
p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

The Essence of Coin Lemmas

Roberto Segala

Dipartimento di Scienze dell�Informazione�

Universit�a di Bologna � Italy

Abstract

Coin lemmas are a tool for the analysis of randomized distributed algorithms� Their

principal role is to reduce the analysis of a randomized system to the analysis of an

ordinary nondeterministic system� This paper describes the main ideas behind the

formulation and use of coin lemmas and gives examples of coin lemmas of increasing

complexity and generality�

� Introduction

The analysis of randomized distributed algorithms is known to be a hard task

������� due to the interactions between probability and nondeterminism� An

evidence of this fact is also the existence of several incorrect algorithms in the

literature� some of which have been corrected �������

One way of analyzing an algorithm is to let an adversary resolve the nonde	

terminism� identify the worst possible adversary� and show that the algorithm

works properly in the presence of the worst adversary� Unfortunately� the

identi
cation of the worst adversary is not an easy task and is usually driven

by intuition rather than by rigorous analysis�

An alternative approach consists of showing that under any adversary the

algorithm works properly� That is� given an arbitrary adversary� show that

with a su�ciently high probability the algorithm completes its task success	

fully �we say that the algorithm is successful with a su�ciently high probabil	

ity
� In this case the problem of identifying the worst adversary disappears�

however� it is not clear how to prove that the algorithm is successful with a

su�ciently high probability�

Fortunately� the designer of an algorithm knows the reasons for which

the algorithm is supposed to work� usually there is some stochastic process

taking place during the evolution of the algorithm� and some speci
c results

of the underlying stochastic process guarantee success� However� one main

question is left open� how do we make sure that the anticipated stochastic

process is really taking place under any adversary� Indeed� nondeterminism

creates a lot of interference� and the probability distributions of the underlying

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Segala

stochastic process could be highly a�ected� The distortions introduced by

nondeterminism are one of the main pitfalls behind incorrect algorithms�

In this context coin lemmas ���������� were introduced� A coin lemma

is a rule to map a stochastic process onto events in the computations of a

randomized algorithm so that some minimum probability requirements are

guaranteed� The advantages of coin lemmas are twofold� on one side they al	

low us to reduce the problem of analyzing a randomized distributed algorithm

to the problem of analyzing an ordinary distributed algorithm� thus remov	

ing probability� on the other side coin lemmas force the designer to view an

algorithm in such a way that the subtleties due to nondeterminism can be

identi
ed easily� It is important to note that there is no formal statement of

what is a coin lemma� Rather� the term �coin lemma� is a generic name for

the task of mapping stochastic processes onto events in computations while

guaranteeing some minimum probability requirement� The reason for the word

�coin� is that within randomized distributed algorithms the probabilistic ar	

guments are usually based on coin �ipping� the reason for the word �lemma�

is that a coin lemma is an auxiliary statement in the context of the analysis

of an algorithm� The aim of this paper is to give an idea of how coin lemmas

are used and what are the key ideas for the formulation of a new coin lemma�

The reader interested in complete applications of coin lemmas is referred to

��������������

Coin lemmas were
rst proposed to be used in conjunction with the sim�

ulation method ������� on Labeled Transition Systems �LTSs
 ����� which we

also refer to as automata� For this reason� coin lemmas are formulated within

the framework of Probabilistic Automata �PA
 ����� a model with a structure

similar to Labeled Concurrent Markov Chains �LCMCs
 ������� and Markov

Decision Processes �MDPs
 ���� that at the same time can be seen as a prob	

abilistic extension of LTSs� The advantages of such a formulation are the

possibility of de
ning a compositional theory of probabilistic systems� and the

availability of a framework where the reduction from probability to nondeter	

minism carried out by a coin lemma can be stated easily�

A probabilistic automaton is like an LTS with the di�erence that a transi	

tion leads to a discrete probability distribution over states rather than to single

states� Thus� an ordinary LTS is a probabilistic automaton where all distri	

butions are Dirac distributions� Probabilistic automata are very similar to

MDPs� with the main technical di�erence that within MDPs it is not possible

to choose nondeterministically between two transitions with the same label�

Resolving the nondeterminism within a PA amounts to choosing a transition

from each state� Within distributed algorithms nondeterminism is resolved

by an entity called an adversary� within MDPs nondeterminism is resolved

through policies� In all cases the result of the resolution of the nondetermin	

ism is a cycle free Markov chain whose states record the past history� These

objects are called probabilistic executions within PAs� and� in accordance with

the style of analysis typical for LTSs� are the main objects of our analysis�

�

Segala

We have now enough information to describe better the role of a coin

lemma� Given a randomized algorithm� we would like to say that for each

probabilistic execution of the algorithm� possibly satisfying some fairness re	

quirements� the probability that the algorithm is successful is at least some

value p� Of course we assume that an algorithm is represented as a PA� which

we refer to by A� We know� or rather we have a strong intuition� that some

stochastic process S is taking place within each probabilistic execution of the

algorithm� and we suspect that whenever the stochastic process S gives some

speci
c results �successful results
� which have probability p� the algorithm is

successful� A coin lemma for S provides us with a rule to map each probabilis	

tic execution of A onto an event �a set of paths in the probabilistic execution

that has probability at least p� A path in a probabilistic execution coincides

with the notion of execution of LTSs� Thus� the problem is reduced to verify	

ing that all the executions that belong to some event obtained from the coin

lemma guarantee the success of the algorithm� Our main problem is to see

how to formulate a coin lemma� once a coin lemma is given� the veri
cation

task is simple�

The
rst step for the formulation of a coin lemma for a stochastic process

S is to identify the points of an execution in which the elementary experi	

ments of S take place� In our treatment we use the labels associated with

transitions to identify the elementary experiments� although this is not the

only possibility� Then� one possible rule is to consider all those paths of a

probabilistic execution where the result of S is one of the successful results�

Unfortunately� this rule does not work since sometimes nondeterminism can

be resolved in such a way that some of the elementary experiments of S do

not take place� We call a path �an execution
 incomplete if some elementary

experiments of S do not take place� If we do not include the incomplete paths

in our events� then the lower bound p does not hold� since in the worst case

it could be possible to resolve the nondeterminism so that some elementary

experiment is not scheduled with an arbitrarily high probability� if we include

all the incomplete paths� then the lower bound p is satis
ed� but the events

obtained from the rule could be unnecessarily too large� Our main observation

is that it is su�cient to include those incomplete paths for which it is possible

