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Microwave Radiometric Remote Sensing of Volcanic
Ash Clouds From Space: Model and Data Analysis
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Abstract—The potential of satellite passive microwave sensors
to provide quantitative information about near-source volcanic
ash cloud parameters is assessed. To this aim, ground-based mi-
crowave weather radar and spaceborne microwave radiometer
observations are used together with forward-model simulations.
The latter are based on 2-D simulations with the numerical
plume model Active Tracer High-Resolution Atmospheric Model
(ATHAM), in conjunction with the radiative transfer model Satel-
lite Data Simulator Unit (SDSU) that is based on the delta-
Eddington approximation and includes Mie scattering. The study
area is the Icelandic subglacial volcanic region. The analyzed case
study is that of the Grímsvötn eruption in May 2011. ATHAM
input parameters are adjusted using available ground data, and
sensitivity tests are conducted to investigate the observed bright-
ness temperatures and their variance. The tests are based on the
variation of environmental conditions like the terrain emissivity,
water vapor, and ice in the volcanic plume. Quantitative corre-
lation analysis between ATHAM/SDSU forward-model columnar
content simulations and available microwave radiometric bright-
ness temperature measurements, derived from the Special Sensor
Microwave Imager/Sounder (SSMIS), are encouraging in terms of
both dynamic range and correlation coefficient. The correlation
coefficients are found to vary from −0.37 to −0.63 for SSMIS
channels from 91 to 183 ± 1 GHz, respectively. The larger sensitiv-
ity of the brightness temperature at 183 ± 1 GHz to the columnar
content, with respect to other channels, allowed us to consider this
channel as the basis for a model-based polynomial relationship
of volcanic plume height as a function of the measured SSMIS
brightness temperature.
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I. INTRODUCTION

VOLCANIC eruptions can cause serious threats to human
life on local to regional and even global scales [1]. Threats

include health issues due to ash aspiration, the interruption
of the air traffic due to the potential airplane engine failure,
and climate changes induced by ash and sulfate aerosols dis-
persed in the stratosphere [2]. State-of-the-art countermeasures
to mitigate the consequence of a volcanic eruption include
direct inspection, remote sensing observations, and numerical
dispersion models [3]–[5]. Tracking and quantifying ash in
the atmosphere allow for the redirection of air traffic, govern-
ments to issues warnings for citizens affected by ash fallout,
and the correct calculation of the Earth’s energy balance due
to the shielding effects of fine ash (FA) particles and aerosols.
The synergy of models and remote sensing tools is probably the
best way to fulfill the main requirements suggested by the civil
authorities and scientific communities. Requirements can be
divided into the following: 1) issuing timely warnings; 2) mon-
itoring the ash plume during its evolution; and 3) quantitatively
estimating the tephra, i.e., the fragmented material produced by
a volcanic eruption. Due to the inherent limitations of individual
measurements and methods, the characterization of the spatial
and temporal scale dynamics of volcanic eruptions requires the
combination of different types of observations.

There is a distinction between techniques that provide timely
data during the volcanic activity and those that provide infor-
mation before and after an eruptive event [6]. The monitoring
of geochemical and geodetic precursor signatures has to be
distinguished from near real-time observations like those from
infrared or microwave remote sensors either from ground or
satellite platforms. When the observation is close to the volcano
vent, remote sensing instruments can be used to estimate the
so-called near-source eruption parameters. The most common
near-source parameters are the plume height, the tephra erup-
tion rate, and mass [7]. The retrieval of these parameters is
crucial as an input for dispersion models that are designed to
quantitatively predict geographical areas likely to be affected by
specific levels of ash concentrations. Remote sensing measure-
ments of tephra can also be used for model validation purposes.
On the other hand, similarly to what is often done for water
clouds [9], volcanic plume models can provide the physical
basis to build model-based estimators of ash cloud parameters
from remote sensors.
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Traditionally, the monitoring of ash plumes is performed
exploiting thermal infrared and optical channels of spaceborne
radiometers [4], [5]. These measurements can be obtained
from geosynchronous-Earth-orbit (GEO) and low-Earth-orbit
(LEO) satellites, thus offering different spatial and temporal
resolutions for ash cloud remote sensing. For GEO platforms,
the advantage of a rapid sampling rate of the Earth scene
has the disadvantage of a lower spatial resolution (typically
larger than a few kilometers). For LEO, the revisit time may
be even longer than 12 h but with spatial resolutions that
vary from several kilometers down to meters, depending on
the wavelength used by the sensor aboard LEO platforms.
Moreover, thermal infrared and optical channels may suffer
from strong ash cloud opacity (very often mixed with water
cloud) due to the significant radiation extinction, particularly
in the proximity of the volcanic source. In this respect, the
exploitation of the microwave passive sensors, depending on
the sensor’s wavelength, may represent a good opportunity
to observe the ash cloud, despite some inherent limitations
[10], [11].

This work investigates the potential use of spaceborne mi-
crowave passive sensors for estimating volcanic plume param-
eters by comparing them to and combining them with results
from a numerical model and estimates from microwave ground
weather radar.

Numerical simulations of volcanic eruption plumes are gen-
erated using the Active Tracer High-Resolution Atmospheric
Model (ATHAM) [15]–[18]. ATHAM outputs, together with
the Satellite Data Simulator Unit (SDSU) [20], are used to
generate synthetic observations of satellite-based microwave
brightness temperature. SDSU is a radiative transfer model,
which includes both multiple scattering and Mie extinction
modules for ensembles of spherical particles. SDSU is able to
simulate the response of active and passive remote sensors from
microwaves to visible wavelengths. While ATHAM is a plume
model specifically designed for volcanic studies, SDSU has
been modified (as described in this study) to accurately describe
the ash cloud electromagnetic and microphysical features as
well as to ingest the outputs of ATHAM. Both ATHAM and
SDSU simulations are performed in a 2-D framework, and their
role in this study is to provide a likely realization of a volcanic
eruption plume without claiming to exactly reproduce the case
study of the Grímsvötn eruption that we analyze in this work.

