous T1AM and T3 in primary rat hepatocytes and HepG2
cells, focusing our attention on expression of sirtuins, regulators of several cell processes. In the experimen-
tal models taken into account in this investigation, a higher susceptibility of tumor cell lines was highlighted.
Moreover, the decrease of SIRT1 expression, shared by both compounds, and the downregulation of SIRT2
or SIRT4, exclusive of T3 or T1AM, respectively, could allow to consider these molecules as potential sirtuin
modulators. However, summing up the functions of sirtuins in cancer and the overall effects of T1AM on sir-
tuin expression, the role of this thyronamine is still ambiguous and compensatory: on one hand, it may blunt
the antitumoral effects of sirtuin and, on the other hand, it may enhance their action as cancer suppressors,
accounting for its marginal effects on cancer cell viability. These differences are simply observational. There-
fore, further investigations (e.g. specific activity assays for each sirtuin) are required to reveal step by step the
biological mechanisms by which sirtuins are affected by thyroid hormone and its putative derivatives.
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