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Abstract

I analyze the algebraic patterns underlying the structure of scattering amplitudes in quantum field theory. I focus
on the decomposition of amplitudes in terms of independent functions and the systems of differential equations the
latter obey. In particular, I discuss the key role played by unitarity for the decomposition in terms of master integrals,
by means of generalized cuts and integrand reduction, as well as for solving the corresponding differential equations,
by means of Magnus exponential series.
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1. Introduction

High energy particle collisions are the ideal frame-
work for accessing new informations on matter con-
stituents and forces of nature. The higher the energy
of the colliding particles, the richer the landscape of the
produced ones. The discovery of new physics interac-
tions cannot be disentangled from the discovery of mas-
sive, heavy particles, emerging from collisions of ever
increasing energy. On the other side, by increasing en-
ergy, also the probability of producing many light par-
ticles is enhanced. Therefore, advances in High Energy
Particle Physics necessarily depend on our ability to de-
scribe the scattering processes involving many light and
heavy particles at very high accuracy.

Scattering amplitudes are numbers that represent the
probabilities that a certain set of particles will turn into
certain other particles upon colliding. Particle collisions
are described by Feynman diagrams, representing the
different ways particle shuffle during an interaction. In
perturbation theory, the scattering between two collid-
ing particles that produce n outgoing ones are described
at leading order (LO) by tree diagrams, with n + 2 legs.
Quantum corrections to this process receive contribu-
tions from diagrams containing either additional num-
ber of legs or closed loops. Tree-level diagrams repre-

sent rational functions of the kinematic variables, there-
fore they can be considered easy to compute. Loop
diagrams, instead, represent very challenging integrals.
The complexity of perturbative calculations grows with
the number of loops, the number of legs, and the masses
of the involved particles. In general, when a direct in-
tegration of Feynman integrals is prohibitive, the evalu-
ation of scattering amplitudes beyond the leading order
(LO) is addressed in two stages: i) the decomposition in
terms of an integral basis, and ii) the evaluation of the
elements of such a basis, called master integrals (MIs).
In this contribution, I elaborate on the algebraic prop-
erties of Feynman integrals, which can be exploited for
decomposing them in terms of MIs and for computing
the latter. The techniques I discuss can be applied to
generic amplitudes, and have a impact on high-accuracy
prediction for collider physics, as well as for exploring
the more formal aspect of quantum field theory.

What’s the most natural way to decompose ampli-
tudes? Amplitudes can be decomposed in terms of in-
dependent integrals, exactly like a vector can be decom-
posed along of basic directions. To achieve amplitudes
decomposition, one needs a basis, and a projection tech-
nique. The latter is necessary to extract the coefficients
of the linear combination (equivalent to a scalar prod-
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uct). For generic multi-loop amplitudes, the basis is not
known. Therefore, the projection becomes an operation
that should not only determine the coefficients, but, also,
identify the corresponding master diagrams.

Factorization is the basic idea we are going to elab-
orate on. Factorization is ubiquitous in the discovery
of new mathematical and physical concepts. Complex
numbers emerged from factorizing the simplest num-
ber we may think of, i.e. 1 = (−i)i; quantum me-
chanics relies on factorization of the identity matrix,
I =

∑
n |n〉〈n|; Dirac equation emerged by factorizing

the d’Alambertian operator, i.e. � = (−i∂/)(i∂/).
Let us discuss what can emerge when amplitudes fac-
torize.

1.1. On-shell methods and Amplitudes decomposition

The unitarity-cut of internal lines is a suitable pro-
jection technique yielding amplitudes decomposition.
Mathematically, it corresponds to apply a kinematic
constraint to particles that are exchanged between two
adjacent interaction vertices: a propagating particle car-
ries a momentum whose squared value is different from
its squared-mass (p2 � m2); cutting it, amounts to bring
the particle on-shell (p2 = m2). The by now known as
on-shell and generalized-unitarity methods exploit the
ideas of “multiple-cuts”, namely cutting more than one
internal line.

Why multiple-cuts are important? First, because
multiple-cuts yield functions identification. Any dia-
gram is characterized by its internal lines, therefore,
any master diagram is univocally identified by a cut-
diagram where all internal particles are on-shell. More-
over, when applied to amplitudes, multiple-cuts behave
like high-pass filters. In fact, since any amplitude a sum
of diagrams, cutting simultaneously a certain number of
internal line amounts to isolating only the diagrams that
have those internal lines, while the others are automat-
ically discarded. Therefore, by considering all possible
cuts of an amplitude, in a top-down procedure, from the
maximum number of cuts to the lowest one, it is pos-
sible to build a (triangular) system of equations from
which all coefficients can be determined.

Elaborating on the concept of generalized cuts [1–
5], unitarity has been inspiring a novel organization of
the perturbative calculus, where Feynman diagrams are
grouped according to their multi-particle cuts.

New approaches tackling the evaluation of one-loop
multi-parton amplitudes have recently been under in-
tense development (see [6–9] for reviews).

