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We investigate the nonlinear absorption of laser energy in the bulk of transparent
dielectrics for femtosecond and picosecond laser pulses focused by a conical lens.
We highlight the influence of the pulse duration, laser pulse energy, and cone angle
on laser energy absorption in transparent dielectrics. We provide a semi-analytical
model allowing the calculation of maps for the density of nonlinear absorption of
energy in BK7 and in SiO2 as a function of the pulse duration and peak fluence in
the focal region. The comparison of the density of nonlinear absorption of energy
with the available energy density determines optimal pulse durations and Bessel beam
cone angles compatible with uniform laser energy deposition in the Bessel zone. The
results reproduce quantitatively the transmission measurements for experiments in
BK7 with picosecond pulses and suggest that the loss of propagation invariance and
uniform laser energy deposition is responsible for a previously reported transition
between different types of damage morphology in SiO2 [M. K. Bhuyan et al., Appl.
Phys. Lett. 104, 021107 (2014)]. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5053085

I. INTRODUCTION

By focusing a femtosecond or picosecond laser pulse inside a transparent dielectric, it is possible
to deposit energy in a localized region corresponding to the domain where intensity exceeds the
ionization threshold.1,2 Energy initially deposited on the electron sub-system is subsequently trans-
ferred to the lattice and may induce an alteration of the refractive index or the formation of a void
for tight focusing conditions. Laser-matter interaction in this regime has been thoroughly studied
with Gaussian beams focused by standard devices (lenses and microscope objectives) leading to the
confinement of energy in three spatial dimensions.3 Recently, high aspect ratio laser structuring was
demonstrated by focusing a femtosecond pulse in borosilicate glass and fused silica with a conical
lens, both with multiple pulse illumination and in single shot,4–7 opening the way to high-speed
deep-drilling and cutting of glass samples as well as to nanoscale volume structuring with ultrashort
laser pulses.8–12

As sketched in Fig. 1, focusing a Gaussian beam by a conical lens generates a Bessel-Gauss
beam over an elongated focal region; i.e., a light string with a narrow core and almost a Bessel
beam profile J0(k0 sin θr) is formed over a distance LB = 40/tan θ called the Bessel zone.13,14 Here
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FIG. 1. (a) Focusing a Gaussian beam by an axicon generates a Bessel-Gauss beam profile of diameter 2r0 from the interference
of inward and outward conical waves, characterized by a cone half-angle θ. The Bessel zone denotes the region of the focal
line of length LB. The profile of the peak intensity of the Bessel-Gauss beam is sketched in the case of (b) linear propagation,
(c) nonlinear propagation (large angles), and (d) a flat-top profile modeling nonlinear propagation.

θ denotes the cone half-angle of the Bessel beam in the medium, k0 = 2πn0/λ0 is the wavenum-
ber in the medium of refractive index n0 at the laser wavelength λ0, and 40 is the e−2-radius of
the initial Gaussian beam of intensity distribution I(r)= I0 exp(−2r2/42

0). In the linear propagation
regime [Fig. 1(b)], the fluence profile along z was calculated by Jarutis et al.15 and takes the form
F(z)= 4πF0(k0 sin θ/40)z̄ exp(−2z̄2), where z̄= z/LB and F0 denotes the peak fluence of the Gaussian
beam. The radius r0 of the Bessel filament can be approximated by the first zero of the Bessel beam
profile, which satisfies k0 sin θ r0 = j0,1, where j0,1 ∼ 2.405 is the first zero of the J0 Bessel function.

Several nonlinear propagation regimes were reported for Bessel beams:16,17 (i) The regime of
small cone angles is featured by oscillations of the peak intensity of the Bessel beam along the
propagation axis when the beam power exceeds a certain threshold. This regime exhibits the typical
pulse dynamics occurring in ultrashort laser pulse filamentation.18 For instance, Gaižauskas et al.19

have observed discrete, equidistant damage spots in a borosilicate glass for a cone angle of 5◦. (ii)
The regime of large cone angles is characterized by a uniform light channel over the Bessel zone
with a quasi-constant intensity [see Fig. 1(c)], associated with a propagation invariant nonlinear
Bessel beam profile.16,20 In the present work, this regime was observed slightly above the transition
for cone angles of ∼10◦ in air (6.6◦ in borosilicate glass); however, the transition also depends on
the pulse duration and electron dynamics. The latter regime is of high interest for applications in
precision micro- and nano-channel drilling of transparent dielectrics since the laser pulse forming
the Bessel filament leaves in its wake a uniform plasma track, generated by the main Bessel lobe,
that is, the main support for the absorption of laser energy. After this stage, the absorbed energy is
transferred to the lattice and induces thermo-mechanical stress leading to a void nanochannel. While
different mechanisms from microexplosion21 to cavitation in the liquid phase22 were proposed to be
responsible for the formation of a void nanochannel, efficiency of this technique for nano-channel
drilling has already been reported.5

Figure 2 shows typical examples of 100 µm long tracks generated with a single laser shot in
borosilicate glass (Corning 0211) by means of a Bessel beam produced by a spatial light modulator
(SLM) out of the beams of a Ti-sapphire laser delivering 135 fs, 800 nm pulses with ∼15 µJ per
pulse. For the same focusing conditions and pulse energy, refractive index changes induced by the
Bessel beam are clearly visible and significantly different for pulses of picosecond duration. The
shortest pulses, with potentially higher intensity in the focal region, lead to less visible tracks. The
work we present is mainly theoretical, and the main question we address is the existence of optimal
laser parameters for absorption of laser energy in the bulk of transparent materials, along the focal
line of a Bessel beam.