to
x the results of the experiments that do not take place and obtain one

of the successful results of S� From the point of view of the analysis of ran	

domized distributed algorithms the style of rules that we have just outlined

forces the user either to verify that all the elementary experiments take place�

or to consider explicitly the cases where some experiments do not take place�

Overlooking this last point is the main cause of errors that we have noted�

For the purpose of this paper we work with a simpli
ed probabilistic au	

tomaton model where nondeterminism is resolved without using randomiza	

tion� The drawback of our choice is that in the simpli
ed model it is not

possible to reason compositionally� However� compositional reasoning is not

relevant for the study of coin lemmas� The reader interested in the full PA

�

Segala

model� where both the results of this paper and a compositional theory are

available� is referred to �����

The rest of the paper is organized as follows� Section � gives an overview

of related work� Section � introduces probabilistic automata and the related

concepts that are relevant for this paper� Section � illustrates the use and

formulation of coin lemmas through several examples� Section � gives examples

of coin lemmas of increasing complexity and generality� Section � gives some

concluding remarks�

� Related Work

There is a lot of work on modeling randomized concurrent systems with process

algebras� part of it dealing with nondeterminism �������������������������������

and part of it dealing with some form of nondeterminism �������������� The

work in ������� is based on LCMCs� The main di�erence between LCMCs and

PAs is that in LCMCs there is a strict alternation between states that enable

a single probabilistic transition �probabilistic states
 and states that enable

several nondeterministic transitions �nondeterministic states
� In our opinion

MDPs ���� provide the right foundation for modeling concurrent probabilistic

systems� The main di�erence between MDPs and PAs is that PAs are for	

mulated as a conservative extension of LTSs and enable modular reasoning

together with the veri
cation techniques associated with LTSs �e�g�� the sim	

ulation method
� A model with the same structure as PAs was introduced

in ����� although with the sole purpose of studying languages� Other models

similar to PAs can be found in ��������

A veri
cation tool similar to our coin lemmas are the scheduler	luck games

of ����� The rule to identify an event is presented as a game between two

players� scheduler � who decides what transitions to schedule next� and luck �

who decides the outcome of the coin �ips� We are guaranteed that the resulting

events have probability at least ���k if luck moves at most k times during the

game� Scheduler	luck games can be seen as an instance of a coin lemma� In

the cases where they are applicable they provide a nice way of analyzing an

algorithm�

This paper is concerned with the analysis of algorithms by hand� Another

area of research is concerned with automatic veri
cation� mainly based on

probabilistic model checking�
rst introduced in ����� Within model checking

coin lemmas are not relevant since the proofs are completely automatic� The

drawback of probabilistic model checking is that it is applicable only to
nite

state systems and that its complexity is very high� at the point of not being

applicable to large algorithms� Coin lemmas could become relevant if we

study hybrid proof techniques where only some parts of a proof are carried

out automatically�

Other work si concerned on extending temporal logic based deductive tools

to the analysis of randomized concurrent systems� Relevant work includes

�

Segala

�������������� There has been no investigation yet on how coin lemmas could
be relevant and�or integrated with such veri
cation techniques�

� Probabilistic Automata

��� Probability Spaces

A probability space is a triple ���F � P
 where � is a set� F is a collection of
subsets of � that is closed under complement and countable union and such
that � � F � and P is a function from F to ��� �� such that P ��� � � and
such that for any collection fCigi of at most countably many pairwise disjoint
elements of F � P ��iCi� �

P
i P �Ci�� A probability space ���F � P
 is discrete

if F � �� and for each C � �� P �C� �
P

x�C
P �fxg�� Given a set X� denote

by Probs�X
 the set of discrete probability spaces whose sample space is a
subset of X and such that the probability of each element is not ��

The Dirac distribution over an element x� denoted by D�x
� is the proba	
bility space with a unique element x�

Throughout the paper we denote a probability space ���F � P
 by P� As
a notational convention� if P is decorated with indices and primes� then the
same indices and primes carry to its elements� Thus� P �

i denotes ��
�

i�F
�

i� P
�

i
�

A function f � �� �� can be lifted to discrete probability spaces as follows�
f�P
 � �f��
� �f���� P �
� where� for each E � f��
� P ��E� � P �f���E
��

��� Probabilistic Automata

A labeled transition system ����� also called an automaton� is a state machine
with labeled transitions� Each transition leaves from a state and leads to the
occurrence of a label� also called an action� and to a state� A probabilistic
automaton is like an ordinary automaton except that each transition leads to
an action and to a probability distribution over states�

De�nition ��� A probabilistic automaton M consists of four components�

�i
 a set states�M
 of states�

�ii
 a nonempty set start�M
 � states�M
 of start states�

�iii
 an action signature sig�M
 � �ext�M
� int�M

 where ext�M
 and int�M

are disjoint sets of external and internal actions� respectively�

�iv
 a transition relation trans�M
 � states�M
�acts�M
�Probs�states�M

�
where acts�M
 denotes the set ext�M
 � int�M
 of actions�

A probabilistic automaton is fully probabilistic if it has a unique start state

and from each state there is at most one transition enabled� �

A probabilistic automaton according to De
nition ��� is called a simple prob�

abilistic automaton in ����� Observe that an ordinary automaton is a special

�

Segala

case of a probabilistic automaton where each transition leads to a Dirac dis	

tribution�

A probabilistic automaton could be seen as a reactive probabilistic tran	

sition system of ����� however� the reactive systems of ���� do not allow the

speci
cation of systems with two transitions with that leave from the same

state and are labeled by the same action�

��� Executions and Probabilistic Executions

Resolving the nondeterminism in an automaton leads to a linear chain of

states interleaved with actions� called an execution or a computation� resolving

the nondeterminism in a probabilistic automaton leads to a Markov chain�

since each transition leads probabilistically to more than one state� Such a

Markov chain is called a probabilistic execution and can be visualized as a fully