1.2. Scattering Amplitudes in the Complex Plane

Unitarity of scattering amplitudes [10, 11] has then
been strengthened by the complementary classification
of the mathematical structures present in the residues
at the singularities. Fundamental results along this di-
rection are the on-shell recurrence relation for tree-
level amplitudes [12], its link to the leading singular-
ity of one-loop amplitudes [2], and the discovery of a
relation between numerator and denominators of one-
loop Feynman integrals [13, 14]. These new insights,
which stem from a reinterpretation of tree-level scat-
tering within the twistor string theory [15], have cat-
alyzed, on the one side, the study of novel mathemati-
cal frameworks in the more supersymmetric sectors of
quantum field theories, such as dual conformal symme-
tries, grassmanians, Wilson-loops/gluon-amplitudes du-
ality, color/kinematic, and gravity/gauge dualities (see
the collection [16]), till the recent idea of the ampli-
tuhedron [17]. Unitarity-based methods [1–5, 18–27]
are responsible for the breakthrough advances in au-
tomating the evaluation multi-particle one-loop scatter-
ing amplitudes, urgently demanded by the experimental
programmes at hadron colliders. Novel ideas about the
generalized-unitarity cutting techniques have been dis-
cussed in the contribution of William Torres Bobadilla
[28].
Within the unitarity-based methods, the difficulty of
loop-integration reduces to phase-space integration,
where the components of the loop momenta not con-
strained by the multiple-cut conditions becomes integra-
tion variables. Since multiple-cut conditions, to be sat-
isfied, require that the moment of the cut-particles have
complex-valued components, Cauchy’s residue theorem
emerged as a fundamental tool for the decomposition of
scattering amplitudes by means of generalized unitar-
ity. The holomorphic anomaly [29, 30] and the spinor
integration [3, 19], as well as, Cauchy’s residue theo-
rem [2, 12], the Laurent series expansion [22, 31–33],
Stokes’ Theorem [4], and the global residue theorem
[34, 35] have been employed for carrying out the in-
tegration of the phase-space integrals, left over after ap-
plying the on-shell cut-conditions to the loop integrals.

Are we really sure that integration cannot be avoided?
In this contribution, I would like to discuss the algebraic
patterns beneath Feynman calculus, and where integra-
tion can be replaced by algebraic operations.

2. Tree-level amplitudes

Tree-level scattering amplitudes are found to obey
a quadratic recurrence relation [12], depicted in Fig.1,
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Figure 1: Tree-level recurrence relation. The n-point amplitude An is
written in terms of products of two lower-point amplitudes, AL and
AR. Momenta indicated with a hat are complex valued and on-shell.

whose derivation relies on Cauchy’s residue theorem.
By following Ref. [36], the on-shell recurrence can be
understood as coming simply from a partial fractioning
formula. In fact, let us consider the following integral,

∮
dz

z(z − z1)(z − z2) · · · (z − zn)
= 0 , (1)

which has simple poles in the complex plane, and van-
ishing contribution when z → ∞. Therefore one can
relate the residue at the pole z = 0 to the (sum of the)
residues at the finite poles z = zi, as,

(−1)n

z1z2 · · · zn
=

1
z1(z1 − z2) · · · (z1 − zn)

+
1

(z2 − z1)z2 · · · (z2 − zn)
+ . . . . . .

+
1

(zn − z1)(zn − z2) · · · (zn − zn−1)zn
, (2)

which is just a partial fractioning formula. Let us
now consider modified Feynman denominators, each
depending on a complex zi variable, which can be in-
terpreted as the component along a massless reference
momentum η. The value of zi can be chosen to enforce
the on-shell condition,

(qi − ziη)2 − m2
i = 0 , zi =

q2
i − m2

i

2η · qi
. (3)

For i � j, one has,

(qi − z jη)2 − m2
i = 2η · qi(zi − z j) , (4)

which can be used to determine (zi − z j). Therefore, by
using the expression of zi and (zi − z j), Eq.(2) reads,

(−1)n

q2
1 − m2

1

1
q2

2 − m2
2

· · · 1
q2

n − m2
n
=

=
1

q2
1 − m2

1

1
(q2 − z1η)2 − m2

2

· · · 1
(qn − z1η)2 − m2

n

+
1

(q1 − z2η)2 − m2
1

1
q2

2 − m2
2

· · · 1
(qn − z2η)2 − m2

n

+ . . . . . .

+
1

(q1 − znη)2 − m2
1

1
(q2 − znη)2 − m2

2

· · · 1
q2

n − m2
n

(5)

which is a partial fractioning formula for the denomi-
nator of tree-level amplitudes. Scattering amplitudes,
at tree-level, can be decomposed in terms independent
building blocks, identified by a given Feynman denom-
inator, q2

i − m2
i . Each denominator identifies a singu-

larity that corrisponds to a physical factorization chan-
nel, while the other terms multiplying it contribute to the
residue. In case of scattering between (massless) spin-
1 particles and fermions, while Feynman denominators
go on-shell, the corresponding numerators factorize as
well, according to the completeness relations,

−gμν +
qμi η

ν + qνi η
μ

(qi · η) =
∑
λ

ελμ (qi, η) ελ∗ν (qi, η) , (6)

(qi/ + m) =
∑

s

us(qi) ūs(qi) . (7)

Therefore, the amplitude factorize in product of sim-
pler on-shel amplitudes, as shown in Fig.1. This result
can be used to build scattering amplitudes (l.h.s.) from
products of simpler amplitudes (r.h.s.) with complex,
on-shell momenta.

Is that just accidental or partial fractioning can be ex-
ploited also at higher orders?