In this aim, we present maps of the density of laser energy absorption in BK7 and in SiO2 as a
function of the pulse duration and the peak fluence in the Bessel zone. These maps are qualitatively
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FIG. 2. Typical example of damage tracks in borosilicate glass (Corning 0211, a material close to BK7) after illumination
with Bessel beams. The 800 nm laser pulses have an energy of 14.6 µJ. The Bessel cone angle in the material is θ = 10◦. The
pulse durations are (a) 135 fs and (b) 3 ps.

representative of nonlinear absorption in any dielectric medium, though quantitatively specific to each
medium as they depend on nonlinear absorption coefficients. Other experimental control parameters,
including the cone angle of the Bessel beam and the pulse energy, determine the peak fluence in
the Bessel zone. Given the damage tracks, nonlinear absorption appears to be significant only in
the central core of the Bessel zone, even if the secondary lobes of the Bessel beam are important
for nonlinear propagation and for energy balance considerations. Mapping the density of energy
absorption can be performed semi-analytically owing to the properties of nonlinear propagation of
Bessel beams. Propagation invariance in the Bessel zone suggests a simplified flat-top profile for
the peak intensity in the Bessel zone [Fig. 1(d)], with the underlying idea that the beam is intense
only in the central core of the Bessel zone, of volume LBπr2

0 , and that the localized absorption of
laser energy can be evaluated by limiting integration volumes to the main lobe of the Bessel beam.
A comparison of the nonlinear absorption density maps with the density of available energy sets
the validity limit of this evaluation, interpreted as a loss of propagation invariance. Regions where
propagation invariance holds are presented for BK7 and SiO2 as a function of the pulse duration,
cone angle, and pulse energy.

More generally, the method to evaluate nonlinear absorption maps applies in the context of
laser-matter interaction and laser damage measurements of optical materials and components23–25

and should help us develop well-controlled micromachining processes26,27 for applications in the
photonics industry.

II. PLASMA GENERATION AND NONLINEAR ABSORPTION OF ENERGY

Nonlinear propagation is usually described by a propagation equation governing the evolution
of the laser electric field coupled with a model for the medium response in the form of a constitutive
relation linking the nonlinear polarization and current entering in the propagation equation to the
electric field.28 Here, we are mainly interested in the propagation regime of Bessel beams with large
cone angles, which is featured by a uniform absorption of laser energy due to the quasi-invariance
of beam propagation.17 Earlier studies have shown numerical evidence that for a sufficiently large
cone angle, a Gaussian beam focused by an axicon reshapes into a propagation invariant nonlinear
Bessel beam,16,17,20 which preserves the amplitude of the linear Bessel beam that the axicon would
generate in linear propagation.29,30 The nonlinear Bessel beam is featured by a balance between the
incoming conical energy flux toward the center and nonlinear losses in the intense part of the beam.
The beam shape is similar to that of a linear Bessel beam with slightly compressed rings due to Kerr
self-focusing and an attenuation of contrast due to the effect of nonlinear losses.31 In contrast to
linearly propagating finite energy Bessel-Gauss beams, the peak intensity of nonlinear Bessel beams
along the propagation axis remains fairly constant over the Bessel zone.17 We therefore evaluate
the nonlinear absorption for a perfectly propagation invariant nonlinear Bessel beam over the entire
Bessel zone [Fig. 1(d)], where the beam exhibits a profile almost similar to a J0 Bessel function, with
a sufficient peak intensity to generate a plasma. Propagation invariance is associated with nonlinear
energy losses which exactly balance the conical energy flux toward the high intensity core of the
Bessel beam, where energy is absorbed nonlinearly, i.e., deposited to the medium.20 We evaluate the
absorption coefficient as the ratio of the density of energy absorption to the available laser energy
density in the Bessel zone. When the assumption of perfect propagation invariance of the Bessel
beam is no longer valid, the absorption coefficient takes values larger than unity, defining boundaries
for pulse durations, cone angles, and pulse energies where nonlinear absorption maps cannot be
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used. These boundaries are calculated a posteriori since we focus on the constitutive relations of the
medium in a first stage, i.e., the generation of electron density which is of particular importance for
the absorption of laser energy with Bessel beams. In a second stage, we will determine the validity
region of the nonlinear absorption maps.

