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Abstract: In the critical state of a beam under central com-
pression a flexural-torsional equilibrium shape becomes
possible in addition to the fundamental straight equilib-
rium shape and the Euler bending. Particularly, torsional
configuration takes place in all cases where the line of
shear centres does not correspond with the line of cen-
tres of mass. This condition is obtained here about a z-axis
highly variable section beam; with the assumptions that
shear centres are aligned and line of centres is bound to
not deform.
For the purpose, let us evaluate an open thin wall C-cross
section with flanges width and web height linearly vari-
ables along z-axis in order to have shear centres axis ap-
proximately aligned with gravity centres axis.
Thus, differential equations that govern the problem are
obtained.
Because of the section variability, the numerical integra-
tion of differential equations that gives the true critical
load is complex and lengthy. For this reason, it is given
an energetic formulation of the problem by the theorem of
minimum total potential energy (Ritz-Rayleigh method).
It is expected an experimental validation that proposes the
model studied.

Keywords: Buckling analysis; theorem of minimum total
potential energy, Ritz-Rayleighmethod; variable cross sec-
tion beam; coupled flexural-torsional buckling; shear cen-
tre position in variable section beams

1 Introduction
The stability analysis of highly variable section beam sub-
jected to normal compressive stress is a suggestive and cru-
cial topic of engineering applications. In particular, it is
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very important in structural, mechanical and aeronautical
engineering.

The buckling analysis of non uniform columns under
its ownweight, known as Greenhill’s problem, is a subject
of considerable scientific studies.

Another typical example of buckling failure by com-
bination of torsion and bending in continuously vary-
ing cross section mechanical component is given by drive
shaft.

If the ends of the compressed beamwere restrained to
somedegree, but the deflection of z-axis is free and if shear
centre does not correspond with centre of mass there is a
possibility of torsional deflected form of equilibrium.

In this case it is difficult to find the exact closed-form
solutions for the buckling problems.

If cross section varies according to a power of the dis-
tance along the beam, it is generally difficult to find the ex-
act analytical solution because the basic differential equa-
tion for bending of beam

E · I · η′v + F · η′′ = 0 (1)

isn’t anymore an homogeneous fourth-order linear con-
stant coefficient ordinary differential equation.

In the most simple case, where the line of shear cen-
tres is straight and parallel to the line of centres of mass,
the equation becomes an homogeneous fourth-order lin-
ear non-constant coefficient ordinary differential equation

η′v + c · f (z) · η′′ = 0 (2)

Solving non-constant coefficient differential equa-
tions is quite difficult so that it is advisable to use one
of the approximate methods: VIM (Variational Iteration
Method), EPT (Energymethod Total Potential Energy prin-
ciple based) etc.

Exact buckling solution for thin walled beams with
constant open cross section were obtained by many re-
searchers including Franciosi [1, 2], Timoshenko and
Gere [3], Vlasov [4], Trahair [5, 6], Li [7].

Coşkun and Atay [8] have analyzed elastic stability
for continuously restrained Euler columns, they have ob-
tained an exact solution by means of Variational Iteration
Method.
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In recent years the attention ofmany authors was con-
centrated on the stability problems of beams with vari-
able cross section. For example, Zhang and Tong [9, 10]
investigated the linear stability of doubly symmetric I ta-
pered beams; many other authors have dealt with tor-
sional flexural buckling of members with symmetric cross
section: Kováč [11, 12], Benyamina [13], Qiao [14]. Asgar-
ian, Soltani, Mohri [15, 16] investigated the lateral buck-
ling stability of tapered thin-walled beams with arbitrary
cross sections and boundary condition by means ener-
geticmethod; Eisenberger [17] investigated the flexural tor-
sional buckling of variable and open cross section mem-
bers. Janevski [18] analyzes the transverse vibration of a
Timoshenko beam with one-step change in cross-section
when subjected to an axial force. Prokić [19] studied the
influence of the bimoment induced by external axial loads
on the elastic torsional buckling of thin-walled beamswith
open cross-section.

In this paper, the solution of the problem is obtained
by an approximate method. It examines the case of beam
hinged at the ends under the hypothesis of tapered thin-
walled C-cross section, constant thickness, flanges width
and web height both linearly variables along z-axis.

In this way the shear centres axis is approximately
aligned with line of gravity centres and the hypothesis un-
derlying the theory adopted are satisfied.