3. Higher-order amplitudes

The integrand reduction algorithm [13] had a dra-
matic impact on our ability of computing one-loop am-
plitudes. The basic idea lies in the existence of a relation
between numerators and denominators of scattering am-
plitudes which can be used to decompose the integrands
of one-loop amplitudes in terms of integrands of MIs.
The amplitude decomposition in terms of MIs is then
achieved after integrating the integrand decomposition.
The coefficients of the MIs are a subset of the coeffi-
cients appearing in the decomposition of the integrands.
Therefore, within the integrand reduction algorithm, co-
efficients can be determined simply by algebraic manip-
ulation, with the great advantage of bypassing any in-
tegration. Applications of methods and tools based on
the integrand reduction technique to phenomenlogy are
discussed in the contribution of Giovanni Ossola [37].
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The extension of the integrand decomposition beyond
one-loop has been proposed in [38], and refined in [39–
41], where the unitarity-based decomposition of multi-
loop integrands has been addressed as a polynomial de-
composition problem, and systematized within the mul-
tivariate polynomial division algorithm. Let us consider
a multi-loop integral with n denominators,

I12...n =

∫
ddq1 · · · ddqm I12...n , (8)

whose integrand reads,

I12...n ≡ N12...n

D1 . . .Dn
. (9)

By means of the polynomial division modulo Gröbner
basis, one can perform the division between the numer-
ator and the denominators, such that

N12...n =

n∑
i=1

N1...(i−1)(i+1)...n Di + Δ12...n . (10)

The first term on the r.h.s. is the quotient and the second
term is the remainder. In the above results, the coef-
ficient of the denominator Di is a polynomial, suitably
defined as N1...(i−1)(i+1)...n. In fact, by substituting (10) in
(9), one obtains,

I12...n =

n∑
i=1

I1...(i−1)(i+1)...n +
Δ12...n

D1 . . .Dn
, (11)

namely, a relation expressing the n-denominator inte-
grand as a combination of (n − 1)-denominator inte-
grands plus a term that corresponds to the residue of
the n-denominator cut, D1 = . . . = Dn = 0. This re-
sult is depicted in Fig. 2. By iterating the division algo-
rithm on the new lower-denominators integrands, one
achieves the complete decomposition of the integrand
I12...n in terms of independent integrands,

I12...n =
Δ12...n

D1 . . .Dn
+

+
Δ2...n

D2 . . .Dn
+ . . . +

Δ12...n−1

D1 . . .Dn−1
+

+ . . . +
Δn−1 n

Dn−1Dn
+ . . . +

Δ12

D1D2
+

+ . . . +
Δn

Dn
+ . . . +

Δ1

D1
+ Q , (12)

where Q is a potential irreducible quotient which would
give no contibution upon integration. The residues Δ’s
are polynomials in the (components of the) loop mo-
menta. Therefore, by integrating both sides, one ob-
taines the decomposition of the original integral I12...n

Figure 2: Multiloop integrand decomposition formula. A generic �-
loop integrand with a certain number of denominators, each raised to
an arbitrary power, is expressed as combination of integrands where
the power of a given denomiator is reduced by one, plus a term corre-
sponding to the residue, depicted by a cut diagram.

in terms of indepentent integrals, corresponding to the
monomials appearing in the residues which give a non-
vanishing contribution upon the loop integration. The
integrand decomposition (12) implyes that, exactly as
it happened for the tree-level amplitudes, also the inte-
grands of multi-loop amplitudes can be decomposed in
terms of independent building blocks simply by partial
fractioning.

While in the one-loop case the independent integrals
are analyically known, in the multi-loop case, their clas-
sification and evaluation is an open problem.

It is important to observe that the set of integrals aris-
ing after the integrand decomposition is not a minimal
set. Within the continuous dimensional regularization
scheme, the invariance of Feynman integrals under the
redefinition of loop-momenta is responsible for the ex-
istence of relations known as integration-by-parts iden-
tities (IBPs) [42]. Such relations can be exploited in
order to identify a minimal set of independent integrals,
dubbed master integrals (MIs), that can be used as a
basis of functions for the virtual contributions to scat-
tering amplitudes. Loop momenutm shift invariance is
a symmetry that cannot be captured by the polynomial
decomposition of the integrand. Therefore, IBPs con-
stitute additional relations that can further reduce the
number of integrals appearing in the integrand decom-
position. It is highly desirable to develop a method for
multiloop amplitudes which combines the benefits of in-
tegrand decomposition and IBPs to achieve the decom-
position of high-multiplicity amplitudes in terms of a
minimal set of MIs, which currently constitutes one of
the two obstructions preventing the automation of eval-
uationing multi-loop integrals for generic scattering re-
actions. The other being the evaluation of MIs, once
they are identified.

4. Differential Equations and Feynman Integrals

The method of differential equations [43–45], re-
viewed in [46–48], is one of the most effective tech-
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niques for computing dimensionally regulated multi-
loop integrals.

The MIs are functions of the kinematic invariants
constructed from the external momenta and of the
masses of the (internal and external) particles. Remark-
ably, the aforementioned IBP relations imply that the
MIs obey linear systems of first-order differential equa-
tions (DE’s) in the kinematic invariants, which can be
used for the determination of their actual expression. In
fact, any �-loop integral I is a homogeneous function
of external momenta pi and masses mi, whose degree
γ = γ(d, �) depends on the space-time dimensions d, the
number of loop �, and on the powers of denominators.
Accordingly, one can write the Euler relation,

(∑
i

pi · ∂pi +
∑

j

m j ∂m j

)
I = γ(d, �)I , (13)

where ∂x ≡ ∂/∂x. On the other hand, the derivatives
in the l.h.s. can be calculated explicitly, and, by means
of IBPs, they turn into linear combinations involving I
and the other MIs. Therefore, Euler equation for ho-
mogeneous functions becomes a tool for deriving the
system of differential equations obeyd by MIs. The
solution of the system, namely the MIs, is finally de-
termined by imposing the boundary conditions at spe-
cial values of the kinematic variables, properly chosen
either in correspondence of configurations that reduce
the MIs to simpler integrals or in correspondence of
pseudo-thresholds. In this latter case, the boundary con-
ditions are obtained by imposing the regularity of the
MIs around unphysical singularities, ruling out diver-
gent behavior of the general solution of the systems.