A. Ionization

Intense laser fields can lead to ionization of the medium by multiphoton ionization and avalanche.
Following a standard model, the evolution of the electron plasma density ρ is governed by a simple
rate equation

∂ ρ̃

∂t
= (νmpi Ĩ

K + νav Ĩ ρ̃)(1 − ρ̃) +
∂ ρ̃

∂t

�����rec
, (1)

where ρ̃≡ ρ/ρ0 denotes the ionization degree and ρ0 denotes the electron density in the valence
band. The quantity Ĩ ≡ I(t)/Ip denotes the time-dependent pulse intensity, normalized by Ip, the peak
intensity of the pulse. Ionization rates are expressed as νav ≡ σIp/Ug and νmpi ≡ βK IK

p /UK ρ0, where
βK denotes the multiphoton absorption coefficient, UK = K~ω0 denotes the energy of K photons of
frequency ω0 necessary to promote an electron from the valence to the conduction band, with gap
Ug, and σ denotes the cross section for inverse Bremsstrahlung entering in the avalanche ionization
rate. The last term in (1) denotes the recombination law, with either a quadratic dependence of the
rate upon electron density (Model Mq) or a linear dependence (Model Ml) to model processes with
exponential decay (see the second column in Table I). The model Mq describes electron decay at
the rate νrec due to bimolecular recombination with positive ions,32 whereas the model Ml describes
trapping of electrons at the rate νr.33,34 Both processes are slow, and the results do only moderately
depend on the specific choice for the recombination model.

B. Absorption of energy

Two physical effects are responsible for the absorption of laser energy by the medium: (i) Mul-
tiphoton absorption corresponds to the energy necessary to initiate the generation of the electron
plasma by the intense field. (ii) Plasma absorption corresponds to the energy necessary for the laser
field to accelerate the seed electrons promoted in the conduction band. Energy is initially transferred
to electrons but eventually ends up heating the medium.

Energy deposition to the medium corresponds to the sum of both contributions. Let us define the
volume averaged density of absorbed energy, uNL, as the ratio of the absorbed energy per length unit
by the cross section of the focal volume,

uNL =
1

πr2
0

∫ r0

0

∫ +∞

−∞

[
βK IK + σρI

] (
1 −

ρ

ρ0

)
dt 2πrdr, (2)

where the integration volume is limited to the focal region r < r0, defined as the domain where the
beam is intense enough to generate a plasma; i.e., r0 denotes the radius of the plasma filament. For
convenience, we will use below the normalized density of nonlinear energy absorption ũNL ≡

uNL
ρ0Ug

,
where ρ0Ug represents an energy scale corresponding to the energy that would be deposited in the
medium if all valence electrons underwent a transition to the conduction band.

TABLE I. Recombination models: the table indicates the expressions for ∂ρ
∂t

���rec
for model Mq or Ml in Eq. (1) and the

corresponding expressions for parameters ν1 and ν2 in Eq. (3).

Model
∂ρ̃

∂t

�����rec
ν1 ν2

(Mq) −νrecρ̃
2 1

2
(νav − νmpi) νav + νrec

(Ml) −νrρ̃
1
2

(νav − νmpi − νr) νav
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III. NONLINEAR ABSORPTION MAP FOR A FLAT-TOP PULSE

We first present a fully analytical solution to Eqs. (1) and (2). In this aim, we simplified beam
and pulse shapes to easily carry out the calculations using flat-top beam and pulse shapes. In Sec. III,
we will numerically integrate Eqs. (1) and (2) for the Gaussian pulse and Bessel beam shapes. The
comparison will show that the analytical solution provides a good approximation for the nonlinear
absorption of laser energy (order of magnitude and trends vs parameters), even if the choice of pulse
and beam shapes has a quantitative effect on the results.

A. Plasma density

Equation (1) is solvable analytically under certain conditions. For instance, if the laser pulse is
approximated by a flat-top pulse of duration τp and constant intensity I = Ip for 0 ≤ t ≤ τp, I = 0
otherwise, Eq. (1) becomes a Ricatti equation in the form

∂ ρ̃

∂t
= νmpi + 2ν1 ρ̃ − ν2 ρ̃

2, (3)

where the coefficients ν1 and ν2 are listed in Table I for each recombination model. Only the expres-
sions for parameters ν1 and ν2 differ when the recombination model is changed from Mq to Ml;
otherwise, the formalism is the same for both models. For this reason, we present analytical expres-
sions valid for both models, but we will illustrate results solely for model Mq with a recombination
rate given by νrec ≡ τ

−1
r , where τr is given in Table II for BK7.

For 0 ≤ t ≤ τp, the solution to Eq. (1) can be expressed as

ρ̃(t)= νmpi
exp(δt) − exp(−δt)

ν− exp(δt) + ν+ exp(−δt)
, (4)

where

δ =
√
ν2νmpi + ν2

1 , (5)

ν± = δ ± ν1. (6)

B. Nonlinear absorption of energy

Equation (2) can also be evaluated analytically in the case of a flat-top beam shape of radius
r0 with uniform intensity I = Ip for 0 < r < r0. In this case, the radial integration amounts to a
multiplication by the surface of the plasma filament πr2

0 which cancels out with the denominator. We
can thus work with the time integration only to calculate the density of energy absorption, normalized
to the product of the gap by the density ρ0,

ũNL ≡
uNL

ρ0Ug
=

∫ +∞

−∞

[
UK

Ug
νmpi Ĩ

K + νav ρ̃Ĩ

]
(1 − ρ̃) dt, (7)

where Ĩ = I/Ip. For a flat-top pulse, the normalized density of energy absorption reads

ũNL =
UK

Ug
νmpi

∫ τp

0
(1 − ρ̃)dt + νav

∫ τp

0
( ρ̃ − ρ̃2)dt, (8)

TABLE II. Material parameters for BK7 and SiO2 at the laser wavelength λ0 = 800 nm.