It’s interesting verify thepossibility to apply the theory
of De Saint Venant regarding non-uniform torsion when
that such alignment is not rigorously satisfied.

It is crucial to determine the solution of this case study
to avoid disastrous torsional effects. In fact in real applica-
tions a perfect alignment of the centres axis is not feasi-
ble, except through the choice of sections with elaborate
geometries and little interest in engineering applications.

2 Problem definition

2.1 Rigorous approach

Examine the case of simply supported beamof thin-walled
open cross section with variable thickness along the arc
length s, that is the middle line.

The length of the thin-walled beam is larger compared
to the cross section dimensions.

The ξ , η, ς is the principal centroidal co-ordinate sys-
tem of the cross section, it has invariant direction along
the beam.

A direct rectangular co-ordinate system is chosen,
with origin of axis located in shear centre C. Axis z is paral-

lel to initial longitudinal axis and x, y are parallel to main
bending axes. For both reference systems it is assumed
that remains straight during deflection.

According to hypotheses of De Saint Venant’s theory,
it is assumed that the cross-section rotates as a rigid body
and there isn’t distortion of cross-section shape in x, y
plane. This last hypothesis can be ensured through any
suitable transverse stiffeners.

Cross section has any shape and any variability along
z-axis as long as the shear and rotation centres coincide;
the shear centres axis therefore remains straight during
torsion.
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Figure 1: Geometric scheme of the beam.

If longitudinal compressive forces are continuously
distributed along a beam and parallel to gravity axis, as
shown in Fig. 1, the normal force to the generic abscissa z
is

N = −F · f (z) (3)

If shear andgravity centres not coincide and if they are
aligned on two parallel straight lines, equations of static
equilibrium can be derived.

The most general equation for non uniform torsion is

C2 · ϑ′
v + C′2 · ϑ′′′ − C1 · ϑ′′ − C′1 · ϑ′ = mt (4)

where C1 is the warping rigidity

C1 = G ·
∫︀
δ3ds
3 (5)

Cw is the warping constant

C2 = E · Cw = E ·
∫︁
s

ωs · δds (6)

mt is the torque per unit length applied on the lateral sur-
face of the beam. In this particular case it’s valued at zero.

In formulas (5) and (6) G is shear modulus, E is
Young’s modulus, ωs is the sectorial area and δ is the sec-
tion thickness.

The equation (4) is deducted, according to Vlasov tor-
sion theory, under the hypotheses that the shear centre
axis is straight and the shear centre is also centre of twist
and last the cross-section rotates as a rigid body.
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Given the normal share force N(z) the equation (4) be-
comes

C2 · ϑ′
v + C′2 · ϑ′′′ − C1 · ϑ′′ − C′1 · ϑ′ = −dMt

dz (7)

The torque Mt is sum of two contributes

Mt = Mtn +Mts (8)

If Tx and Ty are the shear force to the generic abscissa
z evaluated in the undeflected configuration and if bend-
ing moment is assumed positive when the top of the beam
is compressed and if proceeding from z to z+dz, by consid-
ering the equilibrium of an element dz of the beam can be
derived

dMx = −N · dv + Ty · dz = F · f · dv + Ty · dz (9)
dMy = N · du − Tx · dz = −F · f · du − Tx · dz

or
dMx
dz = F · f · dvdz + Ty (10)

dMy
dz = −F · f · dudz − Tx

and then (︀
E · Iη · u′′

)︀′ = −F · f · u′ − Tx (11)(︀
E · Iξ · v′′

)︀′ = −F · f · v′ − Ty

Figure 2: Cross section of the beam.

If the shear centre axis is forced to remains straight
during torsion (for example by constraints applied along

the beam), the normal force N(z) produces reactions r(z)
parallel to the x, y plane. Assuming that the gravity axis is
a straight line, the reactions produce in all section of beam
the shears

Trx = −σ · ϑ′ ·
∫︁
A

ydA = −σ · ϑ′ · Sx (12)

Try = σ · ϑ′ ·
∫︁
A

xdA = σ · ϑ′ · Sy

as shown in Fig. 2.
Because shear centre axis remains straight during tor-

sion, it must be applied to it share forces equal and oppo-
site

Tx = σ · ϑ′ · A · yG (13)
Ty = −σ · ϑ′ · A · xG

Ultimately, we get that the displacements u and v are
governed by equations(︀

E · Iη · u′′
)︀′ − N · u′ + N · yG · ϑ′ = 0 (14)(︀

E · Iξ · v′′
)︀′ − N · v′ − N · xG · ϑ′ = 0

Thedeflection of components u(z) and v(z) entails that
the normal axis to cross section have a deflection to z axis.