For any given scattering process the set of MIs is not
unique, and, in practice, their choice is rather arbitrary.
Usually MIs are identified after applying the Laporta re-
duction algorithm [49]. Afterward, convenient manipu-
lations of the basis of MIs may be performed. Proper
choices of MIs can simplify the form of the systems of
differential equations, hence, of their solution, although
general criteria for determining such optimal sets are
not available. The systems of DE’s for MIs can be effi-
ciently solved by means of algebraic methods, observ-
ing that, with a good choice of MIs, the system can be
cast in a form - which we define canonical - where the
dependence on the dimensional parameter ε = (4− d)/2
is factorized from the kinematic [50]. The integration
of canonical systems is simple, and the analytic proper-
ties of its general solution are manifestly inherited from
the associated matrix. In fact, the latter becomes the
kernel of the representation of the solutions in terms of
repeated integrations.

We have recently suggested a convenient form for
the initial system of MIs, and proposed an algorithm
to find the transformation matrix yielding to a canon-
ical system [51]. We reached out to the problem of
the Schrödinger Equation in the interaction picture in
Quantum Mechanics (QM), in presence of an Hamil-
tonian with a linear perturbation. After establishing an
analogy between the perturbation parameter of QM, and
the space-time dimensions of regulated Feynman inte-
grals, we suggest that a convenient set of MIs should
obey a systems of DEs whose associated matrix is lin-
ear in ε. In this case, by generalizing what happens in
QM, which involves commutative integral matrices, to
the non-commutative case, we found that the transfor-
mation absorbing the constant term and yielding to a
new system of DE’s where the ε-dependence is factor-
ized can be obtained by using Magnus exponential ma-
trix [52–54]. Moreover, the integration of the canoni-
cal system, can be written as Magnus’ (or equivalently
Dyson’s) series expansion in ε. Magnus exponential is
not unitary, as it happens in the quantum mechanical
case, but the proposed method can be considered also
inspired by unitarity.

5. Magnus series expansion

Consider a generic linear matrix differential equa-
tion [54]

∂xY(x) = A(x)Y(x) , Y(x0) = Y0 . (14)

If A(x) commutes with its integral
∫ x

x0
dτA(τ), e.g. in

the scalar case, the solution can be written as Y(x) =
e
∫ x

x0
dτA(τ) Y0 . In the general non-commutative case, one

can use the Magnus theorem [52] to write the solution
as,

Y(x) = eΩ(x,x0) Y(x0) ≡ eΩ(x) Y0 , (15)

where Ω(x) is written as a series expansion, known as
Magnus expansion, Ω(x) ≡ ∑∞

n=1Ωn(x) . The first three
terms of the expansion read as,

Ω1(x) =

∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1
2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1), A(τ2)] ,

Ω3(x) =
1
6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 ×
(
[A(τ1), [A(τ2), A(τ3)]] +

+[A(τ3), [A(τ2), A(τ1)]]
)
. (16)
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Magnus expansion can be considered as the continuous
analogue of the Baker-Campbell-Hausdorff (BCH) for-
mula. We remark that if A and its integral commute, the
Magnus series is truncated at the first order, Ω = Ω1. In
what follows, we will use the symbol Ω[A](x) to denote
the Magnus expansion obtained using A as kernel.

5.1. Magnus and Dyson series

Magnus series is related to Dyson series [54], and
their connection can be obtained starting from the
Dyson expansion of the solution of the system (14),

Y(x) = Y0 +

∞∑
n=1

Yn(x) , (17)

in terms of the time-ordered integrals Yn,

Yn(x) ≡
∫ x

x0

dτ1 · · ·
∫ τn−1

x0

dτn A(τ1)A(τ2) · · · A(τn) . (18)

Comparing Eq. (15) and (17) we have

∞∑
j=1

Ω j(x) = log

⎛⎜⎜⎜⎜⎜⎝Y0 +

∞∑
n=1

Yn(x)

⎞⎟⎟⎟⎟⎟⎠ . (19)

6. Master Integrals from Differential Equations

We consider a linear system of first order differential
equations

∂x f (ε, x) = A(ε, x) f (ε, x) , (20)

where f is a vector of MIs, while x is a variable depend-
ing on kinematic invariants and masses. We suppose
that A depends linearly on ε,

A(ε, x) = A0(x) + εA1(x) , (21)

and we change the basis of MIs via the Magnus expo-
nential obtained by using A0 as kernel,

f (ε, x) = B0(x) g(ε, x) , B0(x) ≡ eΩ[A0](x,x0) . (22)

Because of Magnus Theorem, B0 obeys the equation,

∂xB0(x) = A0(x)B0(x) , (23)

which implies that the new basis g of MIs fulfills a sys-
tem of differential equations in the canonical factorized
form,

∂xg(ε, x) = εÂ1(x)g(ε, x) . (24)