The actual observations considered in this paper refer to the
case study of the Grímsvötn volcanic eruption, which occurred
in May 2011 in Iceland. Measurements include data from the
Special Sensor Microwave Imager/Sounder (SSMIS) on a LEO
platform during the Grímsvötn eruption on May 22 and a
C-band ground-based weather radar, which observed the same
event from a distance of approximately 260 km.

Through the use of models and measurements, this work
shall investigate the potential features of microwaves for es-
timating near-source ash plume parameters. Microwaves can
offer useful complementary information to thermal infrared
observations due to the relatively low microwave extinction
and high thermal emissivity of ash clouds [10] and because
they are sensitive to the whole ash column and not only to the
upper part, as is typical for visible–infrared radiometers [4], [5].

The major disadvantages of detecting volcanic plumes from
LEO passive microwave radiometers, compared to detection
from GEO visible–infrared instruments, are the relatively poor
spatial resolution and overpass repetition. They are on the order
of a few kilometers around 180 GHz up to tens of kilometers
around 30 GHz [12] and 6 h [9], respectively.

Section II of this paper describes the Grímsvötn case study
through the available measurements. Section III introduces
the ATHAM model, showing simulation results referring to
the 2011 Grímsvötn eruption and providing details about the
radiative transfer setup. Section IV shows the results of the
forward-model simulations and the comparison with actual
measurements. Conclusions are discussed in Section V.

II. 2011 GRÍMSVÖTN ERUPTION CASE STUDY

The Grímsvötn volcano, located in the northwest of the
Vatnajökull glacier in southeast Iceland is one of Iceland’s most
active volcanoes (e.g., [7]). The eruption in 2011 started on
the late afternoon of May 21. The Grímsvötn area consists of
a series of subglacial lakes that are never completely frozen due
to the volcanic activity below them. Because most of Grímsvötn
volcano lies underneath the Vatnajökull glacier, most of
its eruptions have been subglacial with the interaction of
magma and melt water from the ice, causing phreatomagmatic
explosions.

A. General Description of the 2011 Grímsvötn Eruption

The Grímsvötn eruption in May 2011 was the largest erup-
tion on Iceland within the last hundred years [21], [22]. Fol-
lowing the Iceland Meteorological Office (IMO) status reports,
the 2011 Grímsvötn eruption is estimated to have started under
the glacier at around 17:30 Universal Time Coordinate (UTC)
on May 21, 2011, when an intense spike in tremor activity
was detected. At around 19:00 UTC, the eruption broke the
ice cover of the glacier and started spewing volcanic ash into
the air. The eruption plume quickly rose to approximately
20 km, accompanied by a series of small earthquakes. During
May 22, the ash plume reached around 10 km in altitude, rising
occasionally to 15 km [27].

Initially, the plume drifted to the southeast and subsequently
to the north. An example of the ash plume transport is given by
the MODerate-resolution Imaging Spectroradiometer (MODIS)
image in Fig. 1(a). From this figure, the ash cloud is clearly
visible in brown, and the spiral around the volcano vent sug-
gests a counterclockwise rotation of the cloud system. The
eruption caused disruptions to air travel in Iceland and north-
western Europe from May 22 to 25, 2011. On May 23, the
eruption released more than 2000 tons of ash per second,
totaling 120 million tons within the first 48 h [27], [28]. On
May 25, the IMO confirmed that the eruption had paused at
02:40 UTC and that the volcanic activity appeared to have
stopped. At 15:00 UTC, the IMO issued an update stating
that no further ash plume was expected. However, there were
still frequent explosions producing ash and steam clouds, some
reaching a few kilometers in height. On May 26, IMO and the
University of Iceland reported that ashfall was only occurring
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Fig. 1. Observations of the Grímsvötn eruption on May 22, 2011. (a) Geolocated natural-color image taken over Iceland, acquired from the MODIS
aboard the Aqua satellite, at 1-km resolution on 05:15 UTC (courtesy of Jeff Schmaltz of MODIS Rapid Response Team at the National Aeronautics and
Space Administration Goddard Space Flight Center and Google Earth–Europa Technologies, Data Scripps Institution of Oceanography, National Oceanic and
Atmospheric Administration, U.S. Navy, National Geospatial-Intelligence Agency, and General Bathymetric Chart of the Oceans). (b) Vertical cross section
showing the Keflavík C-band radar reflectivity (in decibels of Z) at 08:35 UTC, which is the interpolation result of the Matlab “pseudocolor” tool. (c) Ash
columnar content (in kilogram square meters) derived from Keflavík C-band radar reflectivity applying the VARR technique. (d)–(i) Brightness temperature (BTs,
in Kelvin) images at 08:34 UTC and frequency (in gigahertz)-per-polarization-state values of (183 ± 6)/H, 150/H, 53/V, (183 ± 1)/H, 91/V, and 37/V GHz,
respectively, acquired by SSMIS aboard the F-16 DMSP satellite. (c)–(i) Position of the Grímsvötn volcano and the Keflavík C-band radar are indicated with the
gray symbols “ �” and “◦,” respectively.

close to the eruption vent. The 2011 Grímsvötn eruption of-
ficially ceased at 07:00 UTC on May 28, 2011. In terms of
the Volcanic Explosivity Index (VEI) [39], it qualified as an
at least of class 4 (VEI-4) eruption within a range from zero
to seven, releasing more ash within the first 24 hours than
Eyjafjallajökull released during its entire 2010 episode, which
lasted six days.