Medium Symbol BK7 SiO2 References

Bandgap Ug (eV) 4.2 9.0 35 and 36
Refractive index n0 1.51 1.45 37
MPA cross section βK (cm2K�3 W1�K ) 3.1 × 10�25 3.0 × 10�83 38
Number of photons K 3 6 38
Plasma absorption cross section σ (cm2) 9.1 × 10�19 1.1 × 10�17 39
Density ρ0 (cm�3) 2.1 × 1022 2.1 × 1022

Recombination time τr (fs) 2000 150 33 and 40
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where the integrals over the pulse duration are calculated from the electron density equation (3),
resulting in closed analytical expressions∫ τp

0
ρ̃(t)dt =

1
ν2

[
ν+τp + ln

(
ν− + ν+e−2δτp

2δ

)]
(9)

and ∫ τp

0
( ρ̃ − ρ̃2)dt =

1
ν2

[
ρ̃(τp) + ν+

(
1 −

ν+

ν2

)
τp +

(
1 −

ν1

ν2

)
ln

(
ν− + ν+e−2δτp

2δ

)]
. (10)

These expressions are general for transparent materials. We illustrate results obtained for BK7
and SiO2, with material parameters listed in Table II.

C. Nonlinear absorption maps for BK7 and for a flat-top pulse

The pulse intensity Ip in the focal region is linked to experimental parameters by considering
that the pulse energy, the pulse duration τp, and focusing conditions are fixed, which determines the
pulse fluence F in the focal region. The link between these quantities Ip = F/τp allows us to express
the density of energy absorption and the electron density as functions of the pulse duration and peak
fluence.

Figure 3(a) shows the nonlinear absorption map obtained from Eqs. (4) and (8) for model (Mq).
The highest density of energy absorption is obtained in the region of short pulses and high fluence
(lower right corner) where multiphoton absorption dominates over plasma absorption. The density of
energy absorption decreases monotonically as the pulse duration increases for a given pulse fluence
or as the fluence decreases for a given pulse duration. This result may seem to differ from the
conclusion by Liu et al. that the maximum electron density and absorption are associated with
avalanche ionization and breakdown for microjoule femtosecond pulses propagating in transparent
condensed matter.41 However, our analysis in Sec. IV will show that a more realistic pulse shape leads
to the appearance of a maximum in the density of absorbed energy, at picosecond pulse durations,
thus stressing the prevailing role of avalanche ionization around the maximum, in agreement with
the conclusion of Ref. 41.

Proceeding with the link between electron density and density of energy absorption, we note that
Eq. (7) can be rewritten as

uNL =
Ug

πr2
0

∫ r0

0

∫ +∞

−∞

(
∂ρ

∂t
−
∂ρ

∂t

�����rec

)
dt 2πrdr +

(UK − Ug)

πr2
0

∫ r0

0

∫ +∞

−∞

νmpi
IK

IK
p

(ρ0 − ρ)dt 2πrdr, (11)

showing that if the recombination were not taken into account, the density of nonlinear absorption
would be equal to the product of the gap, Ug, by the radially averaged electron density. For the flat-top
pulse and model (Mq), Eq. (11) becomes

ũNL = ρ̃(τp) + νrec

∫ τp

0
ρ̃2dt + νmpi

(
UK

Ug
− 1

) ∫ τp

0
(1 − ρ̃)dt. (12)

The first term on the right-hand side simply represents a radially averaged energy density
uNL = ρ̃(τp)ρ0Ug equal to the product of the energy gap Ug by the density ρ(τp) of conduction
band electrons at the end of the pulse. This dominant contribution represents the minimum cost for
the transition from the valence to the conduction band and varies monotonically with pulse duration
τp and fluence F. Two terms actually increase the density of absorbed energy above ρ(τp)Ug: (i) the
second term on the rhs of Eq. (12) represents the product of the energy gap by the density of electrons
that not only underwent a transition from valence to conduction band but also recombined during the
pulse. (ii) The third term on the rhs of Eq. (12) represents a residual energy absorption due to the
fact that the energy of the K photons involved in multiphoton ionization of an electron exceeds the
energy gap. A good order of magnitude for the density of absorbed energy is therefore given by the
product of the energy gap by the density of electrons in the conduction band immediately after the
pulse.

The peak electron density is shown in Fig. 3(b) as a function of pulse duration and fluence. The
highest electron density is obtained in the region of short pulse durations and large fluences, where
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FIG. 3. Nonlinear absorption map for the flat-top pulse and the quadratic recombination model (Mq) for BK7: (a) Normalized
nonlinear absorption ũNL , in units of ρ0Ug = 14.1 kJ/cm3 and (b) normalized peak electron density ρ̃, in units of ρ0 = 2.1
× 1022 cm−3, as functions of pulse duration τp and fluence F. The labeled solid curves correspond to isocontours for ũNL or
ρ̃, respectively. The dashed lines are eye-guides F ∝

√
τp (red line) or F ∝ τp (blue line) suggesting the breakdown threshold.