This strain state produces torque. Taking the moment
about the shear-centre axis of the force F component in u
and v direction it’s given by the expression

Mts = N · u′ · yG − N · v′ · xG (15)

Let us assume that we can neglect variability of the
cross section in an element of length dz between two cross
sections taken normal to the original, undeflected, axis of
the beam. During buckling, the cross section will undergo
translation and rotation. Translation is defined by the de-
flections u and v in the x and y directions, respectively, of
the shear centre C. The rate of change of the angle of twist
of cross section along the axis of the beam is denoted by
ϑ′ = dϑ

dz .
Thus, during rotation of the cross section, point P

moves to P’, as shown in Fig. 3. The plane P’AP is normal
to the straight line PC that is in turn normal to the unde-
flected line AP.

Taken an element of cross section with area δ · ds, it
acts on it the elementary force σ · δ · ds. Deflection oc-
curred, the forces σ ·δ ·ds are again parallel to undeflected
z axis but they are applied on A and P’ points. Accord-
ing to moment equilibrium equation it produces a torque
σ · δ · ds · ϑ′ · r · dz, corresponding to bending moment due
to the couple formed by two shearing forces σ · δ · ds · ϑ′ · r
applied in P’ and in A, along P’P.

Unauthenticated
Download Date | 2/26/20 12:54 AM



Lateral-torsional buckling of compressed and variable cross section beams | 149

Figure 3: Rotation of the cross section.

If σ > 0 and ϑ′ > 0, the force σ · δ · ds · ϑ′ · r, acting
on the positive cross section, produces, in according to the
right-hand rule of signs, about point C, the negative torque

Mtn = −NA · ϑ′
∫︁
A

δ · ds · r2 = −NA · ϑ′ · IC (16)

where A is the cross section area and Ic is the polar mo-
ment of inertia of the cross section about the shear centre
C.

Ultimately the basic equilibrium equation, whenmt =
0, is

C2 · ϑ′
v + C′2 · ϑ′′′ −

(︂
C1 +

N · IC
A

)︂
· ϑ′′ (17)

−
(︂
C1 +

N · IC
A

)︂′
· ϑ′ + N · u′′ · yG − N · v′′ · xG = 0

Under the further hypothesis that the beam is sub-
jected to only constant axial compressive force N = −F,
the basic equations for the analysis become(︀

E · Iη · u′′
)︀′ + F · u′ − F · yG · ϑ′ = 0 (18)(︀

E · Iξ · v′′
)︀′ + F · v′ + F · xG · ϑ′ = 0

C2 · ϑ′
v + C′2 · ϑ′′′ −

(︂
C1 −

F · IC
A

)︂
· ϑ′′

−
(︂
C1 −

F · IC
A

)︂′
· ϑ′ − F · u′′ · yG + F · v′′ · xG = 0

They are three simultaneous differential equations for
buckling by bending and torsion and can be used to deter-
mine the critical loads.

Solving this system of equations is quite difficult. A
further difficulty is the identification of the location of the
shear centre along the beam. For a constant cross section,
its position is univocally determined by the geometrical
characteristics. When the cross section varies appreciably
along the beam, this is no longer true and the position of
the shear centre also depends on the applied stress.

Because of the symmetry of the section with respect to
the x axis, the shear centre lies on this axis. Its ordinate is
then uniquely determined. Then, it remains to determine
the abscissa.

The stress distribution is given through Navier’s for-
mula

σz =
N
A + Mn

In
· dn (19)

in the present case

σz =
N
A + Mx

Ix
· y (20)

differentiating with respect to z is obtained

∂σz
∂z = 1

A · dNdz − N
A2 · dAdz + TyIx

· y +Mx · y ·
d
dz

(︂
1
Ix

)︂
(21)

where y is the distance of the centre of gravity from the
centroid of the areola dA.