B. Remote Sensing Observations

The Grímsvötn eruption was observed by the Keflavík
ground-based C-band weather radar (5.6-GHz frequency),
which is 260 km from the volcano vent. The eruption was also
observed by the SSMIS aboard the LEO Defense Meteoro-
logical Satellite Program (DMSP) of U.S. Air Force platform
orbiting at 833-km height above ground [12], [13]. SSMIS is a
conically scanning passive microwave radiometer with several

channels (from about 19 to 189 GHz) and a swath of approx-
imately 1700 km. For the study of ash, the SSMIS channels
shown in Fig. 1 are of particular interest. Their central frequen-
cies and spatial samplings are as follows (in gigahertz per kilo-
meter): (183 ± 6)/12.5, 150.0/12.5, 52.0/37.5, (183 ± 1)/12.5,
91.6/12.5, and 37.0/25. The angle of observation between the
nadir direction and the antenna pointing direction is 45◦.

Fig. 1 shows an example of temporally collocated SSMIS
brightness temperatures at horizontal polarization, (BTH) in
Kelvin [Fig. 1(d)–(i)], radar reflectivity factor at horizontal
polarization, (ZHm) in decibels of Z as a vertical cut [Fig. 1(b)],
and the volcanic ash radar retrieval (VARR) estimate of the
ash content in kilogram square meters [26], [35] [Fig. 1(c)].
Available radar data cover most of the active eruption phase
with nominal temporal, range, and azimuth resolutions of
5 min, 2 km, and 0.86◦, respectively. Due to the LEO of DMSP
satellite, the temporal sampling capability of SSMIS is limited.
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Currently, three satellites of the DMSP series ensure a repeat
frequency over any given area of about three overpasses per
day. In Fig. 1, the depression of BTH corresponding to cold
temperatures is evident in all SSMIS channels with different
intensities. This is most likely a signature of the volcanic
plume produced by upwelling microwave radiation that has
been emitted from the surface and scattered by ash and ice
particles. A plume height of 14 km and a cloud horizontal
spread of approximately 50 km from the Grímsvötn volcano
vent can be seen from the radar vertical cut in Fig. 1(b). This
is in qualitative agreement with the satellite BTH depression
[Fig. 1(d)–(i)]. A good qualitative correlation between BTH de-
pression and VARR ash columnar content is evident in Fig. 1(c).
The microwave BTH of this scene is clearly frequency and
surface dependent. For example, the sea provides a relatively
“cold” background at 37 GHz. Above 100 GHz, background
brightness temperatures increase due to atmospheric water va-
por [14]. Below 100 GHz, glaciers can provide an ambiguous
signature with respect to ash clouds due to the fact that both
are relatively efficient scatterers [11]. This spurious radiometric
signature of the cloud-free ice cap is detected particularly to
the northwest of the vent, where no ash plume is present in
the visible MODIS image [Fig. 1(a)]. At around 183 GHz, the
strong emission of water vapor tends to mask the surface itself,
as is evident in Fig. 1(d) and (g). With increased distance
from the water vapor line central frequency at 183 GHz, the
contrast between background BTH and those affected by the
scattering induced by the volcanic cloud is increased. This
is particularly evident comparing 183 ± 1 GHz with 183 ±
6 GHz (Fig. 1(g) and (d), respectively), where the latter allows
for an easier identification of the volcanic cloud. The lower
atmosphere channels of SSMI from 22 to 60 GHz were not used
here because of their coarse spatial resolution. Due to similar
weighting functions for the two nearly transparent channels at
37 and 50 GHz, features are similar, although with the differ-
ent spatial sampling characteristics listed earlier (i.e., 25 and
37.5 km at 37 and 50 GHz, respectively). For the channels from
22 to 60 GHz, the absorption of oxygen strongly masks the
observed scene, as is already evident at 52 GHz [Fig. 1(f)]. In
this channel, the contribution from the surface is higher than
that at 53 GHz (not shown).

III. MICROWAVE AND NUMERICAL

VOLCANIC PLUME MODEL

In order to analyze and interpret the microwave radiomet-
ric signatures from space, a coupled microwave and volcanic
plume model is set up. The adjustment of model parameters
exploits information (i.e., particle sizes and radar observations)
that we collected from the current and past subglacial Icelandic
eruptions. The next two sections describe the physical and
electromagnetic model components.

A. Volcanic Plume Model

ATHAM is a nonhydrostatic numerical model with applica-
tions across a broad range of atmospheric problems. In the vol-
canic configuration, it has been used to study the effect of large

volcanic eruptions on stratospheric chemistry and the influence
of physical processes on plume development [15]–[18]. For a
given volcanic forcing at the lower boundary, ATHAM predicts
the evolution of the gas particle mixture within the atmosphere.
The concept of active tracers means that particles such as ash
and hydrometeors can occur in any concentration and directly
influence the dynamics and thermodynamics of the system
through the equation of state. By assuming an instantaneous
exchange of momentum and heat, the evolution of individual
active tracers is coupled to the evolution of the momentum and
temperature of the gas particle mixture, strongly reducing the
number of independent prognostic variables in the model. In
this paper, 2-D simulations of volcanic plumes are performed
using eight incompressible tracers. Hydrometeors are split into
small cloud and larger precipitation particles, including both
liquid and solid phases representing cloud water, cloud ice, rain,
and graupel. Two classes of gases, i.e., water vapor and sulfur
dioxide, are simulated. Two tracers represent the size spectrum
of tephra particles, ash particles and lapilli with volume mean
diameters of 1.5 and 5 mm, respectively.