The matrix Â1 is related to A1 through,

Â1(x) = B−1
0 (x)A1(x)B0(x) , (25)

and does not depend on ε. The solution of Eq. (24) can
be found by using Magnus exponential with εÂ1 as ker-
nel

g(ε, x) = B1(ε, x)g0(ε) , B1(ε, x) = eΩ[εÂ1](x,x0) , (26)

where the vector g0 corresponds to the boundary values
of the MIs. Therefore, the solution of the original sys-
tem Eq. (20) finally reads,

f (ε, x) = B0(x)B1(ε, x)g0(ε) . (27)

It is worth to notice that Ω[εÂ1] in Eq. (26) depends on
ε, while Ω[A0] in Eq. (22) does not.
We found that the convergence of Magnus exponential
can be accelerated by splitting A0 into a diagonal term,
and a matrix with vanishing diagonal entries.

6.1. Iterated integrals
The solutions of differential equations can be natu-

rally cast in terms of iterated integrals, with rational ker-
nels, known as Multiple Polylogarithms (MPLs) [55–
58], defined as,

G(
wn; x) ≡ G(w1, 
wn−1; x) ≡
∫ x

0
dt

G(
wn−1; t)
t − w1

, (28)

G(
0n; x) ≡ 1
n!

logn(x) , (29)

with 
wn being a vector of n arguments. The number n
is referred to as the weight of G(
wn; x) and amounts to
the number of iterated integrations needed to define it.
G-polylogarithms fulfill shuffle algebra relations of the
type

G(
m; x) G(
n; x) =
∑

p=
m��
n

G(
p; x) , (30)

where shuffle product 
m��
n denotes all possible
merges of 
m and 
n preserving their respective orderings.
Because of shuffle relations, MPLs obey functional re-
lations which can be exploited to simplify the analytic
expressions of scattering amplitudes. These identities
yield the identification of minimal sets of functions, and
allow for analytic continuation of the results in different
kinematic regimes. As a consequence, new tools, found
among number theoretic concepts, such as Hopf alge-
bras, symbol calculus, and coproduct, have been devel-
oped in order to simplify complex results and to express
them in terms of a few independent functions (see [59]
for a recent review).

MPLs do not exhaust the classes of functions that
could appear along the evaluation of Feynman integrals.
It is known that processes involving massive particles
in the loops can be source of elliptic integrals [60, 61].
Algebraic properties of elliptic integrals represent a cur-
rent bottleneck for the development of new techniques
for automating the evaluation of MIs beyond one-loop.
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Figure 3: The three-loop ladder box diagram, with one off-shell leg:
the solid lines stand for massless particles; the dashed line represents a
massive particle. Momentum conservation is

∑4
i=1 pi = 0, with p2

i = 0
(i = 1, 2, 3) and p2

4 = m2
H .

6.2. Applications
We made use of Magnus theorem for the determina-

tion of non-trivial integrals, like the two-loop vertex di-
agrams for the electron form factors in QED and the
two-loop box integrals for the 2 → 2 massless scatter-
ing [51], the two-loop corrections to the pp → H j, as
well as for evaluating the three-loop ladder diagrams for
pp → H j (in the infinite top-mass approximation) [62].
The latter is a formidable calcualtion involving the so-
lution of a system of eitghty-five MIs. In this case, af-
ter identifying a set of MIs obeying a linear system of
differential equations in x = −s/m2

H and y = −t/m2
H , by

means of a Magnus tranform, the system can be brought
in canonical form, reading as,

d f (x, y) = ε A(x, y) f (x, y) (31)

where f is the vector of MIs, and d f = ∂x f dx + ∂y f dy.
The matrix A is purely logarithmic,

A(x, y) = a1 ln(x) + a2 ln(1 − x)
+a3 ln(y) + a4 ln(1 − y)
+a5 ln(x + y) + a6 ln(1 − (x + y)) , (32)

where the ai (i = 1, . . . , 6) are 85 × 85 matrices whose
entries are just rational numbers. The logarithmic form
of A trivializes the solution, which can be written as a
Dyson series in ε, where the coefficient of the series
are combinationa of MPLs with uniform weight (where
the weight increases as the order in ε does). Boundary
conditions have been fixed by imposing the regularity
of the solutions in special kinematic configurations.
Suprisingly, to fix the boundary values of all 85 MIs,
only 2 simple integrals had to be independently pro-
vided.

Further investigation is required for clarifying
whether the possibility of choosing a set of master in-
tegrals obeying a system that is linear in ε is a gen-
eral feature or just accidental, and, eventually, how to

find it in a systematic way. In this respect, we think
that it might be worth to consider systems of differen-
tial equations for master integrals that are not necessar-
ily all defined at the same value of space-time dimen-
sions, because regularity in the ε → 0 limit may be a
property of shifted-dimension master integrals, and the
shifting amount could depend on the topology of the di-
agrams. Moreover, even in the case a set of MIs obeying
a system of differential equations linear in ε is found,
the convergence of the Magnus series, needed for find-
ing a finite matrix that implements the transformation
to the canonical form, is not guaranteed a priori. There-
fore, we can turn the arrow of the implications around,
and conjecture that the existence of a canonical set of
MIs that can be expressed in terms of MPLs of uni-
form weight and obeying a canonical system of differ-
ential equations implies the existence of a (finite) Mag-
nus exponential matrix that rules the transformation of
the canonical basis to a basis obeying a system that is
linear in ε. Nevertheless, it is also known that polylog-
arithms do not exhaust the set of functions appearing in
the evaluation of Feynman integrals, where also elliptic
functions do arise. What does happen in these cases?
Does a ε-linear system exist? Can one find a converging
Magnus exponential matrix? Can the convergence of
the Magnus exponential capture the elliptic or the poly-
logarithmic character of the MIs? Answering to these
questions requires definitely further studies and more
applications to cases of increasing complexity, which
we plan for the near future.

