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The human prune protein (h-prune) belongs to the phos-
phoesterase DHH family. Its over-expression is correlated
with cancer progression, tumor aggressiveness and advanced
disease status in breast and gastric cancers.[1] The inhibition
of the phosphodiesterase activity with dipyridamole sup-
presses cell motility in breast cancer cell lines.[2] The N-ter-
minus of the h-prune sequence contains the DHH and
DHHA2 domains that are involved in its enzymatic func-
tion, related to cAMP pools and inorganic polyphosphates
in the cells.[2,3] These domains are then followed by a C-ter-
minal third domain, the involvement of which in the interac-
tion with different partners has been recently proposed.[4–7]

The best characterized h-prune partner is Nm23-H1 the in-
teraction of which is mediated through casein kinase (CKI,
CKII) phosphorylation of Ser120, Ser122 and Ser125,[5] and
the complex promotes enhanced cell motility.[8–10] A three-
dimensional characterization of the C-terminal h-prune
region (residues 354-453), named c-prune, obtained through
NMR spectroscopy and molecular dynamics (MD) analysis
has been very recently obtained,[11] and had revealed the
presence of an intrinsically disordered domain (residues
370–453), which nonetheless includes two regions with a

degree of helical propensity. In particular, the helix a3 is
comprised in a small compact region constrained by a disul-
fide-bridged cycle.

The NMR mapping of c-prune surface regions involved in
the interaction with Nm23-H1 has been also achieved and
has shown that the small globular section of c-prune repre-
sents part of the Nm23-H1 binding epitope.[11] Furthermore,
a competitive permeable peptide (CPP) has been developed,
which mimics the Nm23-H1 minimal region of interaction
(amino acids 115–128)[5] and can bind to c-prune, inhibiting
the formation of the Nm23-H1–h-prune complex in vitro
and in vivo; consequently it has potential use in therapy of
Neuroblastoma.[11] In-cell NMR spectroscopy represents a
very promising technique in systems biology, allowing struc-
tural and functional study of biological macromolecules in
their physiological environment.[12–14] Interestingly, compara-
ble results between analyses performed on whole live cells
and extracts have been obtained.[15] These methodologies
become more intriguing when the molecules of interest are
intrinsically disordered proteins, which constitute a relevant
part of the cellular proteome,[16] the structural features of
which are particularly sensible to the cellular environ-
ments.[17]

Indeed, elucidating structure–activity relationships of in-
trinsically disordered proteins (IDPs) in the cellular environ-
ment is strongly needed to shed light on the role of poorly
folded domains in the cellular metabolism. Herein, we struc-
turally characterize, in human cell lysates, the functional in-
teractions of h-prune ID third domain with its endogenous
protein partners, particularly Nm23-H1,[2] the glycogen syn-
thase kinase-b (GSK-3b),[6] ASAP1[18] and gelsolin[7] using
fast NMR spectroscopy experiments. The cellular analyses
were carried out by adding 15N-labeled c-prune to HEK293
lysates. Despite the high abundance of endogenous, unla-
beled proteins, the resulting 2D 15N,1H HSQC spectra of c-
prune in HEK293 lysates were superimposable with the ref-
erence spectra of the protein in buffer (Figure 1 a and Fig-
ure S2 in the Supporting Information) indicating that c-
prune retains the same conformation in cellular environ-
ment, very likely preserving its oxidized form, as indicated
by the chemical shift of Cys417 and Cys432. Nonetheless,
the average c-prune amide resonance signal intensity in the
HEK293 lysate was notably reduced with an overall increase
in proton linewidths correlating well with the expected in-
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crease in the protein total correlation time (tc) due to cellu-
lar viscosity.[19]