The description of cloud microphysical processes within
ATHAM is based on a bulk concept so that the hydrometeor
mass is predicted, whereas number concentrations are deter-
mined from prescribed (cloud water and cloud ice) or diagnosed
(rain and graupel) particle sizes [19]. In the present simulation,
the formation of aggregates through ash hydrometeor interac-
tion is ignored. Instead, ash particles and hydrometeors are
assumed to coexist within the same volume as independent
particles. Terminal fall velocities of particles are calculated
from prescribed or diagnosed effective radii representative for
the volume mean radius of the assumed Gamma particle size
distribution (PSD) [15]. Nonsphericity effects are considered
by modifications of the drag coefficient.

It is worth pointing out that ATHAM is not a dispersal
model. Dispersal models, such as PUFF [23], REMOTE [24],
FLEXPART [25], and FALL3D [3], are widely used to forecast
the dispersion of ash particles and gases based on prescribed
meteorological conditions. Their use helps to track regions that
are likely to be subjected to ash cloud. Dispersal models provide
outputs on a large spatial scale (thousands of kilometers),
typically every three or six hours. They are operatively used.
ATHAM, in contrast, simulates the plume dynamics in the
proximity of the vent (up to approximately 100 km away from
the vent) with temporal and spatial resolutions on the order
of seconds to minutes and several tens to hundred meters, re-
spectively. These characteristics are particularly useful when an
accurate description of the plume dynamics and microphysics is
needed. Here, ATHAM is utilized to provide a synthetic plume
used to study the response of a microwave passive sensor.

Fig. 2 shows the output from the 2-D (altitude–distance)
ATHAM simulation of the Grímsvötn eruption taken as ref-
erence scenario. ATHAM input parameters for this simula-
tion are listed in Table I. The parameter selection has been
done by comparing the ATHAM volcanic plumes with tem-
poral sequences of radar vertical cross sections from the 2011
Grímsvötn event. For this comparison, the ATHAM output has
been first converted to radar reflectivity in the geometry of the
actual radar measurements (i.e., in the polar coordinates). Thus,
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Fig. 2. Example of a volcanic plume simulation, in terms of mass concentrations (Cp), temperature, and vertical wind, tuned for the 2011 Grímsvötn eruption
event and obtained from ATHAM in a bidimensional configuration (distance–altitude). Simulations refer to the volcanic plume after 26 min from the beginning
of the eruption.

the ATHAM parameter selection has been accomplished by
minimizing the bias between actual observed radar reflectivity
and the ATHAM-derived reflectivities. Radar vertical cuts from
1 h are used for the comparison between actual radar observa-
tions and ATHAM simulations. To this goal, PSDs from past
eruptions are used as in [26]. It should be mentioned that the
validity of the comparison is limited to the radar sensitivity
of coarse and larger particles [26]. However, in the proximity
of the volcanic vent (i.e., within approximately 50 km), larger
particles are likely to dominate the radar backscattering signal.

The nearest radiosonde site in Keflavík (station identifier:
04018 BIKF) at 00 UTC, of May 21, 2011, is used to initialize
the ATHAM model. For the analyzed simulations, no crosswind
effects (the initial horizontal wind component is set to zero) are
taken into account while the terrain height is modeled through a
Gaussian profile with standard deviation (std) and peak values
specified as in Table I. Even though crosswind effects can
significantly affect plume structure and microwave BTs, we
tried to keep the simulations as simple as possible.

Since the output of ATHAM is provided on a stretched grid
(i.e., fine grid spacing near the volcano vent and successively
coarser resolution when moving away from the volcano vent to
the lateral boundaries of the model domain), we performed a
resampling of ATHAM output to obtain it on an evenly spaced
grid. This is needed to be able to use ATHAM output as input
for SDSU radiative transfer simulator. The final vertical and
horizontal grid spacing values of the interpolated 2-D outputs
of ATHAM are 0.5 and 0.1 km, respectively.

TABLE I
INPUT PARAMETERS FOR THE ATHAM SIMULATION

B. Microwave Sensor Response Simulator

Microwave passive simulations of volcanic plumes are
obtained by using SDSU [20]. SDSU is adopted as a
forward-model tool in the processes of constructing and
testing performances of satellite algorithms for meteorolog-
ical applications. SDSU is based on the delta-Eddington
radiative transfer approximation, including both single and
multiple scattering phenomena [29]–[31]. Mie routines for
volume-equivalent spherical particles are used to compute the
single-scattering optical parameters (extinction, albedo, and
asymmetry factor), whereas simulated polarized radiances are
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TABLE II
REFRACTIVE INDEXES OF ASH

derived using the delta-Eddington solution with polarization-
dependent surface conditions. The radiances from space (or
antenna equivalent temperatures) are derived by convolving
the antenna beam pattern with the simulated scene for a given
spaceborne sensor specification. Note that SDSU is a pseudo-
3-D simulator since radiances are derived from single vertical
columns projected along the observation nadir angle (i.e., slant
path approximation). SDSU is capable to simulate not only
satellite microwave passive sensors but also infrared radiome-
ters and microwave radar [20]. It should be noted that fully 3-D
simulations, instead of pseudo-3-D, would be ideal to inves-
tigate the impact of the slant path approximation. However,
a rigorous treatment would require a significant increase in
numerical complexity, requiring the coupling of 3-D ATHAM
volcanic plume simulations with a fully 3-D radiative transfer
model which is beyond the scope of this paper. For volcanic
applications, the input parameters of SDSU are adapted to
work with the ATHAM numerical outputs. For convenience,
the adapted SDSU version is named SDSU-Ash. In its de-
fault configuration, SDSU includes six microphysical species:
graupel, hail, rain, cloud water, snow, and cloud ice. They are
described in terms of vertical profiles of concentrations Cp (in
grams per cubic meter) of the respective microphysical species
“p,” complex refractive index (np) as a function of wavelength
(λ), np(λ) = n′