7. Conclusions

In this contribution, I have analyzed the algebraic pat-
terns underlying the structure of scattering amplitudes
in gauge theory. I focused on three domains, such as the
decomposition of amplitudes in terms of independent
functions, the construction of the systems of differen-
tial equations the latter obey, and the functions needed
to solve them. We have seen the central role played by
unitarity in the context of evaluating scattering ampli-
tudes. It not only inspired a method to perform the am-
plitudes decomposition, by means of unitarity-cuts, but
it also suggested a technique for the evaluation of mas-
ter integrals, by means of matrix exponentials, similar
to the unitary time-evolution in quantum mechanics.

In particular, I discussed a unique framewok for de-
composing amplitudes at all orders in perturbation the-
ory, simply based on integrand partial fractioning. This
idea captures the essence of complex integration, yet
avoiding it: i) Feynman integrals are multivariate inte-
grals of rational functions; ii) cut-integration with com-
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plex variables amounts to apply (generalized) Residue
Theorem; iii) applying residue theorem to rational func-
tions amounts to partial fractioning.
Later, I presented how master integrals can be evaluated
within the differential equations method, by means of
the Magnus exponential series.

The presented techniques can be applied to scatter-
ing amplitudes in gauge theory, which can be applied in
supersymmetric contexts as well as in absence of super-
symmetry.

Let me conclude recalling that during the last decade
the theoretical physics programme devoted to improv-
ing our abilities in computing high-multiplicity one-
loop amplitudes has received a strong boost. If we gave
an answer, or better, more than one answer, to the prob-
lem of automating seminumerical calculations of one-
loop amplitudes, providing automatic analytic calcula-
tion of one-loop amplitudes is also within reach. The ef-
forts to extend this progress to higher orders has begun,
with the development of techniques not only dealing
with virtual contributions, but also with the integration
over the phase-space and the development of subtrac-
tion methods - the other, dark side, of radiative correc-
tions. First satisfactory results have been accomplished,
but the road ahead looks still like a minefield, and much
work is still required.

By combining methods and techniques from differ-
ent fields of Theoretical Physics and of Mathematics,
such as Collider Phenomenology, Quantum Field The-
ory, String Theory, General Relativity, Algebraic Ge-
ometry and Number Theory, the new interdisciplinary
field of Amplitudes offers a potential in developing new
theories for the description of quantum interactions at a
more fundamental level.

Acknowledgements

I wish to thank the organizers of the Silafae X, for the
enthusiastic environment, and for their kind hospitality.
Also, I thank H. van Deurzen, S. Di Vita, R. Fazio, N.
Greiner, G. Heinrich, G. Luisoni, E. Mirabella, G. Os-
sola, T. Peraro, U. Schubert, F. Tramontano, W. Torres-
Bobadilla, V. Yundin, as well as all the members of the
GoSam team, for their vivid collaboration on the dis-
cussed topics.

The research contained in this work is supported by
the Alexander von Humboldt Foundation, in the frame-
work of the Sofja Kovalevskaja Award 2010, endowed
by the German Federal Ministry of Education and Re-
search.

References

[1] Z. Bern, L. J. Dixon, D. C. Dunbar, D. A. Kosower, One-Loop n-
Point Gauge Theory Amplitudes, Unitarity and Collinear Lim-
its, Nucl. Phys. B425 (1994) 217–260.

[2] R. Britto, F. Cachazo, B. Feng, Generalized unitarity and one-
loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B725
(2005) 275–305.

[3] R. Britto, B. Feng, P. Mastrolia, The Cut-constructible
part of QCD amplitudes, Phys.Rev. D73 (2006) 105004.
doi:10.1103/PhysRevD.73.105004.

[4] P. Mastrolia, Double-Cut of Scattering Amplitudes and
Stokes’ Theorem, Phys.Lett. B678 (2009) 246–249.
doi:10.1016/j.physletb.2009.06.033.

[5] P. Mastrolia, On Triple-cut of scattering amplitudes, Phys.Lett.
B644 (2007) 272–283. doi:10.1016/j.physletb.2006.11.037.

[6] R. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, One-loop cal-
culations in quantum field theory: from Feynman diagrams to
unitarity cuts.

[7] R. Britto, Loop Amplitudes in Gauge Theories: Modern An-
alytic Approaches, J.Phys.A A44 (2011) 454006, 34 pages.
Invited review for a special issue of Journal of Physics
A devoted to ’Scattering Amplitudes in Gauge Theories’.
doi:10.1088/1751-8113/44/45/454006.

[8] J. M. Henn, J. C. Plefka, Scattering Amplitudes in Gauge Theo-
ries, Lect.Notes Phys. 883 (2014) 1–195. doi:978-3-642-54021-
9, 10.1007/978-3-642-54022-6.

[9] H. Elvang, Y.-t. Huang, Scattering AmplitudesarXiv:1308.1697.
[10] L. Landau, On analytic properties of vertex parts in quantum

field theory, Nucl.Phys. 13 (1959) 181–192. doi:10.1016/0029-
5582(59)90154-3.