multiphoton ionization prevails over avalanche ionization. An ionization degree of one, corresponding
to all valence electrons in the conduction band, is asymptotically approached in the lower right corner
of Fig. 3(b). It has been established that the damage fluence threshold for dielectric materials varies
as τ1/2

p for pulse durations larger than 10 ps (see Ref. 42). However, it is for short pulse durations that
the red dashed line in Fig. 3(b) coincides with isolevels of the electron density, the slope of which
corresponds to the τ1/2

p scaling of the breakdown threshold. For longer pulses, the blue dashed-dotted
line F ∝ τp fits better the curves of constant electron density. Hence, from the standard empirical
definition of breakdown threshold stating that breakdown occurs when the electron density exceeds a
certain threshold, the value of which ranges from 1017 to 1020 cm−3 (see Refs. 43–45), and the large
fluence values reached in the lower right corner of these maps (corresponding to electron densities
above 2 × 1021 cm−3 ∼ 10−1ρ0 for short pulses) must be considered as well above the breakdown
threshold and cannot be expected to accurately represent nonlinear absorption of energy. Nevertheless,
Du et al. have proposed a scaling law F ∝ τ−1

p for the damage threshold of dielectric media under
femtosecond laser pulse radiation,42 potentially extending the validity domain to fluence levels larger
than a few J/cm2 for subpicosecond pulses. This is especially relevant with Bessel beams since energy
deposition in the focal region is only weakly affected by material damage in the region of the central
lobe owing to the conical energy flow featuring Bessel beam propagation.
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IV. NONLINEAR ABSORPTION MAPS FOR BK7 AND SiO2 WITH A GAUSSIAN PULSE

In this section, we still assume the pulse to be propagation invariant in the Bessel zone, but we
relax the approximation of flat-top pulse and beam shapes. We write the intensity distribution in the
Bessel zone in the form of the product of a Gaussian pulse profile with a Bessel beam profile,

I(r, t)= IpJ2
0 (k0 sin θ r) exp*

,
−a

t2

τ2
p

+
-
, (13)

where a = 4 ln 2 and τp denotes the full width at half maximum (FWHM) pulse duration. Inte-
gration of Eq. (1) can be performed semi-analytically with a Gaussian pulse (see, e.g., Ref. 46);
however, the spatial integration of the Bessel beam intensity profile in Eq. (2) requires a numerical
integration. We therefore obtained the plasma density and the density of nonlinear absorption of
energy from a fully numerical integration of Eqs. (1) and (2). To express the results as functions
of the pulse duration and peak fluence as in the case of the flat-top beam, we used the expression
F = Ipτp

√
π/a linking Ip and the peak fluence F. We solved Eqs. (1) and (2) and plotted the nonlinear

absorption maps for BK7 and for SiO2 in Fig. 4 as a function of fluence and pulse duration. The
density of nonlinear absorption of energy exhibits a similar general dependence upon τp and F as
for a flat-top pulse. A difference is however found for the region where the density of absorbed

FIG. 4. Nonlinear absorption maps for (a) BK7 and (b) SiO2 calculated for a Gaussian pulse as a function of fluence
and pulse duration. Labels on iso-contours indicate the normalized density of nonlinear absorption ũNL in units of ρ0Ug

(14.1 kJ/cm3 for BK7; 30.3 kJ/cm3 for SiO2).
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energy exceeds 2ρ0Ug (contour level marked “2”) and reaches a maximum for the highest values
of fluence and pulse durations of several picoseconds in Fig. 4(a), whereas the highest absorption
is found for the lowest right corner in Fig. 3(a) with pulse durations smaller than 100 fs. For fused
silica, the material with the higher bandgap, this maximum is obtained for a fluence that is lower
by a factor of ten. For both materials, the position of the maximum at picosecond pulse durations
means that longer pulses are likely to be more efficient than femtosecond pulses for laser energy
deposition, if the corresponding range of fluence can be reached in the Bessel zone. For pulse dura-
tions of several tens of picosecond, these fluence levels lie at the border of the damage threshold.
For instance, the isocontour labeled “1” (i.e., 30.3 kJ/cm3) in Fig. 4(b) is in excellent agreement
with the damage threshold curve reported by Du et al. for fused silica, suggesting another empiri-
cal definition of the damage threshold as the fluence necessary to reach a certain density of energy
deposition.

We note that the radius of the plasma filament r0 formally depends on the cone angle, but this
dependence cancels out in the numerical integration of Eq. (2) due to the plasma filament surface in
the denominator. Therefore, the density of energy absorption depends on material parameters but not
on the cone angle of the Bessel beam. In fact, the fluence in the Bessel zone is determined by the
cone angle, but the normalized quantity ũNL plotted in Figs. 3 and 4 does not directly depend on cone
angle. It represents the density of energy absorption that the medium can support under irradiation
by a pulse with duration τp and peak fluence F and is typical of the material.

V. DISCUSSION OF RESULTS

A. Optimal absorption of laser energy

The energy absorption maps in Fig. 4 provide information about the ability of the medium
to absorb a certain amount of energy density independently of focusing conditions. An additional
analysis must be performed in order to determine whether this energy density is available for given
beam and pulse parameters in specific conditions of axicon-focusing. In particular, if the pulse energy
and cone angle are fixed by experimental conditions, we are interested in the possibility to play on
the pulse duration, by chirping the pulse, in order to optimize laser energy deposition. How can we
link material and laser parameters to find this optimum?