To investigate the specific association between c-prune
and Nm23-H1, a starting solution of purified 15N-labeled c-
prune was added to HEK293 lysate over-expressing Nm23-
H1 (Figure S1a in the Supporting Information). As a result,
intensities of certain resonances
are strongly reduced whereas a
small number are slightly shift-
ed, indicating the formation of
a high-molecular-weight com-
plex between Nm23-H1 and c-
prune. The extent of the signal
decrease is reported as function
of the protein sequence (Fig-
ure 1 b and Figure S3a in the
Supporting Information), and
the residues most affected by
the interaction, mapped onto
the c-prune surface (Figure 1 c),
mostly correspond to those un-
veiled by the in vitro NMR
binding analysis.[11] In particu-
lar, in cell lysates NMR analysis
outlines two discontinuous re-
gions encompassing amino

acids from 388 to 404 and the more compact region consti-
tuted by the disulfide-bridged cycle and the a3 helical
region (amino acids 412–445). To further validate the specif-
ic interaction of c-prune–Nm23-H1, the NMR binding ex-
periments were repeated by using the human neuroblastoma
SH-SY5Y lysates naturally expressing high amount of

Figure 1. a) Overlay of the 2D 15N,1H HSQC correlation spectra of purified c-prune in NMR buffer solution (red) and of c-prune in HEK-293 lysate
(blue). b) Intensity ratios for all c-prune residues extracted from 2D 15N,1H HSQC experiments performed in HEK-293 lysate over-expressing Nm23-H1.
c) The amino acids showing large variations upon complex formation with Nm23-H1 (I0�I/I0�0.36) are mapped in cyan onto the h-prune surface. The
region highlighted in red corresponds to the polyproline sequence whereas the region in yellow corresponds to a disulfide bridge between C419 and
C437.

Figure 2. Intensity ratios for all c-prune residues (I0�I/I0�0.36) extracted from 2D 15N,1H HSQC experiments
performed in SH-SY5Y lysate (grey) and compared to the data obtained in HEK-293 lysate (black).
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Nm23-H1 (Figures S1a and S3b in the Supporting Informa-
tion).

As showed in Figure 2, SH-SY5Y extracts confirmed that,
upon the complex formation, Nm23-H1 binding epitope cor-
responds to the two regions identified above. On this basis,
we used site-directed mutagenesis to better define the bind-
ing site for Nm23-H1. In vitro NMR interaction studies indi-
cated that two negatively charged amino acids, D388 and
D422, significantly contribute to the c-prune–Nm23-H1
complex.[11] Accordingly, further functional studies showed
that the over-expression of h-prune D388A and D422A mu-
tants did not induce cell migration and that the mutants in-
teracted weakly with Nm23-H1.[11] To correlate the activity
loss of the mutants with an in-cell inability to bind their
functional partner, we investigated the binding of c-prune
D388A or D422A mutants with Nm23-H1. As expected,
D388A and D422A show no significant changes in the
NMR peak intensities (Figure S4a and b in the Supporting
Information), confirming that these two single-point muta-
tions within the c-prune binding epitope compromised its
ability to interact with the Nm23-H1 both in vitro and in
vivo. Guided by the NMR interaction analysis, we designed
another c-prune single point mutation affecting the Nm23-
H1 binding site.

In particular, we substituted L394 to alanine to evaluate
whether uncharged residues also contribute to the complex
formation. NMR binding experiments of the 15N-labeled
L394A mutant in HEK293 lysate show features of a rem-
nant, substantially reduced interaction (Figure S4c in the
Supporting Information). Although minor chemical shift
changes are observed, the pattern of resonances broadening
is significantly reduced, mostly including residues of the c-
prune C terminus. We conclude that L394, which sits at the
center of the c-prune–Nm23-H1 binding site, plays a signifi-
cant role in the stabilization of c-prune–Nm23-H1 interac-
tion, in vivo. To further validate our system we used cellular
lysates transfected with two well characterized single-point
mutants of Nm23-H1, P96S and S120G, both of which are
known to alter Nm23-H1 biochemical activity or structure
and affect the cell motility.[20] To this aim, we added 15N-la-
beled c-prune to HEK293 extracts over-expressing each
Nm23-H1 mutant (Figure S1a in the Supporting Informa-
tion). The signal intensities of the extracts over-expressing
Nm23-H1 S120G or P96S mutants were comparable to
those observed in the corresponding extracts not over-ex-
pressing endogenous Nm23-H1 (Figures S5 and S6 in the
Supporting Information), demonstrating that the loss of ac-
tivity of Nm23-H1 S120G or P96S mutants depends on their
inability to bind c-prune.