[11] R. Cutkosky, Singularities and discontinuities of Feynman am-
plitudes, J.Math.Phys. 1 (1960) 429–433.

[12] R. Britto, F. Cachazo, B. Feng, New Recursion Relations for
Tree Amplitudes of Gluons, Nucl. Phys. B715 (2005) 499–522.

[13] G. Ossola, C. G. Papadopoulos, R. Pittau, Reduc-
ing full one-loop amplitudes to scalar integrals at
the integrand level, Nucl.Phys. B763 (2007) 147–169.
doi:10.1016/j.nuclphysb.2006.11.012.

[14] G. Ossola, C. G. Papadopoulos, R. Pittau, Numerical eval-
uation of six-photon amplitudes, JHEP 0707 (2007) 085.
doi:10.1088/1126-6708/2007/07/085.

[15] E. Witten, Perturbative gauge theory as a string theory
in twistor space, Commun.Math.Phys. 252 (2004) 189–258.
doi:10.1007/s00220-004-1187-3.

[16] R. Roiban, M. Spradlin, A. Volovich, Scattering Amplitudes in
gauge theories: progress and outlook, J. Phys. A: Math. Theor.
44 (2011) 450301.

[17] N. Arkani-Hamed, J. Trnka, The Amplituhedron, JHEP 1410
(2014) 30. arXiv:1312.2007, doi:10.1007/JHEP10(2014)030.

[18] Z. Bern, A. G. Morgan, Massive Loop Amplitudes from Unitar-
ity, Nucl. Phys. B467 (1996) 479–509.

[19] R. Britto, E. Buchbinder, F. Cachazo, B. Feng, One-loop am-
plitudes of gluons in SQCD, Phys.Rev. D72 (2005) 065012.
doi:10.1103/PhysRevD.72.065012.

[20] R. Britto, B. Feng, P. Mastrolia, Closed-Form Decomposition of
One-Loop Massive Amplitudes, Phys.Rev. D78 (2008) 025031.
doi:10.1103/PhysRevD.78.025031.

[21] N. Bjerrum-Bohr, D. C. Dunbar, W. B. Perkins, Analytic struc-
ture of three-mass triangle coefficients, JHEP 0804 (2008) 038.
doi:10.1088/1126-6708/2008/04/038.

[22] D. Forde, Direct extraction of one-loop inte-
gral coefficients, Phys.Rev. D75 (2007) 125019.
doi:10.1103/PhysRevD.75.125019.

[23] A. Brandhuber, S. McNamara, B. J. Spence, G. Travaglini, Loop

P. Mastrolia / Nuclear and Particle Physics Proceedings 267–269 (2015) 131–139138



amplitudes in pure Yang-Mills from generalised unitarity, JHEP
0510 (2005) 011. doi:10.1088/1126-6708/2005/10/011.

[24] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, P. Mastrolia, D-
dimensional unitarity cut method, Phys.Lett. B645 (2007) 213–
216. doi:10.1016/j.physletb.2006.12.022.

[25] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, P. Mastro-
lia, Unitarity cuts and Reduction to master integrals in d di-
mensions for one-loop amplitudes, JHEP 0703 (2007) 111.
doi:10.1088/1126-6708/2007/03/111.

[26] R. K. Ellis, W. T. Giele, Z. Kunszt, A Numerical Unitarity For-
malism for Evaluating One-Loop Amplitudes, JHEP 03 (2008)
003.

[27] R. A. Fazio, P. Mastrolia, E. Mirabella, W. J. Torres Bobadilla,
On the Four-Dimensional Formulation of Dimensionally
Regulated Amplitudes, Eur.Phys.J. C74 (12) (2014) 3197.
arXiv:1404.4783, doi:10.1140/epjc/s10052-014-3197-4.

[28] R. Fazio, P. Mastrolia, E. Mirabella, W. Torres Bobadilla, Gener-
alized Unitarity for Dimensionally Regulated Amplitudes, these
proceedings.

[29] F. Cachazo, Holomorphic anomaly of unitarity cuts and one-
loop gauge theory amplitudes.

[30] R. Britto, F. Cachazo, B. Feng, Computing one-loop amplitudes
from the holomorphic anomaly of unitarity cuts, Phys.Rev. D71
(2005) 025012. doi:10.1103/PhysRevD.71.025012.

[31] S. D. Badger, Direct Extraction Of One Loop Rational Terms,
JHEP 01 (2009) 049.

[32] N. Arkani-Hamed, F. Cachazo, J. Kaplan, What is the
Simplest Quantum Field Theory?, JHEP 1009 (2010) 016.
doi:10.1007/JHEP09(2010)016.

[33] P. Mastrolia, E. Mirabella, T. Peraro, Integrand reduction of one-
loop scattering amplitudes through Laurent series expansion,
JHEP 1206 (2012) 095. doi:10.1007/JHEP06(2012)095.

[34] N. Arkani-Hamed, F. Cachazo, C. Cheung, J. Kaplan,
A Duality For The S Matrix, JHEP 1003 (2010) 020.
doi:10.1007/JHEP03(2010)020.

[35] D. A. Kosower, K. J. Larsen, Maximal Unitar-
ity at Two Loops, Phys.Rev. D85 (2012) 045017.
doi:10.1103/PhysRevD.85.045017.

[36] D. Vaman, Y.-P. Yao, QCD recursion relations from the largest
time equation, JHEP 0604 (2006) 030. arXiv:hep-th/0512031,
doi:10.1088/1126-6708/2006/04/030.