Assuming we load the beam with constant axial com-
pressive force fixed in centroid G

∂σz
∂z = − NA2 · dAdz + TyIx

· y +Mx · y ·
d
dz

(︂
1
Ix

)︂
(22)

The Gauss’s law, in the domain A−, defined by the area
of portion of the member’s cross-sectional that precedes
the section where thickness δ is measured, it allows to
write

τ · δ =
∫︁
A−

div τzdA = −
∫︁
A−

∂σz
∂z dA (23)

then

τ = −Ty · SxIx · δ
+ N
2 · A2 · δ · ddz (A

−)2 − Mx
δ · ddz

(︂
Sx
Ix

)︂
(24)

Therefore, we can make the maximum stress on each
flange

τl,max = −Ty · B
′ · H′

2 · Ix
+ N · δ
2 · A2 · ddz

(︀
B′
)︀2 (25)

− Mx
δ · ddz

(︂
6 · B′ · H′

6 · B′ · H′2 + H′3

)︂
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According to the hypothesis of Jourawsky’s theory, the
shear stress on each flange of cross section is

Tf =
(︂
−TyIx

· B
′ · H′

2 + N · δ
2 · A2 · dB

′

dz (26)

−Mx
δ · ddz

(︂
6 · B′ · H′

6 · B′ · H2 + H3

)︂)︂
· B

′ · δ
2

then

Tf = T′f
(︀
B′, H′, δ, Ty

)︀
+ T′′f

(︀
B′, H′, δ,Mx , N

)︀
(27)

where:

T′f = −TyIx
· B

2 · H′ · δ
4 (28)

T′′f = N · δ
2 · A2 · dB

′

dz · B
′ · δ
2 (29)

− Mx
δ · ddz

(︂
6 · B′ · H′

6 · B′ · H2 + H3

)︂
· B

′ · δ
2

In Fig. 4 is shown the shear stress distribution, with
the following meaning of the terms:

τ′f = −Ty · SxIx · δ
(30)

τ′′f =
N

2 · A2 · δ · ddz (A
−)2 − Mx

δ · ddz

(︂
Sx
Ix

)︂
(31)

Tf is the shear stress on flange
Tw is the shear stress on web

Figure 4: Shear stress distribution.

The equilibrium of the element gives

Tf · H′ = Ty · xc (32)

and

xc = −B
′2 · H′2 · δ
4 · Ix

+ H
′

Ty
· Tf ′′(B′, H′, δ, N,Mx) (33)

with respect to the formula used for constant section beam

xc = −B
2 · H2 · δ
4 · Ix

(34)

there is an additional term to be taken into account, in-
duced by the presence of axial compressive force and
torque.

2.2 Approximate approach

In a such complicated problem, energy method (Ritz-
Rayleigh method) gives a very satisfactory approximation
to the true critical load, provided the shape of the assumed
curve is reasonably close to the exact curve.

For any generalized elastic body the theorem of mini-
mum total potential energy asserts that: of all the displace-
ments satisfying compatibility and the prescribed bound-
ary condition, those that satisfy the equilibrium equation
make the potential energy a minimum.

Assuming a shape for the deflection curve, it is essen-
tial to approximate thedisplacement function in away that
is consistent with the boundary conditions and satisfy cer-
tain minimum continuity requirements.

If the displacements are expressed in terms of a set
of coefficients (Lagrangemultipliers), then the coefficients
become the unknown variables, and the correct values of
the coefficients are those which minimize the total poten-
tial energy.

Minimizing the total potential energy with respect to
the coefficients is equivalent to setting the variation in the
total potential energywith respect to the coefficients equal
to zero.

The energy method always gives values of the critical
load which are larger than the true value unless the as-
sumed deflection curve happens to be the correct one.

This follows from the fact that the true shape is the
only one which represents a deflection configuration for
which each element of the beam is in equilibrium. To have
the beam in equilibrium with an incorrect shape of buck-
ling, requires that additional constraints be introduced in
order to maintain that shape. The addition of constraints
increases the rigidity of the beam and hence the critical
load becomes larger than its true value.

Thus if several assumed deflection curves are used,
the lowest critical load found from those assumed curves
will be the most accurate.
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In the particular case of simply supported beam, if
during deformation the ends of the beam can rotate freely
with respect to the principal axes of inertia parallel to the
x and y axes, while rotation with respect to z axis is pre-
vented by some constraints, the conditions that deflection
curve has to satisfy are

u = u′′ = 0 (35)
v = v′′ = 0
ϑ = ϑ′′ = 0

We can take the components of deflection curve u, v,
ϑ in the form of a trigonometric series

uC =
∑︁

un · sen
n · π · z

l (36)

vC =
∑︁

vn · sen
n · π · z

l
ϑC =

∑︁
ϑn · sen

n · π · z
l

inwhich each term togetherwith its second derivative van-
ishes at the ends of the beam as required by the conditions
of constraint.