p(λ)− jn′′
p(λ), and PSDs Np(D) of spherical

particles of equivolume diameter D. To adapt SDSU to treat
volcanic plumes, two hydrometeors that are unlikely to oc-
cur in volcanic plumes are modified to mimic small ash and
large lapilli (LL). The values of Cp profiles, with p = snow
and p = hail in SDSU, have been substituted with profiles
of ash from ATHAM: p = SL and p = LL for small lapilli
(SL) and LL, respectively. nSL(λ) and nLL(λ) are adapted
accordingly. The values of nSL(λ) = nLL(λ) = nash(λ) are
listed in Table II [32], [33]. For other species, namely, grau-
pel, rain, cloud water, and cloud ice, a direct correspondence
between ATHAM outputs and SDSU-Ash inputs has been
assumed. Ash PSDs Np(D) are assumed to follow a Gamma
distribution

Np(D) = Nnp

(
6 · (3.67 + μ)μ+4

3.674Γ(μ+ 4)

) (
D

Dnp

)μ

exp

[
−(3.67 + μ)

(
D

Dnp

)]
(1)

where Nnp and Dnp are the intercept parameter and the
volume-weighted median diameter, respectively, in units of
m−4 and mm, whereas μ is the unitless shape. In SDSU-Ash,
the PSD Np(D) is given in m−4.

TABLE III
PSD PARAMETERS FOR ASH CLASSES

Fig. 3. PSDs for volcanic ash. Gray markers refer to surface data, collected
after the Grímsvötn volcanic eruption in 2004 [7], [8]. PSD gamma model
curves, given in (1) in the main text, are indicated by dotted and continuous lines
with parameters listed in Table III. The units of Np(D) are in mm−1 · m−3

since it is a more conventional choice for radar studies.

While Dnp and μ are fixed, Nnp is calculated from the
knowledge of concentrations Cp and density (ρp) in kilograms
per cubic meter through [26]

Nnp =
Cp10

−3

πρp

(
3.67

Dnp10−3

)4

. (2)

To be consistent with the ATHAM output, SL and LL PSDs
have been assumed in SDSU-Ash for describing the ash classes.
Their parameters are listed in Table III, together with two
additional ash classes, namely, FA and coarse ash (CA), which
are shown in Fig. 3. CA and FA complete the description of the
observed PSD for small particle sizes. In this figure, the overall
agreement of Np(D) in (1) and PSD parameters from Table III
with in situ PSD retrievals, relative to the 2004 Grímsvötn
eruption [7], [8], is shown for the case of Cp = 1 g/m3. The
measured PSD is derived from ash deposits collected close to
the volcano vent (up to 60 km away) and within a few years af-
ter the eruption. Consequently, FA fraction of the erupted tephra
may be underestimated. However, this does not affect simulated
radar reflectivities since FA barely affects microwave radiation.
Two additional assumptions are made when using PSD ground
measurements of tephra. The first assumption is that the PSD
measured at the ground is representative of the PSD at the
vent. The second assumption is that the sampling of PSD
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Fig. 4. Measured brightness temperature in horizontal polarization over land BTH (in Kelvin) from SSMIS versus the TCC in kilograms per square meter
retrieved from ground-based C-band radar data. Four frequency channels from SSMIS are considered, as specified in the legend of each panel. The tilted lines
indicate the linear regressions on the measured data points. The SSMIS data are taken at 08:34 UTC on May 22 for the Grímsvötn eruption. The radar acquisition
is taken at 08:35 UTC of the same day. Radar and SSMIS data have been collocated, as explained in the main text. The symbolism f ± x GHz, where f is the
central frequency, refers to the received BTH in the interval f − x and f + x GHz. The (Corr. coef.) cross-correlation coefficients between BTH and TCC data
points are shown in the legend as well.

done after the eruption is still representative of what happened
during the eruption itself. The last assumption is generally
met in Iceland due to the snow cover preserving the deposited
tephra.

IV. RESULTS

In this section, results are discussed in terms of microwave
observations and their correlation with SDSU-Ash numerical
simulations. Observations include microwave ground weather
C-band radar estimates and SSMIS satellite passive measure-
ments for the 2011 Grímsvötn eruption, as shown in Fig. 1. The
simulation results are produced from the coupled ATHAM plus
SDSU-Ash forward-model simulator with the aim to demon-
strate the consistency between simulation and observational
data. ATHAM coupled with SDSU-Ash is used to correlate
brightness temperatures from satellite microwave radiometer
and columnar ash concentrations of the scene. Thus, our goal
is not to reproduce the space–time evolution of volcanic plume
with the ATHAM model but to provide a simulation that, when
coupled with a radiative transfer model, can provide statistically
consistent data for the interpretation of available radiometer
observations.

A. Multisensor Intercomparison of Microwave Observations

Ground-based measurements at the surface are usually taken
as a reference for remote sensing (e.g., [7]). For the 2011
Grímsvötn eruption case study, ground ash samples and drills
were not available. Hence, ground-based radar data are con-
sidered as a relatively good source for comparisons with
spaceborne SSMIS brightness temperature measurements. In-
deed, the comparisons between the ground-based microwave
radar and space-based remote sensing responses are more
consistent with each other than when they are individu-
ally compared with ash deposits. This is because satellite
and radar products are both instantaneous and areal mea-
surements of airborne phenomena and are thus substantially
different from ash deposits collected at ground, which are time-

integrated measurements at a given point after the eruption
phase.