probabilistic automaton�

Formally� we start from the notion of an execution� which is the result of

resolving both the nondeterministic and the probabilistic choices in a proba	

bilistic automaton and corresponds to the notion of an execution for ordinary

automata�

De�nition ��� An execution fragment � of a probabilistic automaton M is

a �	nite or in	nite
 sequence of alternating states and actions starting with a

start state and� if the execution is 	nite� ending in a state� � � s�a�s�a�s� � � ��

where for each i there exists a probability space P such that �si� ai���P
 �

trans�M
 and si�� � �� Denote by fstate��
 the 	rst state of �� and� if � is

	nite� denote by lstate��
 the last state of ��

An execution of M is an execution fragment of M whose 	rst state is a

start state of M � Denote by exec��M
 and exec�M
 the sets of 	nite and all

executions of M � respectively�

An execution �� of M is a pre
x of an execution �� of M � written �� � ���

if either �� � �� or �� is obtained by extending ��� i�e�� �� � s�a�s� � � �ansn

and �� � s�a�s� � � �ansnan��sn�� � � �� �

As we said already� an execution is the result of resolving both the nondeter	

ministic and the probabilistic choices in a probabilistic automaton� The result

of the resolution of nondeterministic choices only is a fully probabilistic au	

tomaton� called a probabilistic execution� which is the entity that replaces the

executions of ordinary automata� Informally� since in ordinary automata there

is no probability left once the nondeterminism is resolved� the executions and

probabilistic executions of an ordinary automaton describe the same objects�

A probabilistic execution can be seen as the result of unfolding the transition

relation of a probabilistic automaton and then choosing a transition from each

state�

De�nition ��� For each 	nite execution fragment � and each action a� de	ne

a function �a such that �a�s
 � �as for each state s� Recall from Section ���

�

Segala

that the function �a can be lifted to discrete probability spaces�

A probabilistic execution fragment of a probabilistic automaton M � is a

fully probabilistic automaton� denoted by H� such that

�i
 states�H
 � exec��M
� Let q range over states of probabilistic executions�

�ii
 start�H
 contains a state of M �

�iii
 for each transition �q� a�P
 of H there is a transition �lstate�q
� a�P �

 of

M such that P � qa�P �

�

�iv
 each state of H is reachable� where a state q of H is reachable if there is

an execution of H whose last state is q�

A probabilistic execution ofM is a probabilistic execution fragment ofM whose

start state is a start state of M � For each transition �q� a�P
 of H� denote P

by PH
q �

��� Events

There is a standard way of de
ning a probability space ��H �FH� PH
 for a

probabilistic execution H� The set �H is the set of limits under pre
x of

chains of states of H� the �	
eld FH is the �	
eld generated by the set of

cones C� � f�� � �H j � � �
�g� where � is a state of H� the measure PH

is the unique measure that extends the measure de
ned on cones as follows�

if � � s�a�s� � � �ansn� then PH�C�

�

� P
H
q�
��a�� q�
� � � �P

H
qn��

��an� qn
�� where

each qi is de
ned to be s�a�s� � � �aisi�

� The Idea Behind the Formulation of Coin Lemmas

��� Examples of Problems and Applications

We start the illustration of coin lemmas through some examples of problems

and algorithms�

Example ��� �Dining Philosophers
 There are n philosophers sitting at a

round table with a bowl of spaghetti in the center� Each philosopher has a

fork on his left and another fork on his right� The left fork is shared with the

left neighbor and the right fork is shared with the right neighbor� Sometimes

a philosopher decides to eat and does it by picking up his two forks� one at

a time� No philosopher can eat without picking up his two forks 	rst� The

problem is to ensure that if some philosopher wants to eat� then eventually

some philosopher will eat�

It is known from ���
 that there is no symmetric deterministic solution to

the dining philosopher�s problem� i�e�� there is no solution where all philoso�

phers follow the same deterministic algorithm� In ���
 Lehmann and Rabin

propose the following randomized algorithm� a philosopher who wants to eat

�ips a coin to choose which fork to pick up 	rst� waits for the chosen fork to

be free and picks it up� and 	nally tries to pick up the other fork� If the other