Moreover, we extended functional studies in cell lysates
to other h-prune endogenous partners, such as GSK3b, gel-
solin and ASAP1 (Figure S1b in the Supporting Informa-
tion). Upon addition of HEK293 extracts over-expressing
GSK3b or gelsolin to starting solutions of 15N-labeled c-
prune the NMR peaks weakened, indicating c-prune interac-
tion with each of the proteins. In particular, residues be-
tween Q356 and S396 and residues from A361 to R389 of

Figure 3. a) Intensity ratios for all c-prune residues (I0�I/I0�0.32) ex-
tracted from 2D 15N,1H HSQC experiments performed in HEK-293 lysate
over-expressing GSK-3b. b) The amino acids showing large variations
upon complex formation with GSK-3b are mapped in magenta onto the
h-prune surface. c) Intensity ratios for all c-prune residues (I0�I/I0�0.21)
extracted from 2D 15N,1H HSQC experiments performed in HEK-293
lysate over-expressing gelsolin. d) The amino acids showing large varia-
tions upon complex formation with gelsolin are mapped in orange onto
the h-prune surface. The region on h-prune in red corresponds to the
poly ACHTUNGTRENNUNGproline sequence whereas the region in yellow corresponds to a di-
sulfide bridge between Cys419 and Cys437.
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the 15N labeled c-prune show an extensive line broadening
in the presence of HEK293 lysate over-expressing GSK3b

and gelsolin, respectively (Figure 3). Interestingly, in cell
lysate NMR spectroscopy experiments outline GSK3b and
gelsolin binding sites that lie on the N-terminal portion of c-
prune, indicating a remarkable binding versatility of this
domain, likely due mostly to its intrinsically disordered
nature. Indeed, residues 353–365 of c-prune constitute the
C-terminal region of h-prune DHHA2 domain; thus GSK3b
and gelsolin interaction also with this domain cannot be ex-
cluded. On the other hand, in the presence of cellular ex-
tracts over-expressing ASAP1 no changes in signal intensi-
ties in the c-prune 15N,1H HSQC spectrum were observed
corroborating the hypothesis that this partner does not inter-
act with the C-terminal domain of h-prune but, probably,
with the other two domains, DHH and DHHA2, involved in
the catalytic activity, and is therefore able to stimulate h-
prune exopolyphosphatase and cAMP-PDE previously char-
acterized activities.[3]

In conclusion, we show, in human cell lysates, how the C-
terminal domain of h-prune functional activity is mediated
by appropriate interactions with endogenous partners. The
NMR analysis shows that the intrinsically disordered third
domain of h-prune retains its conformational preferences in
a cellular environment, at the same time showing a valuable
capacity to recognize different cellular partners by means of
appropriate protein portions. Detecting interaction in lysates
represents a very useful tool for studying protein–protein in-
teractions because many proteins are difficult to express in
E. coli, to purify or to obtain with certain post-translational
modifications. Overall, this study shows that protein func-
tions mediated by protein–protein interactions can be accu-
rately followed in cell lysates with NMR spectroscopy fast
experiments, which could be easily used for a very efficient
NMR drug discovery strategy, either starting from fragments
or developed ligands.[21–24] Finally, this functional characteri-
zation contributes to a better understanding of the oncogen-
ic h-prune biological activity, providing the basis for devel-
oping new drugs in cancer therapy.
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