We have plotted SSMIS and observed radar data in Fig. 1, in
order to provide a first attempt to qualitatively relate horizon-
tally polarized microwave BTH with measured copolar radar
reflectivity ZHm. For a direct comparison of ground-based
radar and satellite radiometer observations, it is necessary to
spatially average the measured radar reflectivity to the SSMIS
footprint, which is approximately 13× 16 km2 for frequencies
above 90 GHz [34]. This means that the horizontal maps of
radar acquisitions have been further filtered to a lower resolu-
tion of 14× 14 km2 from the available resolution of 2× 2 km2.
Subsequently, after the collocation of the radar grid points
with those from SSMIS BTH , the instantaneous values of
radar-derived particle concentration, expressed in kilograms per
cubic meter, have been retrieved applying the VARR technique.
The latter has been applied to each radar vertical profile, and
then, vertical integration has been performed to obtain the total
columnar content (TCC), expressed in kilograms per square
meter. It is worth noting that a reconstruction of the radar
vertical profiles has been applied before performing the vertical
integrals. We extrapolated the vertical profile of reflectivity
down to the surface, assuming a constant value that is equal
to the lowest altitude measurement of reflectivity [35].

The result of this quantitative comparison is shown in Fig. 4,
where the horizontal extension of the volcanic cloud was de-
fined as the area where the values of VARR TCC are greater
than zero. Resolution of VARR TCC has been degraded to
match the resolution of satellite observations. This results in
34 data points that were used to compute a linear fit and
correlation coefficient. The lowest available value for VARR
TCC was 0.2 kg/m2, and thus, the linear regressions in Fig. 4
are only strictly valid above this value, although they were
extrapolated to TCC = 0. Since our focus is the analysis of
BTH measurements in the presence of ash (i.e., TCC > 0),
this extrapolation is acceptable, even though it may become
inaccurate close to TCC = 0. From Fig. 4, there is an evident
correlation between radar-derived TCC and satellite SSMIS
BTH values (above 90 GHz), extracted from the data matching
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TABLE IV
BTH VERSUS TCC REGRESSION PARAMETERS FROM OBSERVATIONS

in Fig. 1 over land [Fig. 1(c)–(e), (g), and (h)]. The correlation
coefficients of BTH at 91 and 150 GHz (left panel), and 183
± 6 and 183 ± 1 GHz (right panel) with TCC are −0.37,
−0.52, −0.48, and −0.63, respectively. The relatively high cor-
relation between TCC and the water vapor absorbing channels
around 183 GHz is due to high clear-air opacity and surface
insensitivity. The absolute value of the correlation coefficient
increases from 91 to 183 ± 1 GHz except for 183 ± 6 GHz.
The channel at 183 ± 6 GHz is more influenced by the water
vapor at lower levels than that at 183 ± 1 GHz. The correlation
at 183 ± 6 GHz decreases presumably due to the sensitivity
to tropospheric humidity, which has larger variability than that
at higher levels, and it is decoupled from the ash content.
However, the 183 ± 6-GHz channel cannot be defined neither
lower nor higher frequency than 183 ± 1 GHz; it just covers
a larger dual-side frequency band. This also helps to explain
why the absolute value of the correlation of TCC and BTH at
183 ± 6 GHz decreases with respect to the neighbor channels.
Table IV lists the regression coefficients of the empirical linear
model in Fig. 4. This result offers the potential to estimate the
columnar ash concentration from BTH once ash regions have
been identified.

B. Self-Consistency of Microwave Radiance Simulations

In this section, the analysis of the space-based microwave
radiometric signatures of a volcanic plume is shown in terms
of its consistency with the coupled forward-model SDSU-Ash
mentioned previously. The considered radiometric instrument
for the numerical simulations is the SSMIS. This leads to a
straightforward comparison with the observations previously
discussed. Our goal here is not to reproduce the observed
signature of the SSMI scene using SDSU-Ash (as it would
require specific knowledge of several geophysical and atmo-
spheric parameters) but a self-consistency analysis, i.e., the
correlation and dynamic range of the SSMI BTH channels with
the columnar ash concentration.

Simulations of BTH from the synthetic scenario, shown in
Fig. 2, have been generated using SDSU-Ash. The assumed
refractive indexes for ash are listed in Table II. The PSDs
are fixed to those that correspond to SL and LL (Table III)
since they provided the best result in reproducing the observed
correlation signatures (as it will be shown later). In addition,
it seems plausible to have larger grain size as a lapilli-type
PSD near the volcanic source of an event as big as the 2011
Grímsvötn eruption [37]. Fig. 5 shows the microwave bright-
ness temperature at horizontal polarization over land (BTH)

Fig. 5. Simulated brightness temperatures in horizontal polarization over land
(BTH), for frequency channels as specified in the legend, versus the distance
from the volcano vent for the reference 2-D-ATHAM synthetic plume shown in
Fig. 2. BTH calculations have been done using the SDSU-Ash (satellite data
sensor unit simulator for ash). The gray curve shows the ATHAM synthetic
TCC in kilograms per square meter.

when the radiometer’s field of view intercepts the volcanic
plume. Properties of the corresponding plume are shown in
Fig. 2. The terrain emissivity, fixed here to 0.7, is difficult
to estimate. It depends on the type of surface vegetation and
coverage (e.g., snow and sand). In the microwave regime, a
terrain average emissivity of 0.9 is usually assumed in the
absence of snow [38]. During the 2011 Grímsvötn eruption,
snow was present on the ground, which implies lower values
for the terrain emissivity. As discussed hereinafter, sensitivity
tests confirm that a terrain emissivity of 0.7 is a reasonable
choice in our case. In Fig. 5, a depression in BTH can be noted
near the volcanic vent. This phenomenon has already been
observed before [10] and can be explained by the simultaneous
presence of high ash and ice concentrations near the vent,
causing enhanced extinction of upwelling radiation from the
ground.