To answer this question, we first determine the peak fluence set by the constraints on the laser
pulse and focusing conditions, sketched in Fig. 1. The peak fluence in the Bessel filament is determined
by uniformly distributing the energy of the beam within the column of length LB and radius r0. The
input beam can be viewed as a superposition of rings carrying a fraction 2r0/40 of the total energy.
Each ring is focused with the same cone angle θ at a certain distance within the Bessel zone; i.e., its
energy is distributed over the surface πr2

0 of the Bessel filament. Hence, the corresponding fluence
is F0 = (2r0/40)Ein/(πr2

0 )= 2Ein/π40r0. The peak fluence in the focal region is thus evaluated as a
function of the pulse energy and the cone angle of the Bessel beam,

F0(Ein, θ)=
2

πj0,1

Eink0 sin θ
40

. (14)

Equation (14) exhibits a similar dependence upon the parameters to that of the peak fluence obtained
in the linear propagation regime for an axicon-focused Gaussian beam.15 This is explained by the fact
that Bessel beam propagation is tantamount to a uniform distribution of the Gaussian beam energy in
the focal volume, which is our assumption to obtain Eq. (14). Thus, we only find a different numerical
prefactor which reflects the difference between the peak fluence and the averaged fluence over the
focal volume. From Eq. (14) and Fig. 4, we extract a cross section representing the density of energy
absorption ũNL(τp, F0) supported by the medium.

For a uniform distribution of the pulse energy over the whole volume of the Bessel filament, the
available energy density in the focal region reads

uB =
Ein

LBπr2
0

=
Ein

40λ
2
0

4πn2
0

j2
0,1

sin2 θ tan θ (15)
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and depends on the cone angle, as shown by introducing the θ-dependence of both LB and r0 into
Eq. (15). The available energy density must be compared to the density of energy that the medium
can absorb nonlinearly.

In this aim, we define the absorption coefficient by A = uNL/uB and write it as a function of the
pulse energy, duration, and cone angle,

A=
LBπr2

0

Ein
ρ0UgũNL =

Ug

Ein

40ρ0

k2
0

πj2
0,1ũNL(τp, F0(Ein, θ))

sin2 θ tan θ
, (16)

where F0 is given by Eq. (14). Note that Eq. (16) generalizes the model proposed in Ref. 47 to the cases
where nonlinear absorption is not solely determined by mutiphoton absorption (see the Appendix for
details). When the condition 0 < A < 1 is satisfied, the density of available laser energy is sufficient
for nonlinear absorption to be homogeneous within the Bessel zone, in keeping with the propagation
invariance of the Bessel beam. This usually occurs for long pulses. For short pulses or, depending on
the cone angle, for pulse durations within a certain range, the level of fluence can be such that uNL(τp,
F0(Ein, θ)) > uB(Ein, θ); i.e., the incoming energy flux at the given pulse energy, pulse duration,
and cone angle cannot sustain the corresponding high nonlinear absorption of energy. It is therefore
impossible to satisfy our assumption of propagation invariance. Pulse propagation at these levels
of fluence is non-stationary, featured by cycles of fast nonlinear absorption rapidly exhausting the
incoming flux and decreasing the intensity in the focal region and followed by a slower restoration
of the incoming energy flux due to the self-healing property of Bessel beams.17

The validity range of our assumptions can therefore be derived by combining Eqs. (14) and (16)
as

ũNL

(
τp,

4n0

j0,1

Ein

40λ0
sin θ

)
<

4π

j2
0,1

Ein

Ug

n2
0

40λ
2
0ρ0

sin2 θ tan θ. (17)

Figure 5 illustrates this condition. The condition for propagation invariance expressed by Eq. (17)
is not satisfied within non-stationarity regions. For a fixed laser beam width (40 = 180 µm in Fig. 5),
these regions take the form of tongues in the plane spanned by the pulse duration and the cone angle.
The boundaries of these tongues depend on laser pulse energy. For example, nonlinear Bessel beam
propagation of a 70 µJ pulse in BK7 [Fig. 5(a)], for a cone angle of 6.6◦, should undergo a transition
from a propagation invariant to a non-stationary propagation regime when the pulse duration is
decreased below 1 ps (crossing of the green boundary). The non-stationarity tongues in Fig. 5 show
that for a given pulse energy and duration, a range of cone angles exists for which absorption of energy
cannot be uniform in the Bessel zone. For a given beam width and pulse energy, long (picosecond)
pulses and large cone angles are predicted to be compatible with invariant Bessel beam propagation
and a uniform laser energy deposition. The optimal pulse duration and cone angle for laser energy
deposition with a Bessel beam are found outside of and close to the corresponding non-stationarity
tongue, where the absorption coefficient is approaching unity.