�

Segala

fork is free� then the philosopher eats� otherwise the philosopher puts down the

	rst fork and starts again from the beginning�

The main idea behind the algorithm of Lehmann�Rabin is that whenever

two adjacent philosophers �ip coins and none of them chooses the shared fork�

then one of the two philosophers will 	nd the second fork free and eat� �

Example ��� �Consensus in Exponential Time
 There are n processors that

propose a value in the set f�� �g� The values proposed by the processors may

be di�erent� but at the end all the processors must agree on the same value�

chosen among the values that were proposed� Communication is asynchronous

and processors may crash by stopping� This problem is unsolvable ���
 since�

informally� it is not possible to distinguish between a crashed processor and a

slow processor�

A randomized algorithm that solves the consensus problem works as follows

��
� The algorithm is structured in rounds� At each round the processors inter�

act and try to produce a consistent value to agree on� If the processors cannot

agree� then they �ip a coin �a di�erent coin for each processor
 to choose the

value to propose in the next round� With probability ���n all processors choose

the same value� and then agreement is possible� �

Example ��� �Consensus in Polynomial Time
 The algorithm described in

Example ��� works in expected exponential time since there is an exponen�

tially low probability that randomization leads to agreement� In ��
 a di�erent

way of �ipping coins is proposed so that the probability to reach agreement is

constant� The processors that need to �ip a coin �ip local coins to increment

or decrement a shared counter� When the value of the counter goes beyond

some 	xed barriers �with values �Kn
� then the processors return a value�

The value of the shared counter evolves like a stochastic process known as ran	

dom walk ���
� and it is possible to use random walk theory to show that there

is a constant probability that all processors observe values beyond the same

barrier� i�e�� all processors return the same value� �

Example ��� �Choosing a Leader
 A randomized algorithm to choose a leader

among n processors can be structured in rounds as follows� At each round there

are some processors� determined by race conditions� that participate in a game�

In the game each processor �ips coins until a head comes out and returns the

number of coins that were �ipped� i�e�� number i is chosen with probability

���i� The winners are the processors that draw the highest number� If there

is a unique winner� then the winner is the leader�

It is known that if k processors participate in the game� where k is any 	xed

number� then there is a constant probability that there is a unique winner� The

constant is independent of k� Thus� at each round there is constant probability

to elect a leader� and a leader is elected within an expected constant number

of rounds� �

In each of the examples above the correctness of the related algorithm is

�

Segala

based on the intuition that at some point the algorithm behaves like a speci
c

stochastic process and that some of the results of the stochastic process lead

to success� In Example ��� the process consists of �ipping two coins� each one

giving a speci
ed value� in Example ��� the process consists of �ipping n coins�

all giving the same value� in Example ��� the process consists of computing a

random walk where a speci
c barrier is reached before another speci
c barrier�

in Example ��� the process consists of drawing k numbers where there is a

unique maximum�

To be sure that our arguments are correct� we need to verify that it is

possible to identify the chosen stochastic processes in each legal computation

of the algorithm and that in each computation the chosen events guarantee the

success of the algorithm� Furthermore� we need to verify that the probabilities

of the events of our interest are preserved in the mapping�

Although these operations may appear to be simple� Example ��� provides

us with several problems� If we consider a computation of the algorithm and

we focus on one round� we may observe that some processors� say k� participate

in the game� So� we map the game with k participants onto the computation�

However� a computation is a Markov chain� and it may not be the case that

there are k participants in each branch of the chain� What are we supposed to

do with the branches with less than k participants� This detail was overlooked

in the original analysis of the protocol of Example ���� and perhaps we have

been good enough to induce the reader into the same kind of mistake in our

informal description of the analysis� Indeed� the algorithm of Example ���

does not work� We said that the players of the game are determined by

race conditions� but we have not given any constraint on how race conditions

determine the players� Thus� an adversary could start with two players and

add players until either there are two winners or there are no more players

available� In this case the probability of a unique winner is negligible�

Similar problems� although not so catastrophic� occur in the other three

examples� What happens if no two adjacent processors �ip a coin in the

randomized dining philosophers algorithm� What happens if not all processors

�ip a coin in the consensus algorithm of Example ���� What happens if none

of the barriers is reached in the random walk of Example ��� due to the

fact that all processors stop �ipping coins� In the
rst case no two neighbor

philosophers want to eat� and thus each philosopher desiring to eat
nds both

forks free and succeeds� in the second case not all processors disagree and it

is su�cient to show that the other processors choose consistent values� in the

third case all the processors involved in the coin �ipping process crash� The

di�erence between these last three examples and Example ��� is that in the

last three examples all the situations where some coins are not �ipped are

successful� More precisely� all the situations where it is possible to choose

values for the un�ipped coins so that the underlying stochastic process is

successful are also successful for the algorithm� A well formulated coin lemma

ensures that we do not miss any of the dangerous cases where some coins may

�

Segala

not be �ipped�

��� What is a Coin Lemma

A coin lemma for a speci
c stochastic process provides us with two objects�

�i
 A rule to choose an event in each probabilistic execution of a probabilistic

automaton�

�ii
 A lower bound on the probability of the events identi
ed by the rule�

Consider again Example ���� We represent the algorithm as a probabilistic

automaton where each transition corresponds to some action taken by one of

the philosophers� We label each transition by the name of the philosopher

taking an action and the name of the action being taken� In particular� a

transition where philosopher i �ips a coin is labeled by �ip
i
� In order to ex	

ploit the main idea behind the algorithm� consider two adjacent philosophers�

one of which wants to eat� and consider the process stating that the next

coin �ip of the two philosophers does not lead to the shared fork� Given a

probabilistic execution H of the algorithm� we can check that all the elements

of �H where the chosen philosophers �ip according to the process above lead

to a state where some philosopher eats� thus concluding that the algorithm

completes with probability ���� However� the probability in H of the elements

of �H that we have just considered is not necessarily ��� since H may contain

several executions where one of the chosen philosophers does not �ip any coin�

A coin lemma� on the other hand� should give us an event associated with H