Sensitivity tests with respect to PSD parameters listed in
Table III and terrain emissivity were also performed by de-
termining the maximum values of BTH and the difference
between maximum and minimum values of BTH , named
MBTH and DBTH , respectively. Values for MBTH are found
to decrease or remain constant as the PSD varies from FA to LL
with lower frequencies being more sensitive to PSD parameters
than higher frequencies. The variations of MBTH can be as
large as 30 K at 19 GHz and less than 1 K at 183 ± 6 GHz. The
difference quantity DBTH is a measure of the extinction effects
induced by the volcanic cloud. DBTH increases as particle size
increases for frequencies below 37 GHz with differences up to
60 K. For frequencies greater than 37 GHz, no clear trend of
DBTH as a function of particle size is observed, potentially
because Mie scattering becomes size independent at higher
frequencies. In this case, variations in DBTH of up to 45 K
are found.

Considering the larger dynamic range of BTH for channels
above 90 GHz (see Fig. 1), together with their better spatial
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Fig. 6. Simulated brightness temperatures at horizontal polarization over land (BTH), for frequency channels as specified in the title of each panel and terrain
emissivity (e), as listed in the legend, versus the synthetic TCC in kilograms per square meter from the 2-D-ATHAM and SDSU-Ash (satellite data sensor unit
simulator for ash) simulations. The gray crosses refer to the extremes of the linear regressions, as derived from the SSMIS and radar observations shown in Fig. 4.
The symbolism f ± x GHz, where f is the central frequency, refers to the received radiation in the interval f − x and f + x GHz. The green-colored points on
the left side in each panel refer to areas of the ATHAM simulation far from the volcanic plume shown in Fig. 2.

TABLE V
BTH VERSUS TCC REGRESSION PARAMETERS FROM SIMULATIONS

resolution than those below 90 GHz, the correlation between
the simulated BTH at 91.6, 150.0, 183 ± 1, and 183 ± 6 GHz
and the TCC of the simulated volcanic plume is calculated.

Trends of BTH with TCC are shown in Fig. 6 for values
of terrain emissivity (e) between 0.55 and 0.90. The effects of
the terrain emissivity are relevant at 91 and 150 GHz, whereas
they are less influential for frequencies close to the water
vapor absorption peak (i.e., 183 GHz) as evident in the small
variations of BTH as a function of e at those frequencies.

In Fig. 6, the values of BTH , where TCC approaches zero,
refer to the areas of the ATHAM simulation far away from
the volcanic plume. In these areas, the absorption of water
vapor drives the BTH response. Excluding these areas from the
analysis (marked as green), Table V lists the linear regression
coefficients of BTH as a function of TCC.

Comparing values from Tables IV and V demonstrates the
agreement between SDSU-Ash simulations and SSMIS ob-
servations. For visualization, the extreme points of the linear
regressions derived from the measurements shown in Fig. 4
are marked with couples of gray crosses in each panel of
Fig. 6. The agreement between SSMIS observations and SDSU-
Ash simulations is good in terms of bias and slope. A terrain
emissivity between 0.7 and 0.8 best explains the behavior of
BTH for most of the considered channels. The only exception
is the channel at 183 ± 1 GHz, where the simulation strongly
overestimates observational estimates. Terrain emissivities in
the range of [0.7, 0.8] are consistent with ice covered and poorly
vegetated terrain, as expected in Iceland during spring [11]. To
explain the anomalous behavior of BTH as a function of TCC at
183 ± 1 GHz in Fig. 6, we have varied the water vapor and the
ice content along the whole profile in our synthetic data. Results
are shown in Figs. 7 and 8 in the form of linear regression
curves. A strong reduction of water vapor (between 7% and
25%) produces better agreement between measurements and
simulations at 183 ± 1 GHz at the cost of a larger disagreement
at other channels. On the other hand, the variations in ice
content produce a negligible effect at 183 ± 1 GHz, whereas
they have a big impact at 150 and 183 ± 6 GHz, particularly for
larger values of TCC. To investigate this further, we simulated
additional scenarios by varying temperatures between simu-
lated and radiosonde observed profiles and by reducing the wa-
ter vapor profile successively from above, instead of reducing
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Fig. 7. As in Fig. 6, but varying the water vapor content as shown in the legend and considering, for simplicity, the linear regression curves (instead of the
simulated dots).

Fig. 8. As in Fig. 7, but varying the ice content as shown in the legend.

it along the whole profile. The result of this exercise is shown
in Fig. 9. When the temperature profiles from ATHAM output
are used (left panel), we found that progressive cuts of water
vapor do not improve the comparison with measured quantities

even though the simulated BTH curves at 183 ± 1 GHz change
with respect to that shown in Fig. 6 (lower left panel). They
tend to decrease at higher TCC, but they do not show the same
behavior in clear air, i.e., for TCC values close to zero. We
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Fig. 9. Radiative transfer simulations of brightness temperature at horizontal polarization (BTH) (in Kelvin) at 183 ± 1 GHz when the temperature profiles
from ATHAM (left) and the radiosonde (right) are applied in the SDSU radiative model. The gray markers refer to the linear regression performed on measured
data. Different colors show the simulation scenarios that we obtained cutting the water vapor profiles progressively from above, as indicated in the legend of the
figure.

repeated the same exercise as before, considering the profiles
of temperature from the nearest radiosonde (RAOB: 04018
BIKF Keflavikurflugvollur Observations at 00Z May 21, 2011,
approximately 260 km away from the volcano) instead of those
given by ATHAM 2-D simulation output. In this case (shown
in the right panel of Fig. 9), we observed a significant decrease
of BTH for values of TCC less than 0.5 kg/m2. However, for
values larger than TCC = 0.5 kg/m2, the BTH curves continue
to smoothly decrease. In this case, the difference between
simulated BTH values and those derived from measurements
is more consistent: about 10 K for TCC = 10 kg/m2 and 5 K
for TCC = 0.2 kg/m2. The analysis shows that the temperature
profile plays an important role in the matching simulations
and satellite observations at 183 ± 1 GHz. In conclusion, it
seems that the temperature and water vapor profile field from
the ATHAM output that we used, although consistent with the
physics of the problem and with the other physical variables,
may not be fully representative of the actual temperature and
humidity field. This may be probably due to the Cartesian
nature of the ATHAM simulation used.