[37] H. van Deurzen, G. Luisoni, P. Mastrolia, G. Ossola, Z. Zang,
Automated Computation of Scattering Amplitudes from Inte-
grand Reduction to Monte Carlo tools, these proceedings.

[38] P. Mastrolia, G. Ossola, On the Integrand-Reduction Method
for Two-Loop Scattering Amplitudes, JHEP 1111 (2011) 014.
doi:10.1007/JHEP11(2011)014.

[39] S. Badger, H. Frellesvig, Y. Zhang, Hepta-Cuts of Two-
Loop Scattering Amplitudes, JHEP 1204 (2012) 055.
doi:10.1007/JHEP04(2012)055.

[40] Y. Zhang, Integrand-Level Reduction of Loop Amplitudes
by Computational Algebraic Geometry Methods, JHEP 1209
(2012) 042. doi:10.1007/JHEP09(2012)042.

[41] P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro, Scattering
Amplitudes from Multivariate Polynomial Division, Phys.Lett.
B718 (2012) 173–177. doi:10.1016/j.physletb.2012.09.053.

[42] K. Chetyrkin, F. Tkachov, Integration by Parts: The Algorithm
to Calculate beta Functions in 4 Loops, Nucl.Phys. B192 (1981)
159–204. doi:10.1016/0550-3213(81)90199-1.

[43] A. Kotikov, Differential equations method: New technique for
massive Feynman diagrams calculation, Phys.Lett. B254 (1991)
158–164. doi:10.1016/0370-2693(91)90413-K.

[44] E. Remiddi, Differential equations for Feynman graph ampli-
tudes, Nuovo Cim. A110 (1997) 1435–1452.

[45] T. Gehrmann, E. Remiddi, Differential equations for two

loop four point functions, Nucl.Phys. B580 (2000) 485–518.
doi:10.1016/S0550-3213(00)00223-6.

[46] M. Argeri, P. Mastrolia, Feynman Diagrams and Differ-
ential Equations, Int.J.Mod.Phys. A22 (2007) 4375–4436.
doi:10.1142/S0217751X07037147.

[47] V. A. Smirnov, Analytic tools for Feynman integrals, Springer
Tracts Mod.Phys. 250 (2012) 1–296. doi:10.1007/978-3-642-
34886-0.

[48] J. M. Henn, Lectures on differential equations for Feynman
integrals, J.Phys. A48 (15) (2015) 153001. arXiv:1412.2296,
doi:10.1088/1751-8113/48/15/153001.

[49] S. Laporta, High precision calculation of multiloop Feynman
integrals by difference equations, Int.J.Mod.Phys. A15 (2000)
5087–5159. doi:10.1016/S0217-751X(00)00215-7.

[50] J. M. Henn, Multiloop integrals in dimensional regular-
ization made simple, Phys.Rev.Lett. 110 (2013) 251601.
doi:10.1103/PhysRevLett.110.251601.

[51] M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk,
et al., Magnus and Dyson Series for Master Integrals, JHEP
1403 (2014) 082. doi:10.1007/JHEP03(2014)082.

[52] W. Magnus, On the exponential solution of differential equa-
tions for a linear operator, Comm. Pure and Appl. Math. VII.

[53] F. Dyson, The Radiation theories of Tomonaga,
Schwinger, and Feynman, Phys.Rev. 75 (1949) 486–502.
doi:10.1103/PhysRev.75.486.

[54] S. Blanes, F. Casas, J. A. Oteo, J. Ros, The magnus expansion
and some of its applications, Physics Reports 470.

[55] A. Goncharov, Polylogarithms in arithmetic and geometry, Pro-
ceedings of the International Congress of Mathematicians 1,2
(1995) 374387.

[56] E. Remiddi, J. Vermaseren, Harmonic polylogarithms,
Int.J.Mod.Phys. A15 (2000) 725–754. arXiv:hep-ph/9905237,
doi:10.1142/S0217751X00000367.

[57] T. Gehrmann, E. Remiddi, Numerical evaluation of harmonic
polylogarithms, Comput.Phys.Commun. 141 (2001) 296–312.
arXiv:hep-ph/0107173, doi:10.1016/S0010-4655(01)00411-8.

[58] J. Vollinga, S. Weinzierl, Numerical evaluation of multiple poly-
logarithms, Comput.Phys.Commun. 167 (2005) 177. arXiv:hep-
ph/0410259, doi:10.1016/j.cpc.2004.12.009.

[59] C. Duhr, Mathematical aspects of scattering amplitude-
sarXiv:1411.7538.

[60] E. Remiddi, L. Tancredi, Schouten identities for Feynman
graph amplitudes; The Master Integrals for the two-loop
massive sunrise graph, Nucl.Phys. B880 (2014) 343–377.
doi:10.1016/j.nuclphysb.2014.01.009.

[61] L. Adams, C. Bogner, S. Weinzierl, The two-loop sunrise in-
tegral around four space-time dimensions and generalisations
of the Clausen and Glaisher functions towards the elliptic
casearXiv:1504.03255.

[62] S. Di Vita, P. Mastrolia, U. Schubert, V. Yundin, Three-loop
master integrals for ladder-box diagrams with one massive leg,
JHEP 1409 (2014) 148. doi:10.1007/JHEP09(2014)148.

P. Mastrolia / Nuclear and Particle Physics Proceedings 267–269 (2015) 131–139 139