that is guaranteed to have probability at least ���� We could meet the lower

bound by considering also all those executions where one of the two philoso	

phers does not �ip his coin� but this would be an unnecessarily large event�

Alternatively� we can consider those executions where it is possible to
x the

values of the un�ipped coins so that no philosopher chooses the shared fork

�cf� Lemma ���
� At this point the problem is reduced to checking that all the

executions chosen by the coin lemma guarantee the success of the algorithm�

a purely nondeterministic problem� The extra executions that appear in the

events force us to check explicitly what happens if the stochastic process we

have in mind does not take place completely� In particular� in Example ��� we

would conclude that there are no two neighbor philosophers who want to eat�

The reader interested in the full analysis of the Dining Philosophers algorithm

using coin lemmas is referred to ��������

Example ��� can be analyzed with a coin lemma for n coins that are �ipped

and all give head �cf� Lemma ���
� In this case the rule for choosing events

forces us to consider explicitly those cases where not all processors �ip their

coin during a round and at the same time all the processors that �ip obtain

head� In this case we can show� by means of pure nondeterministic analysis�

that the processors that do not �ip their coin agree already on the value

implied by head� Observe that in this speci
c case a rule where we include

all the executions where some processor does not �ip any coin would give us

��

Segala

an event that does not imply agreement� The reader interested in the full

analysis is referred to �����

Example ��� can be analyzed by using a coin lemma for random walks

presented in ����� The rule considers all those executions where either one

barrier is reached or there are
nitely many coin �ips and no barrier is reached

�i�e�� there is a way of
xing the results of the un�ipped coins so that one

barrier is reached
�

To analyze Example ��� we need a coin lemma for the process of drawing

k numbers� each one according to the distribution P �i� � ���i� where there

is a unique maximum� The rule considers all those executions where either k

numbers are drawn and there is a unique maximum� or less than k numbers

are drawn �i�e�� there is a way of
xing the values of the remaining numbers

so that there is a unique maximum
� Recall that the lower bound on the

probability of the events returned by the rule would not hold if we do not

consider the executions where less than k numbers are drawn� Thus� we are

forced to analyze explicitly the executions with less than k participants� which

are not guaranteed to have a unique maximum� and thus do not guarantee

that a leader is elected� At this point� either we can show that there are no

executions with less than k participants� or we spot an error in the algorithm�

� Some Examples of Coin Lemmas

In this section we present some examples of coin lemmas of increasing com	

plexity� where the rule to identify an elementary experiment is based on ac	

tions� We emphasize again that actions are not the only way of identifying

elementary experiments�

��� Simple binary experiment

The
rst process that we consider is a simple binary experiment associated

with the
rst occurrence of an action a� The set of successful states is identi
ed

by a set U � If p is a lower bound on the probability of reaching a state from U

in the transitions labeled by a� then p is also a lower bound on the probability

of the event identi
ed by the rule� As an example� if action a identi
es the

process of �ipping a coin� then the set U could be the set of states where the

result of the coin �ip is head�

Lemma ��� Let M be a probabilistic automaton� and let �a� U
 be a pair

consisting of an action of M and a set of states of M � Let p be a real number

between � and � such that for each transition �s� a�P
 of M � P �U � 	 p�

For each probabilistic execution fragment H of M let FIRST �a� U
�H
 be

the set of executions � of �H such that either a does not occur in �� or a

occurs in � and the state reached after the 	rst occurrence of a is a state of

U �

��

Segala

Then� for each probabilistic execution fragment H of M �

PH �FIRST �a� U
�H
� 	 p�

Proof� For notational convenience denote FIRST �a� U
�H
 by E� and for
each state q of H and each set of states X� denote by �q�X the set fq� � �H

q j

lstate�q�
 � Xg� Let � be the set of states q of H such that action a does not
occur in q and action a is the label of the transition leaving from q� Then�

PH �E� �
X

q��

X

q���
q�U

PH �Cq�P
H
q �q�����

By de
nition of a probabilistic execution� and the hypothesis about p�X

q���
q�U

PH
q �q�� � �
 p��

for each q � �� Thus�

PH �E� �
X

q��

PH �Cq���
 p
���

Since the cones identi
ed by the elements of � are all disjoint�
P

q��
PH �Cq� �

�� Thus�

PH �E� � ��
 p
���

which is equivalent to PH �E� 	 p� �

Observe from the proof above that the probability of E decreases by in	
creasing the probability of scheduling a� The lowest value for the probability
of E occurs when a is scheduled with probability �� If we do not include
the executions where a is not scheduled in the events returned by the rule
FIRST �a� U
� then the probability of E would increase by decreasing the
probability of a� thus violating the lower bound of p for the probability of E�

��� First binary experiment among many

The coin lemma of the previous section identi
es the binary experiment of
interest through the
rst occurrence of an action a� It is possible to use more
complex rules to identify an experiment within a probabilistic execution� In
this section we present a coin lemma where the experiment is determined by
the
rst action that occurs among several possible actions�

Lemma ��� Let M be a probabilistic automaton� and let S be a sequence

�a�� U�
� � � � � �an� Un
 of pairs consisting of an action of M and a set of states

of M such that the actions ai are all distinct� Let fpigi	������n be a collection

of real numbers between � and � such that for each i� � � i � n� and each

transition �s� ai�P
 of M � P �U � 	 pi�

For each probabilistic execution fragment H of M let FIRST �S
�H
 be the

set of executions � of �H such that either none of the ai�s occurs in �� or

some of the ai�s occur in �� and if ai is the 	rst of those actions that occurs�

then the state reached after the 	rst occurrence of ai is a state of Ui�

��

Segala

Then� for each probabilistic execution fragment H of M �

PH �FIRST �S
�H
� 	 min�p�� � � � � pn
�

Proof� Let V denote fa�� � � � � ang� and let p be the minimum of fp�� � � � � png�
For notational convenience� denote FIRST �S
�H
 by E� and for each state q of
H and each set of states X� denote by �q�X the set fq� � �H

q j lstate�q�
 � Xg�
Finally� for each i � f�� � � � � ng� let �i be the set of states q of H such that no
action from V occur in q and action ai is the label of the transition leaving
from q� Then�

PH �E� �
X

i

X

q��i

X

q���
q�Ui

PH �Cq�P
H
q �q�����

By de
nition of a probabilistic execution� and the hypothesis about the pi s�X

q���
q�Ui

PH
q �q�� � �
 pi��

for each i � f�� � � � � ng and each q � �i� Thus�

PH �E� �
X

i

X

q��i

PH �Cq���
 pi
���

By de
nition of p and a simple algebraic argument�

PH �E� � ��
 p

X

i

X

q��i

PH �Cq����

Since the cones identi
ed by the �i s are all disjoint�
P

i

P
q��i

PH �Cq� � ��
Thus�

PH �E� � ��
 p
���

which is equivalent to PH �E� 	 p� �

��� Beyond 	rst occurrences

In the de
nition of FIRST we have considered the
rst action among a given
set that occurs in a probabilistic execution fragment H� However� the results
for FIRST are valid also if we consider the ith occurrence of an action instead
of the
rst occurrence� This observation suggests a new more general rule�

Lemma ��� Let M be a probabilistic automaton� and let S be a sequence

�a�� U�
� � � � � �an� Un
 of pairs consisting of an action of M and a set of states

of M such that the actions ai are all distinct� Let fpigi	������n be a collection

of real numbers between � and � such that for each i � f�� � � � � ng and each

transition �s� ai�P
 of M � P �Ui� 	 pi�

For each probabilistic execution fragment H of M let OCC �k�S
�H
 be the
set of executions � of �H such that either there are less than k occurrences of

actions from fa�� � � � � ang in �� or there are at least k occurrences of actions

from fa�� � � � � ang� and� if ai is the action that occurs as the kth one� then the

state reached after its occurrence is a state of Ui�

��

Segala

Then� for each probabilistic execution fragment H of M �

PH �OCC �k�S
�H
� 	 min�p�� � � � � pn
�

Proof� Similar to the proof of Lemma ��� since in that proof the fact that
we consider the
rst occurrence of an action rather than the kth occurrence is
not relevant� �

��� Conjunctions

It is also possible to consider the conjunction of several properties as well� In
order to simplify the notation� we consider only events of the kindOCC �i� �a� U

since� as we have seen in the proof of Lemma ���� the case with multiple actions
can be reduced to the case with a single action� The next lemma states that the
lower bound on the probability of the conjunction of several events of the form
OCC �i� �a� U

 is the product of the lower bounds of all the OCC �i� �a� U

events� In other words� an adversary can introduce dependencies by increas	
ing the probability of the conjunction of events� but it can never decrease the
probability below the value that we would get by considering all the events to
be independent�

Lemma ��� Let M be a probabilistic automaton� and consider a collection

�k�� a�� U�
� � � � � �kn� an� Un
 of triplets consisting of a natural number� an ac�

tion of M and a set of states of M � such that the pairs �ki� ai
 are all distinct�

Let fpigi	������n be a collection of real numbers between � and � such that for

each i � f�� � � � � ng and each transition �s� ai�P
 of M � P �Ui� 	 pi�

Then� for each probabilistic execution fragment H of M �

PH �OCC �k�� �a�� U�

�H
 � � � � �OCC �kn� �an� Un

�H
� 	 p� � � � pn�

Proof� Simple induction on n� �

��� Multiple outcomes

Consider the process of �ipping n coins� The coin lemmas seen so far can be
used to study the probability that all the coins yield head� However� we may
be interested in the probability that at least half of the coins yield head� or in
the probability that exactly � coins yield head� The coin lemmas seen so far
are not adequate�

Similarly� consider the process of rolling n dices� The coin lemmas seen so
far are not adequate since they can deal only with binary outcomes� we can
observe only whether a speci
c set U is reached or not� How can we express
the event that for each number i between � and � there is at least one dice
that rolls i�

In this section we describe a coin lemma that can deal with the scenarios
outlined above� The underlying stochastic process P is P� � � � � � Pn� where
each �i is the set f�� � � � � kg� k a
xed constant� and � denotes the product
of probability spaces� The event E that we consider is any event of F �

��

Segala

We start with the rule� Let M be a probabilistic automaton� and let S

be a set of n tuples fx�� � � � � xng� where for each i� � � i � n� xi is a tuple

�ai� Ui��� � � � � Ui�k
 consisting of an action of M and k pairwise disjoint sets of

states of M � Let the actions ai be all distinct� For each execution � of M and

each i� � � i � n� let

Ui��
 �

�
����
����

�i if ai does not occur

fjg if ai occurs and its
rst occurrence leads to Ui�j

� otherwise�

For each probabilistic execution H of M � de
ne GFIRST �S� E
�H
 to be the

set of executions � of �H such that E � �U���
� � � � � Uk��

� ��

Example ��� We illustrate the de	nition above by encoding the dice rolling

example� In each tuple �ai� Ui��� � � � � Ui�k
 ai identi	es the action of rolling the

ith dice� k � �� and for each j� Ui�j is the set of states where the ith dice

rolls j� The set E identi	es the set of outcomes that are considered to be

successful� In the case of the dices E is the set of tuples �j�� � � � � jn
 where for

each number l between � and � there is at least one i such that ji � l� The

function Ui��
 checks whether the i
th dice is rolled and identi	es the outcome�

If the dice is not rolled� then� we allow any outcome as a possible one� if the

dice is rolled and hits Ui�j� then the outcome is j� if the the dice is rolled and

the outcome is not in any one of the sets Ui�j�s� then there is no outcome �this

case does not arise in our example
� Then� an execution � of �H is in the

event GFIRST �S� E
�H
 if at least one of the outcomes associated with � is

an element of E� i�e�� if by choosing the outcome of the dices that are not

rolled in � all the six numbers appear as the outcome of some dice�

Let p be the probability that by rolling n dices all the six numbers appear as

the outcome of some dice� Then� Lemma ��� below states that the probability

PH �GFIRST �S� E
�H
� is at least p for each H�

Lemma ��� Let P be P� � � � � � Pn� where each �i is the set f�� � � � � kg� k a

	xed constant� and let E be an event of F �

Let M be a probabilistic automaton� Let S be a set of n tuples fx�� � � � � xng

where for each i� � � i � n� xi is a tuple �ai� Ui��� � � � � Ui�k
 consisting of an

action of M and k pairwise disjoint sets of states of M � Let the actions ai be

all distinct� Suppose that for each i� j� � � i � n� � � j � k� and for each

transition �s� ai�P
 of M � P �Ui�j� 	 Pi�j��

Then� for each probabilistic execution fragment H of M �

PH �GFIRST �S� E
�H
� 	 P �E��

Proof� Simple induction on n� �

��

Segala

��� Increasing generality

It would be desirable to de
ne the most general coin lemma� but this is not

possible� since there are several ways of identifying elementary experiments

within a probabilistic execution� Furthermore� generality means complexity�

We can generalize the underlying stochastic processes by increasing the

number of possible outcomes or by introducing dependencies between elemen	

tary experiments� Also we can consider in
nite products rather than
nite

products� Finally� we can de
ne new ways of identifying elementary experi	

ments that are not based simply on occurrences of actions�

In this section we describe a new coin lemma for the process of drawing

nitely many natural numbers� We do not assume independence� and we

identify elementary experiments in a more general way than a simple count of

occurrences of actions at the cost of a more complex notation�

For a sequence x� let xi denote the ith element of x� and let x�i denote

the subsequence of x formed by the
rst i
 � elements of x� Let � � N
m�

where m is a
xed natural number� and let F � ��� For each
nite sequence

x of natural numbers with length less than m� let Px be the distribution of

the element that follows x�

Let M be a probabilistic automaton� For each k� � � k � m� and each

x � N
k� let Ax be a set of tuples ��� a� U�� U�� � � �
 where � is a
nite execution