A comparison of Figs. 5(a) and 5(b) shows that the material with the lower bandgap, BK7,
allows for a uniform laser energy deposition with Bessel beams in a propagation invariant regime
over a much wider range of cone angles and pulse durations compared to fused silica. Pulses with
significantly higher energy can be used. In fused silica, with moderate cone angles (θ < 10◦), pulses
of a few µJ can lead to a uniform energy deposition if their duration exceeds a certain threshold. This
threshold increases with pulse energy. For instance with a cone angle of 10◦, this threshold reaches
1 ps for a pulse energy of 10 µJ. At the same cone angle and pulse energy, a uniform energy deposition
can be obtained in BK7 for pulses longer than ∼20 fs. These results show that it is easier to obtain
a uniform laser energy deposition with a Bessel beam in BK7 compared to fused silica, in keeping
with the report of single shot, high aspect ratio laser drilling by focusing a femtosecond pulse in
borosilicate glass with a conical lens.5

B. Comparison with measurements and numerical simulation results

We performed experiments to compare the results given by the semi-analytical model [Eqs. (14)
and (16)] with measurements of the integrated transmission through BK7. We used an infrared
Ti:sapphire laser delivering 40 fs pulses and operating at the repetition rate of 20 Hz. The grating
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FIG. 5. Non-stationarity tongues for a fixed beam width (40 = 180µm) and a set of pulse energies (see the inset) in (a) BK7 and
(b) SiO2. Each curve forms a tongue inside which the density of absorbed energy uNL is higher than the available laser energy
density uB. The condition (17) for propagation invariance in the Bessel zone is fulfilled outside the tongue corresponding to
the pulse energy, i.e., for large pulse durations or large cone angles.

pairs in the laser were detuned to lengthen the pulse duration up to 10 ps. The setup is similar to that
used in Ref. 48: The Bessel filament was generated in BK7 by inserting in the path of the laser beam
an axicon between two telescopic systems so as to image the Bessel zone after the axicon inside the
sample. The cone angle was 10◦ in air (θ ∼ 6.6◦ in BK7). The equivalent beam width at the entrance
of the Bessel zone is 40 = 180 µm, and the corresponding Bessel zone length is LB = 1.5 mm.
The transmission was estimated just after the sample by measuring the total output energy of the
beam with an energy meter. The measurement was performed by averaging the energy value over
20 pulses.

Figure 6 shows the measured transmittance Tr for a pulse duration of 5 ps and pulse energies
Ein = 20, 30, 40, 50, and 70 µJ (F ∼ 4, 6, 8, 10, and 14 J/cm2) and the transmittance obtained by
our model Tr = Tr0(1 − uNL/uB) for these parameters, where Tr0 ∼ 0.85 represents the transmittance
measured at low energy, i.e., the effect of linear losses and reflectivity (Fresnel losses). We also
performed numerical simulations resolving a unidirectional envelope propagation equation coupled
with Eqs. (1) and (2). The propagation model is presented in detail in Ref. 39. In contrast to our
semi-analytical model, numerical simulations do not assume a propagation invariant beam and pulse,
allowing for pulse shortening along propagation.

We obtain a fair quantitative agreement between the measurements (triangles) and the results of
numerical simulations (circles), even if the latter slightly overestimate the transmittance. The general
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FIG. 6. Transmittance as a function of pulse energy for τp = 5 ps. The cone angle of the Bessel beam is 10◦ in air (θ ∼ 6.6◦ in
BK7). Triangles and circles represent measurements (Exp.) and numerical simulation (Sim.) results, respectively. The squares
are obtained from the semi-analytical model (Mod.) as Tr = Tr0(1 − uNL /uB) for τp = 5 ps.

trend observed in the measurements is also qualitatively well reproduced by the semi-analytical model,
the results of which are in good agreement with numerical simulation results for pulse energies below
50 µJ. At larger pulse energies (Ein ∼ 70 µJ), the semi-analytical model clearly underestimates the
transmittance. Our assumption of propagation invariance in the semi-analytical model is justified by
the good agreement obtained for pulse energies below 50 µJ and by the pulse profiles obtained by
numerical simulation results, which are similar to those in Ref. 39 and indeed confirm that after an
initial beam reshaping and pulse shortening, the pulse propagates through the Bessel zone with only
a smooth variation of the peak fluence and small oscillations, the amplitude of which increases with
the pulse energy. Figure 5(a) shows that the working point for a pulse duration of 5 ps and a cone
angle of 6.6◦ belongs to the stationarity region for all pulse energies up to 100 µJ, but close to the
frontier. Simulations tell us that the actual working point should have a smaller pulse duration due
to the initial transient pulse shortening. Figure 5(a) also shows that for increasing pulse energies, the
region of non-stationarity (interior of the tongues) extends toward larger pulse durations: A range
of picosecond pulse durations enters the regime of non-stationarity while a range of subpicosecond
pulse durations enter the regime of stationary propagation. For these reasons, the working point in
Fig. 5(a) could travel from a stationarity region to the non-stationarity region when pulse energy
is increased. We therefore interpret the appearance of the small oscillations in the simulation and
the discrepancy for the transmittance at 70 µJ in Fig. 5 as a progressive transition to the regime of
non-stationarity.

In addition to the progressive loss of stationarity at large pulse energies, the deviation between
the semi-analytical model and simulations/experiments at Ein = 70 µJ may be due to the fact that (i)
material parameters for BK7 (Table II) are not known with high accuracy; (ii) our model considers
multiphoton and plasma absorptions as the only phenomena for laser energy deposition, with a
single functional form (dependence upon pulse intensity) in the entire parameter space; (iii) a frozen
(flat-top) intensity profile has been assumed along the propagation distance in the Bessel zone; this
assumption could be relaxed to allow for a slow variation of the peak fluence or plasma channel radius
with propagation distance; (iv) absorption in secondary lobes of the Bessel beam was neglected; (v)
our model entirely neglects plasma defocusing in the evaluation of the energy concentration in the
Bessel zone. In an experimental situation, the fluence could be slightly lower than that evaluated
from Eq. (14). These five possibilities are ranked from the most to the less important for the origin
of the discrepancy at 70 µJ. More precisely, at the frontier between (i) and (ii), the more critical
parameter is the collision time used to parameterize collisional absorption in BK7, in the context
of the Drude model. Future work will be devoted to an improvement of the modeling of collisional
absorption.