The components of deflection curve in the centroidal
axis directions during buckling are

u = uc − y · ϑ (37)
v = vc + x · ϑ
w = 0

Applying Clapeyron’s theorem, the potential energy of
deformation of a beam can be calculated by

L2 =
∫︁
V

σz · δε(2)z dV (38)

being

δε(2)z = 1
2 ·

[︃(︂
∂u
∂z

)︂2
+
(︂
∂v
∂z

)︂2
]︃

(39)

The strain energy of bending is

W = 1
2 ·

⎡⎣ l∫︁
0

E · Iη · u′′
2dz +

l∫︁
0

E · Iξ · v′′
2dz (40)

+
l∫︁

0

Mt · ϑ′dz

⎤⎦
where

Mt = C1 · ϑ′ − C2 · ϑ′′′ (41)

The total potential energy

δ2E = L2 +W (42)

gives a second order homogeneous equation in un, vn, ϑn.
The minimum condition is expressed by

∂δ2E
∂qi

= 0 (43)

this equation makes three simultaneous differential equa-
tions in m Lagrange multipliers qi (un, vn, ϑn).

If that homogeneous system has a singular matrix, it
has farther not trivial solution. This condition gives a mth

degree equation in F; the lower solution is the critical load.
By taking two ormore terms of the series increases the

number of Lagrange multipliers and the solution will be
closer than the true value.

3 Example of experimental
investigation

Examine the case of a steel beam of open thin wall C-cross
section with flanges width and web height variables along
z-axis.

The laws governing shape variability of the beamwere
chosen in order to have the same distance between shear
centre and centroid along the beam. If we choose linear
variability laws for flanges width and web height, the con-
dition of alignment of the centres axis is not rigorous fea-
sible.

On the other hand, the choice of a section with elab-
orate geometries infringes the fundamental principle of
Simple Design.

For this reason we prefer to approximate the variabil-
ity laws for flanges width and web height to appropri-
ate linear function in order to reach the best approximate
alignment of the centres axis. Thus, the solution is less
close to real value but it gives a dramatic simplification of
the problem.

Let us consider a simply supported beam. In particu-
lar during deformation, the ends of the beam can rotate
freely with respect to the principal axes of inertia parallel
to the x and y axes, while rotation with respect to z axis is
prevented by some constraints. The beam is subjected to a
constant axial compressive force.

The geometry of the beam is shown in Fig. 5.
The variability range for the critical loadwas obtained

by the approximate approach shown in 2.2 by taking one,
two and three terms of the series. The Ritz Rayleigh algo-
rithm was developed with Mathematicar software [20].
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Figure 5: Beam geometry.

4 Conclusions and future work
Using energymethodwehave approximate components of
deflection curve by taking one, two and finally three terms
of a trigonometric series and thenwehaveapproximate the
deflection curve by a one, two and three sine waveforms.
In thismannerwe have obtained a critical load close to the
true value.

If we takemore terms of series and introducemore La-
grangemultipliers, we can investigate that the solution ac-
curacy doesn’t improve significantly.

We have obtain that lower limit of the critical load is
Fcr = 110,18 kN.

The gains that have been made are very satisfactory.
The energy method gives a very accurate result that is
lower than the value obtained by Euler buckling stress
equation.

Indeed, applied Euler buckling stress equation to a
beam of equal length, with same constraints but constant
cross section and chosen as cross sections the ends cross
sections of the original beam, we can obtain a first approx-
imate large range of variability for critical load. Remem-
bering that

Fx =
π2 · E · Iξ

l2 (44)

Fy =
π2 · E · Iη

l2

Fϑ =
A
IC

·
(︂
C1 +

π2
l2 · C2

)︂

we obtain

231, 58 kN ≤ Fcr ≤ 371, 41 kN (45)

It is worth pointing out that the method used in this
paper for the research of the critical load requires the
alignment of the centroid and shear centre axes. This
alignment is not rigorously realizable in the real cases. It
will be interesting to see how the theoretical value is close
to the true value.

In particular, it will be interesting to understand how
the variability of the position of the shear centre with the
applied stress influences the behaviour of the beam.

For interest in subject the theoretical results will be
verified and validated with beam test, which are being de-
veloped by the authors.
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