fragment of M � a is an action of M � and U�� U�� � � � is a partition of the states

of M � The occurrence of a after � is the signal that the experiment for the

element following x is taking place� and the sets of states U�� U�� � � � represent

the results of the experiment�

Suppose that for each x there are no two tuples ��� a� � � �
 and ���
� a

�
� � � �

in Ax such that �a � �
� and that there are no two x� y with x � y and no pair

�� a such that tuples of the form ��� a� � � �
 are both in Ax and Ay� In other

words� no experiment occurs twice in an execution and no transition is used

for two experiments in the same sequence �no overlap between experiments
�

Finally� suppose that for each x� each tuple ��� a� U�� U�� � � �
 in Ax� each

transition �lstate��
� a�Pa
 of M � and each i 	 �� Pa�Ui� � Px�i��

Let E be an event in P� For each execution fragment � of M � let x��
 be

a sequence x of length m of elements from N � f�g such that� for each i� if

there is a pre
x �
�
as of �� a tuple ���

� a� U�� U�� � � �
 of Ax�i � and a number j

such that s � Uj� then xi � j� otherwise xi � �� The sequence x��
 contains

the outcomes of the elementary experiments that take place� The symbol �

means that the corresponding experiment does not take place in ��

For a probabilistic execution fragment H of M � let E�H
 be the set of

elements � of FH such that there is an element of E that coincides with x��

in all the non	� places� Then� PH �E�H
� 	 P �E��

��

Segala

� Concluding Remarks

We have described a technique for the analysis of randomized distributed algo	

rithms that takes care of the most subtle problem with randomization� making

sure that the probabilistic behavior of a randomized algorithm coincides with

the expected probabilistic behavior� The technique� named coin lemmas� con	

sists of a rule to associate events with the computations of an algorithm and

a lower bound on the probability of the chosen events� The main advantage

of coin lemmas is that the analysis of a randomized distributed algorithm is

reduced to the analysis of a system that does not involve probability at all�

which can be done using existing techniques� Furthermore� coin lemmas force

the user into a well	de
ned probabilistic scenario� drawing his�her attention

to the possible interference between probability and nondeterminism� thus re	

ducing the chances of errors due to underestimation of the complexity of the

system execution scenario�

In this paper we have identi
ed the key ideas behind the formulation and

use of coin lemmas� First of all it is important to be explicit about the

stochastic process that is taking place� second� it is important to consider

explicitly the possibility that some elementary experiments may not take place�

an adversary should never be advantaged by not �ipping coins�

Although we have given several examples of coin lemmas in this paper�

more coin lemmas will be needed� An example of a coin lemma for random

walks can be found in ����� Furthermore� from the experience that we have

gained through several case studies� it seems to be useful to extend the ideas

behind coin lemmas to expectations� Once again� the veri
cation example of

���� based on random walks provides an example of the use of coin lemma

arguments to derive properties about expectations�

Acknowledgments

I would like to thank the organizers of Probmiv �� for inviting me to the

workshop and the anonymous referees for several useful comments on a draft

of this paper�

References

��� S� Aggarwal� Time optimal self�stabilizing spanning tree algorithms� Technical
Report MIT�LCS�TR���	
 MIT Laboratory for Computer Science
 �����
Master
s thesis�

�	� J� Aspnes and M�P� Herlihy� Fast randomized consensus using shared memory�
Journal of Algorithms
 �������������
 September �����

��� J�C�M� Baeten
 J�A� Bergstra
 and S�A� Smolka� Axiomatizing probabilistic
processes� ACP with generative probabilities� In Cleaveland ���
 pages ��	�����

��

Segala

��� J�C�M� Baeten and J�W� Klop
 editors� Proceedings of CONCUR ���

Amsterdam
 volume ��� of Lecture Notes in Computer Science� Springer�Verlag

�����

��� M� Ben�Or� Another advantage of free choice� completely asynchronous
agreement protocols� In Proceedings of the 	nd Annual ACM Symposium on

Principles of Distributed Computing� Montreal� Quebec� Canada
 August �����

��� I� Christo�� Testing equivalences and fully abstract models for probabilistic
processes� In Baeten and Klop ���
 pages �	������

��� I� Christo�� Testing Equivalences for Probabilistic Processes� PhD thesis

Department of Computer Science
 Uppsala University
 �����

��� R� Cleaveland
 S�A� Smolka
 and A� Zwarico� Testing preorders for probabilistic
processes �extended abstract�� In Proceedings ��th ICALP� Madrid
 volume �	�
of Lecture Notes in Computer Science
 pages �������� Springer�Verlag
 ���	�

��� W�R� Cleaveland
 editor� Proceedings of CONCUR ��� Stony Brook� NY� USA

volume ��� of Lecture Notes in Computer Science� Springer�Verlag
 ���	�

���� C� Derman� Finite State Markovian Decision Processes� Acedemic Press
 �����

���� S� Dolev
 A� Israeli
 and S� Moran� Analyzing expected time by scheduler�luck
games� IEEE Transactions on Parallel and Distributed Systems
 ������	�����

April �����

��	� W� Feller� An Introduction to Probability Theory and its Applications� Volume