As a final remark, we stress the good matching of the boundaries of non-stationarity tongues
calculated from the semi-analytical model with the frontiers of the region of uniform void formation
obtained from recent observations of different damage morphologies in fused silica with Bessel beam
illumination (see Fig. 3 of Ref. 7). For a given cone angle of 8◦ as in Ref. 7, the non-stationarity tongues



120805-13 Lamperti et al. APL Photonics 3, 120805 (2018)

in Fig. 5(b) show an increase of the pulse duration above which a propagation invariant regime and
uniform energy deposition are obtained when the pulse energy is increased. We interpret a uniform
void formation within the Bessel zone as the result of a uniform laser energy deposition associated
with an invariant propagation of the Bessel beam. The frontier between the regime of uniform void
formation and the regime of void with fragmentation in Fig. 3 of Ref. 7 then qualitatively agrees
with our results plotted in Fig. 5(b). Measurements from Ref. 7 show a significantly higher energy
deposition in the case of picosecond pulse durations and a lower energy density concentration for
femtosecond pulses. This is also the case in other materials, as indicated by the weak trace in Corning
0211 in Fig. 2(a). This optimum arises because of two key ingredients: (i) the local maximum on the
map for the density of nonlinear absorption of energy in Fig. 4 lies in the picosecond range, making
picosecond pulses more advantageous for laser energy deposition and (ii) for a uniform energy
deposition, the laser pulse energy and focusing conditions are selected out of the corresponding
non-stationarity tongue in Fig. 5(b).

VI. CONCLUSION

We have proposed a semi-analytical model to map the density of absorption of laser energy in
glasses (BK7 and SiO2) as a function of pulse duration and peak fluence in the focal region. We have
shown how to select optimal focusing conditions and laser pulse parameters for a uniform distribution
and absorption of energy in the focal volume corresponding to axicon-focusing of a Gaussian beam,
the Bessel zone, where a plasma is generated by optical field ionization (multiphoton ionization) and
by avalanche.

From the maps of laser energy absorption and given laser parameters (pulse energy, beam width),
we determined the region of parameters compatible with a uniform deposition of laser energy. We
showed that in a tongue-shaped region of the plan spanned by the pulse duration and the cone angle
for the Bessel beam, the nonlinear absorption of laser energy is too fast with respect to the available
laser energy for energy deposition to be uniform. Optimal uniform energy deposition for a given
pulse energy is predicted to occur for pulse durations and cone angles lying close to the frontier of
the non-stationarity tongue.

Results reproduce qualitatively the transmittance in BK7 measured in a dedicated experiment,
provided conditions of propagation invariance remain fulfilled. Numerical simulation results, in agree-
ment with the measurements, helped us to confirm the loss of propagation invariance when the pulse
energy was increased, leading to an overestimation of nonlinear absorption. Earlier observations of
different types of damage morphology obtained by Bessel beam propagation in fused silica7 were
also interpreted in light of our findings. The transition between the regime of uniform void formation
and the regime of void with fragmentation occurs for picosecond pulse durations in fair agreement
with the frontier of the non-stationarity tongues predicted from our model.

A uniform laser energy deposition with Bessel beams opens the way to applications such as high-
aspect-ratio structuring of glasses. The conjunction of maps of nonlinear absorption of laser energy
and the non-stationarity tongues help us select optimal parameters for these applications. Since a
nonlinear absorption map depends on material parameters only, it can also be used for different
focusing conditions, e.g., tight focusing of Gaussian beams with lenses or parabolic mirrors, in the
aim of laser energy deposition in the bulk of dielectric media.
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APPENDIX: LIMIT OF EQ. (16) IN THE ABSENCE OF AVALANCHE
AND RECOMBINATION

Equation (16) can be viewed as an extension of the model proposed in Ref. 47, where the
effects of avalanche and recombination were neglected in Eq. (1) and only multiphoton ionization
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was considered in Eq. (2) in the limiting case of weak ionization ρ � ρ0. This allowed for a fully
analytic determination of the energy loss density uNL as

uNL = βK IK
p τp

π1/2g(K)√
K log 2j2

0,1

, (A1)

where g(K)≡ ∫
j0,1

0 J2K
0 (u)udu. By introducing the relation between peak intensity Ip and fluence F0,

for instance, for a Gaussian pulse, and the expression for the fluence from Eq. (14) into Eq. (A1),
a fully analytical law for the absorption coefficient is obtained as a function of cone angle, pulse
duration, and pulse energy,

A=
(sin θ)K−2

tan θ

EK−1
in

τK−1
p

βK kK−2
0

4K−1
0

g(K)4K (log 2)(K−1)/2

jK
0,1K1/2π3(K−1)/2

. (A2)

Equation (A2) does not take into account plasma absorption and should be replaced by numerical
evaluation of Eq. (16) for large cone angles.
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