The forward-model SDSU-Ash can be used to investigate
the potential of plume height estimation from the SSMIS-
like satellite platforms. Even though the plume height is well
detected by ground-based microwave radars (e.g., [7]), the
support of external information as provided by satellite mi-
crowave radiometers can contribute to reduce the estimation un-
certainty of this parameters despite the low temporal sampling
rate of LEO platforms. Fig. 10 shows the correlation between
the ATHAM-derived plume height (h) and BTH at 183 ±
1 GHz, the latter derived from the SDSU-Ash simulations.
The choice of other channels does not provide large variations
in the results. Consistently with the experiments shown in
Fig. 9, two different sixth-order polynomial regressions are
shown in Fig. 10. The gray curve refers to the polynomial
regression when the ATHAM-derived temperature profiles are
used in the radiative transfer calculations. The red dotted curve
is obtained considering the simulation that uses the observed
temperature profile from the radiosonde instead. At 183 ±
1 GHz, the minimum value for BTH is 212.2 K. This leads
to a plume height between 17 and 20 km, depending on which
polynomial regression is applied. However, both estimates of

Fig. 10. Simulated correlation between SSMIS brightness temperature at
horizontal polarization (BTH) over land and the plume height using the
SDSU-Ash (satellite data sensor unit simulator for ash). The gray curve shows
a six-order polynomial regression when the temperature profiles from ATHAM
are considered. The red curve shows the six-order polynomial regression when
temperature profiles from radiosonde (RAOB) are considered.

plume height overestimate the 14-km height derived from the
ground radar observation at the same time [see Fig. 1(b)],
although the 17-km height derived using the observed profiles
of temperature is closer to the radar observations. The dis-
crepancy between the ground radar and the space radiometer
estimates may be explained by the different sensitivity of the
two sensors at different wavelengths, i.e., 5 cm for the C-band
ground-based radar and 0.16 cm for the SSMIS channel at
183 GHz, respectively. It is well established that microwave
weather radars are sensible to the presence of CA and lapilli
particles [7]. The upper part of the volcanic plume (also called
umbrella region) is the cloud portion where the density of
the surrounding air equals that of the rising plume, but the
plume continues to rise and spread, owing to its momentum
and crosswinds, respectively. The volcanic umbrella is usually
characterized by FA particles with possible coexistence of
and aggregation with ice particles. Smaller particles in the
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umbrella region will lie outside the sensitivity of the C-band
radar so that it will lead to an underestimate of the plume
height compared to satellite millimeter-wave radiances. In this
respect, the complementary information provided by satellite
microwave radiometers and ground-based weather radar es-
timates can be used to better constrain the volcanic cloud
height.

V. CONCLUSION

A preliminary microwave multisensor analysis of volcanic
plumes has been accomplished by combining active and passive
measurements with model simulations. The ATHAM and the
SDSU radiative transfer model are coupled after some ad-
justments to ingest volcanic plumes (instead of water clouds)
into SDSU. The main conclusions are as follows: 1) The
ATHAM/SDSU-Ash models provide results that are consistent
with the SSMIS observations in all wavelengths except for
183 ± 1 GHz where the 2-D Cartesian version of ATHAM
produces temperature and humidity profiles that are incon-
sistent with the observed radiosonde profiles; 2) the model-
driven estimator of plume height provides results consistent
with observations even though its accuracy is subject to model
uncertainty. These results support the conclusion that it is, in
principle, possible to estimate the TCC of an ash cloud near
the volcano source vent from a multifrequency measurement
of the satellite brightness temperature over land at horizontal
polarization. For the 2011 Grímsvötn case study, this hypoth-
esis is proven using the available C-band ground-based radar
retrievals and SDSU-Ash model simulations. The sensitivity
of SSMIS brightness temperature measurements and ash TCC
with respect to volcanic plume water vapor, ice content, and sur-
face background has been also investigated. The results show
a good agreement between simulations and measurements.
This consistency is particularly evident for SSMIS channels
above 90 GHz. However, it must be acknowledged that the ash
cloud simulation capability is not as mature as for clouds and
precipitation, particularly with respect to the knowledge of ash
refractive indices and size distributions.

In addition, the capability to estimate plume height near
the volcanic vent based on measured brightness temperatures
can improve estimates derived from the ground radar. Volcanic
plumes are composed of several scatterers, not just ash, with
different properties. The combination of multifrequency satel-
lite and ground-based retrievals can help to better sample ash
particle spectra. In this context, satellite infrared retrievals of
plume height can also be used to infer size information of very
fine ash particles, improving the ground-based radar estimates
that, in contrast, are not sensitive to the smallest ash particles.

Future developments will focus on increasing the number
of case studies for which spaceborne microwave radiometer
imagery is available. So far, this research is limited by the small
number of events and the sparse sampling of LEO satellite
platforms. In addition, a set of ATHAM simulations, instead
of a single realization, will be used to consolidate the results
shown and to understand the sensitivity limits of space-based
microwave radiometers to ash particles. SDSU-Ash simulations
will be extended to infrared wavelengths to investigate the

potential synergy with spaceborne microwave radiometers for
near-source volcanic parameter estimation.
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