	� Jokn Wiley � Sons
 Inc�
 �����

���� M� Fischer
 N� Lynch
 and M� Paterson� Impossibility of distributed consensus
with a family of faulty process� Journal of the ACM
 �	�	��������	
 April �����

���� A� Giacalone
 C�C Jou
 and S�A� Smolka� Algebraic reasoning for probabilistic
concurrent systems� In Proceedings of the Working Conference on Programming

Concepts and Methods
IFIP TC��� Sea of Galilee� Israel
 �����

���� R�J� van Glabbeek
 S�A� Smolka
 B� Ste�en
 and C�M�N� Tofts� Reactive

generative
 and strati�ed models of probabilistic processes� In Proceedings �th

Annual Symposium on Logic in Computer Science� Philadelphia� USA
 pages
�������� IEEE Computer Society Press
 �����

���� H� Hansson� Time and Probability in Formal Design of Distributed Systems

volume � of Real�Time Safety Critical Systems� Elsevier
 �����

���� H� Hansson and B� Jonsson� A framework for reasoning about time and
reliability� In Proceedings of the ��th IEEE Symposium on Real�Time Systems�

Santa Monica� Ca�
 �����

���� H� Hansson and B� Jonsson� A calculus for communicating systems with time
and probabilities� In Proceedings of the ��th IEEE Symposium on Real�Time

Systems� Orlando� Fl�
 �����

��

Segala

���� B� Jonsson and K�G� Larsen� Speci�cation and re�nement of probabilistic
processes� In Proceedings of the �th IEEE Symposium on Logic in Computer

Science
 pages 	���	��
 Amsterdam
 July �����

�	�� B� Jonsson and W� Yi� Compositional testing preorders for probabilistic
processes� In Proceedings ��th Annual Symposium on Logic in Computer

Science� San Diego� California� IEEE Computer Society Press
 �����

�	�� C�C� Jou and S�A� Smolka� Equivalences
 congruences
 and complete
axiomatizations for probabilistic processes� In Baeten and Klop ���
 pages ����
����

�		� R� Keller� Formal veri�cation of parallel programs� Communications of the

ACM
 ������������	
 �����

�	�� E� Kushilevitz and M� Rabin� Randomized mutual exclusion algorithms
revisited� In Proceedings of the ��th Annual ACM Symposium on Principles

of Distributed Computing� Quebec� Canada
 pages 	���	��
 ���	�

�	�� K�G� Larsen and A� Skou� Bisimulation through probabilistic testing� In
Conference Record of the ��th ACM Symposium on Principles of Programming

Languages� Austin� Texas
 pages ������	
 �����

�	�� K�G� Larsen and A� Skou� Bisimulation through probabilistic testing�
Information and Computation
 ��������	�
 September �����

�	�� K�G� Larsen and A� Skou� Compositional veri�cation of probabilistic processes�
In Cleaveland ���
 pages ��������

�	�� D� Lehmann and M� Rabin� On the advantage of free choice� a symmetric and
fully distributed solution to the dining philosophers problem� In Proceedings

of the
th Annual ACM Symposium on Principles of Programming Languages

pages �������
 January �����

�	�� N�A� Lynch
 I� Saias
 and R� Segala� Proving time bounds for randomized
distributed algorithms� In Proceedings of the ��th Annual ACM Symposium on

Principles of Distributed Computing� Los Angeles� CA
 pages �����	�
 �����

�	�� Nancy Lynch and Frits Vaandrager� Forward and backward simulations � Part
I� Untimed systems� Information and Computation
 �	��	��	���	��
 September
�����

���� Nancy Lynch and Frits Vaandrager� Forward and backward simulations � Part
II� Timing�based systems� Information and Computation
 �	�������	�
 July
�����

���� Carroll Morgan and Annabelle McIver� A probabilistic temporal calculus
based on expectations� In Lindsay Groves and Steve Reeves
 editors

Proceedings of Formal Methods Paci�c ���� Springer Verlag Singapore
 July
����� http���www�comlab�ox�ac�uk�oucl�groups�probs�bibliography�html�

��	� A� Pnueli and L� Zuck� Veri�cation of multiprocess probabilistic protocols�
Distributed Computing
 ���������	
 �����

��

Segala

���� A� Pogosyants and R� Segala� Automatic veri�cation of time properties of
randomized distributed algorithms� Manuscript in progress
 �����

���� A� Pogosyants
 R� Segala
 and N� Lynch� Veri�cation of the randomized
consensus algorithm of Aspnes and Herlihy� a case study� Technical Memo
MIT�LCS�TM����
 MIT Laboratory for Computer Science
 �����

���� M�O� Rabin� Probabilistic automata� Information and Control
 ��	���	��

�����

���� J�R� Rao� Reasoning about probabilistic algorithms� In Proceedings of the

�th Annual ACM Symposium on Principles of Distributed Computing� Quebec�

Canada
 August �����

���� R� Segala� Modeling and Veri�cation of Randomized Distributed Real�Time

Systems� PhD thesis
 MIT
 Dept� of Electrical Engineering and Computer
Science
 ����� Also appears as technical report MIT�LCS�TR�����

���� C� Tofts� A synchronous calculus of relative frequencies� In Baeten and Klop
����

���� M�Y� Vardi� Automatic veri�cation of probabilistic concurrent �nite�state
programs� In Proceedings of ��th IEEE Symposium on Foundations of

Computer Science
 pages �	�����
 Portland
 OR
 �����

���� S�H� Wu
 S� Smolka
 and E�W� Stark� Composition and behaviors of
probabilistic I�O automata� In B� Jonsson and J� Parrow
 editors
 Proceedings
of CONCUR ��� Uppsala� Sweden
 volume ��� of Lecture Notes in Computer

Science� Springer�Verlag
 �����

���� W� Yi and K�G� Larsen� Testing probabilistic and nondeterministic processes�
In Protocol Speci�cation� Testing and Veri�cation XII
 pages �����
 ���	�

��	� L� Zuck� Past Temporal Logic� PhD thesis
 The Weizman Institute of Science

�����

��

