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Abstract The paper introduces some findings about a

sensitivity analysis conducted on every geometrical and

mechanical parameters which characterize the use of a

railway superstructure at the high velocity. This analysis

was carried out by implementing a forecast model that is

derived from the simplified Gazetas and Dobry one. This

model turns out to be particularly appropriate in the

explication of problems connected to high velocity, since it

evaluates both inertial and viscous effects activated by the

moving load speed. The model implementation requires the

transfer function determination that represents the action

occurred by the bed surfaces on the railway and it therefore

contains information concerning the geometrical and the

mechanical characteristics of the embankment, of the bal-

last and of the sub-ballast. The transfer function H has been

evaluated with the finite elements method and particularly,

by resorting the ANSYS� code with a harmonic structural

analysis in the frequencies field. The authors, from the

critic examination of the system’s dynamics response in its

entirety, glean a series of observations both of a general

and a specific character, finally attaining a propose of a

design modification of the standard railway superstructure

at the high velocity of train operation adopted today

especially in Italy.

Keywords Railways � Dynamic response � High velocity �
Sensitivity analysis

1 Introduction

The improvement of the design quality and the decrease of

the maintenance costs, with a particular estimation of the

safety levels of a railway network, occur after a proper

evaluation of the influence practiced on the railways

dynamic response by the superstructure geometrical and

mechanical parameters.

This estimation can be made through an improvement

process of these given parameters, after a careful sensitivity

analysis, to focus the conducted role in the railways

superstructure operation at the high velocity.

In order to better focus on the research context of this

work, it is useful to quote a short scientific overview about

this subject.

The dynamic response of the Eulero–Bernoulli beam,

strained by a moving load, has been a subject of numerous

studies in the civil engineering.

Kenney [1] has studied the effect of the viscous damp-

ing, starting from the analytic solution of the response of

the infinitively extended Eulero–Bernoulli beam resting on

Winkler foundation.

Fryba [2], instead, has analyzed the response of an

unbounded elastic body subjected to a dynamic load by

applying a triple Fourier transform. The solution has been

obtained by resorting the concept of equivalent stiffness of

the support structures, evaluating every compatible veloc-

ity and damping values.

Gazetas and Dobry [3] have developed a simplified

model to study the variation of the foundation damping

coefficient under the hypothesis of a planar deformation
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and axial symmetric load conditions. In spite of the sim-

plified hypothesis adopted, the solution obtained in a closed

form turns out to be convergent with that given by the

rigorous methods available in literature, valuable for the

linear, irregular, and deep foundations leaned or inserted in

an homogeneous material and subjected to horizontal and

vertical vibrations.

Sun [4] has proposed a solution in a closed form for the

response of a beam resting on a Winkler ground under a

linear dynamic load applying the two-dimensional Fourier

transform and the Green function.

Mallik et al. [5] have investigated on the steady-state

response of the Eulero–Bernoulli beam resting on an elastic

ground under a concentrated load moving at fixed velocity.

A study, concerning the Winkler foundations under

uniformly distributed dynamic loads, has been proposed by

Sun and Luo [6]. Other different numerical methods, based

on the fast Fourier transform (FFT), have been more

recently proposed for a greater efficiency of the dynamic

response evaluation of the foundation beams.

The paper is made up of two distinct sections, both

aimed to the determination of the transfer function. In the

first section a forecasting model, deriving from the sim-

plified one by Gazetas and Dobry [3], has been used (see

paragraph 2). This model is able to ensure the necessary

convergence between theoretical results and experimental

data. In fact, it is particularly suitable in dealing with issues

relating to high speed, as it is able to take into account the

inertial and viscous effects generated by moving load

speed. In the second section a FEM modeling by means of

the ANSYS� code has been implemented.

This has allowed determining the transfer function in a

more rigorous way than in the previous case, because all

the superstructure’s geometrical and material inhomoge-

neities have been considered, and consequently the con-

vergence of the two methodologies has been evaluated.

2 The mathematical model

In Railway Engineering, to completely analyze the vehi-

cle–superstructure interaction the equations of dynamic

equilibrium of the individual components should be con-

sidered in accordance with the congruence conditions at

their interfaces. The search of this solution, congruent to

the examination of the couplings between the various

structural parts (rails, ballast, sub-ballast, platform), is very

expensive in terms of mathematical model implementation.

However, if some aspects of the in exercise phase are

considered, such as the small displacement of the rail and

its negligible mass with respect to the context, it is possible

to decouple the various structural elements in favor of a

static solution as long as the vehicle speed is low. In this

case a further approximation is also to consider the bed

surface reaction of static type.

However, this assumption implies the impossibility to

compute in the global equilibrium balance the contribution,

in terms of dynamic reaction, of the superstructure set in

vibration during the train passage. Therefore, the difference

between the reactions evaluated under static and dynamic

conditions may be not negligible and this is truer as greater

is the speed amplifying the vibrating effects.

Therefore, it is easy to understand that, in high-speed

railway, to perform a reliable analysis of the dynamic

interaction between vehicle and superstructure it is not

possible to avoid an accurate assessment of the super-

structure dynamic excitation, at the same time considering

acceptable the assumptions of negligible rail mass and

modest entity of its movements.

On the basis of these considerations the railway equi-

librium equation assumes the following simplified form:

EJ � o
4

ox4
½yðx; tÞ� � P � dðx � ctÞ þ ftðx; tÞ ¼ 0; ð1Þ

where EJ is the railway’s stiffness; y(x,t) is the railway

displacement; x is the progressive abscissa; t is the time;

P�d(x - ct) is the external load that can be assimilated to a

concentrated moving load with c velocity without inertial

effects; d is the Dirac operator; ft(x,t) is the ground

response.

It should also be noted that in the design and mainte-

nance of high-speed railway lines the stationary response

of the system is more important than the transient phases.

The deformation of the railway, as a stationary response,

counts:

y ¼ yðx � ctÞ: ð2Þ

This assumption is equivalent to assume that an observer

in motion on a reference system fixed with the moving load

can see the track uniformly deformed, as occurs in the case

of a boat in motion at constant speed, in absence of wave

motion, for which there are always the same type and

number of waves on bow.

To properly assess the ground reaction is necessary to

consider its response in dynamic terms. Therefore, to

evaluate the ground response, the rail could be outlined as a

continuous beam on yielding supports characterized by a

mass M, a dynamic stiffness K, and a damping factor

C with reference to the whole system consisting of sleep-

ers, ballast, sub-ballast, and sub-base (see Fig. 1).

The K and C factors characterize the superstructure

response, in particular great significance assumes the

C coefficient, which takes into account both the hysteretic

damping of the sub-ballast asphalt concrete, and the radi-

ation damping due to the imposition of the Sommerfeld’s

conditions (absence of infinitely distant source) [7] on the
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propagation of waves generated by the passage of moving

load.

We can indicate, more generally, giving h(t) as the

extent of the response to the x coordinate and to the t time

as the result of the starting condition y = 1 at time t = 0,

the response of the superstructure returns to the rail, in the

following way:

ftðx; tÞ ¼
Zþ1

�1

yðx � csÞ � hðt � sÞ � ds: ð3Þ

In order to better understand the meaning of the h(t)

function, it is possible to rewrite the Eq. (3) in the

particular case in which h(t) = k�d(t), where k is the

foundation stiffness coefficient:

ftðx; tÞ ¼
Zþ1

�1

yðx � csÞ � k � dðt � sÞ � ds ¼ k � yðx � c � tÞ:

ð4Þ

The Eq. (4) highlights a Winkler’s reaction trend, with

presence of the elastic component only, in the

superstructure. In reality, as mentioned above, the

moving load passage puts in oscillation both binary and

superstructure, with the difference that while the inertial

component of the track can be overlooked, the one of the

superstructure assumes an appreciable entity.

The same happens for the viscous portion of the reaction

that, consisting of two factors, material and geometry, and

is important in the definition of the equilibrium equations.

For this reason, we must assign a most general possible

expression to the h(t) function. We also highlight that to

find the solution of the railway equilibrium differential

equation, we need to make use of the Fourier transform.

By introducing the coordinate:

n ¼ x � ct; ð5Þ

that is, by acquiring a reference system in-built with the

moving load, the Eq. (3) becomes:

ftðx; tÞ ¼
Zþ1

�1

y½n þ c � ðt � sÞ� � hðt � sÞ � ds: ð6Þ

By considering Eqs. (5) and (6), the equilibrium Eq. (1)

acquires the following form:

EJ
o4

on4
½yðnÞ�þ

Zþ1

�1

y½nþ c � ðt� sÞ� � hðt� sÞ � ds¼ P � dðnÞ;

ð7Þ

from which, setting:

f ¼ �c � ðt � sÞ; ð8Þ

we obtain:

EJ
o4

on4
½yðnÞ� þ 1

c
�
Zþ1

�1

yðn � fÞ � h � f
c

� �
� df ¼ P � dðnÞ:

ð9Þ

Now we can apply to (9) the convolution theorem and

the Fourier transform derivative one. By denominating

Y(x) the Fourier transform of the railway deformation

and H*(cx) the conjugate of the transfer function

H(cx) which represents the superstructure (see Fig. 1),

we achieve the following relation in the transformed

domain:

EJx4 � YðxÞ þ H�ðcxÞ � YðxÞ ¼ P; ð10Þ

therefore:

YðxÞ ¼ P

EJx4 þ H�ðcxÞ ; ð11Þ

from which we obtain, definitively, by applying the inverse

Fourier transform:

yðnÞ ¼ 1

2p

Zþ1

�1

P

EJx4 þ H�ðcxÞ � ei�x�ndx: ð12Þ

The expression (12) represents the general form of the

rail deformation under the action of a P intensity moving

load, which can evaluate the viscous and dynamic effects

of the interaction between railway and superstructure.

The transfer function determination derives by fixing a

mathematical oscillator model simulating the superstruc-

ture. The choice of this model depends on the accuracy of

the results requested.

To examine the variability range of the transfer function,

we have applied the simplified model, acquired by the

technical literature [3] regarding the calculation of the

vibrating foundations, which is conveniently converted to

this case in point. In this schematization we assume, as a

Rail

K C

M

x

y

P δ. (x-ct)8- 8

+

Fig. 1 Continuous beam on yielding supports
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superstructure oscillating part, a R radius cone with gen-

eratrix at 45� starting from the extremities of the circular

area where the load is applied (see Fig. 2).

The evaluation of the system response in the frequencies

domain can be expressed in the following way:

d

dz
z2 � dU

dz

� �
þ z2 � x

2

V2
� U ¼ 0; ð13Þ

where U is the Fourier transform of the displacement

considered, V2 = E*/q is the propagation velocity of the

waves generated in the conical shaped continuous, E* is

the equivalent Young modulus of the cone, and q is the

cone density.

The solution of the differential Eq. (13), by imposing the

boundary condition of unitary displacement for z equal to

the R radius and radiation to infinity, becomes the

following:

Uðz;xÞ ¼ z�
1
2 � H1=2

x
V
� z

� �
; ð14Þ

where with H1/2 we have indicated a Henkel function of

second kind and of class 1/2.

From the (14), by stating with A the load applying area,

it is possible to obtain the relation that relates in z = R the

load applied to the displacement in the frequencies domain,

that is:

F ¼ �E� � A � dU

dZ

� �
z¼R

¼ E� � A � 1

R
þ i � c

V
� x

� �
� U:

ð15Þ

From (15) we determine the transfer function that is

evaluated:

HðcxÞ ¼ E� � A � 1

R
þ i � c

V
� x

� �
: ð16Þ

If we consider the vertical actions exchanged between

rail and superstructure, the transfer function (16), even if

obtained by choosing some simplifications, coincides with

the function determined through the solution in closed form

of an elastic half-space complete equations for the vertical

oscillations on a R radius disk [8].

It is evident that for the materials used in the con-

struction of the railway superstructures it is plausible to

assume a Poisson’s ratio value (m) less than 0.45 [9, 10]. In

agreement with what has been verified by several authors

[3, 11] in the analysis of the vibrant foundations, therefore

it is possible to assign, to the perturbation propagation

speed (V), the speed of the superstructure waves of volume

(Vp), i.e.:

V ¼ Vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð1 � mÞ

q � ð1 þ mÞ � ð1 � 2mÞ

s
; ð17Þ

from which, recalling that V2 = E*/q, results:

E� ¼ E � ð1 � mÞ
ð1 þ mÞ � ð1 � 2mÞ : ð18Þ

It follows that E* exactly matches the edometric module

value (Ed), valid in the case of impeded lateral

deformations.

By replacing the conjugate of the (16) inside the (12) we

obtain:

yðnÞ ¼ 1

2p

Zþ1

�1

P

EJx4 þ E� � A � 1
R
� i � c

V
� x

� � � ei�x�ndx:

ð19Þ

In the (19) the function of the denominator tends to zero

for x ! 0 and so satisfies the Lemma of Jordan, thus the

integral can be calculated by the method of residuals. The

expression (19) evaluates the superstructure stiffness and

damping contributions.

It is important to specify that the adopted simplified

model [3] assumes a linear relationship between the appli-

cation frequency of the stress and the dynamic damping.

Therefore, to evaluate the damping effect, we have

elaborated (19) by considering the hypothesis in which the

stiffness contribution is null and the model parameters (P,

E*, A) are unitary. In this way, we have obtained the

deformation expression held up under the hypothesis of a

superstructure reactive only in viscous way. By applying

the method of residuals and the Lemma of Jordan to this

expression, we definitively obtain the trend of the rail

deformation, that is:

yðxÞ ¼ P=EJ

a
� 1

2
þ 2

3
� e�

ffiffi
a3p

2
�x � cos

ffiffiffi
3

p

2
�

ffiffiffi
a3

p
� x

� �	 


valid for x� 0

yðxÞ ¼ P=EJ

a
1

2
� e�

ffiffi
a3

p
�x

3

" #
valid for x\0

ð20Þ

where a = c/V.

We underline that the method put in practice respond

only in a viscous way, so the equilibrium is guaranteed by

R R

z

A(z)

45° 45°

Fig. 2 Load scheme
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only the viscous response in opposition to the deformation

variation velocity.

To study the system response in presence of both elastic

and viscose reactions, it is necessary to integrate (19) in

general terms, which gives the following equation:

yðnÞ ¼ e�cn � 2a cosðdnÞ þ 2b senðdnÞ½ �; ð21Þ

in which the constants a, b, c, and d are dependent on the

denominator roots of the Fourier transform and the sign of

the variable.

With reference to the mechanical and geometric values

of a typical high-speed railway section adopted in Italy, the

two previous approaches allow developing some general

considerations. For example, in case of viscous only

superstructure the (20) shows that this deformed is

unsymmetrical with respect to the position of the load,

being influenced by the direction of movement of the

moving load.

For a greater clarification it may be useful to use the idea

of a boat moving in a basin in absence of wave motion. In

this case, the reaction trying to keep the water surface

horizontal is only viscose, and an observer integral with the

boat in motion can see ripples, generated from the direction

of motion of the hull, as if they were stationary with respect

to himself.

If the superstructure is reagent both in elastic and vis-

cous mode, the processing of the (21) allows highlighting

that even in this case the railway deformed is asymmetrical

with respect to the position of the load, but the perturbation

creates a peak of the negative bending moment with a

lower value than in the purely viscous case. The analysis

also shows that the perturbation is very rapidly damped due

to the exponential factor present in the (21), which tends to

cancel the solicitation after just a half-period.

From the designing point of view, the determination of

the stresses, which are transferred reciprocally between the

railway and the superstructure, assume great importance.

The reaction RðnÞ from the superstructure on the rail can

be obtained by applying the definition of the inverse Fou-

rier transform, that is:

RðnÞ ¼ 1

2p
�
Zþ1

�1

YðxÞ � H�ðcxÞ � ei�x�ndx; ð22Þ

which, considering the (11) gives:

RðnÞ ¼ 1

2p
�
Zþ1

�1

P � H�ðcxÞ
EJx4 þ H�ðcxÞ � ei�x�ndx: ð23Þ

The transfer function H(cx) represents the action

occurred by the bed surfaces on the railway and it

therefore contains information concerning the geometrical

and the mechanical characteristics of the embankment, of

the ballast, and of the sub-ballast.

We have to calculate it, then, with a mean that lets these

characteristics being represented as accurately as possible.

To achieve this result we have analyzed the standard rail-

way superstructure represented in Fig. 3.

The typical design parameters of Italian high-speed

railway lines are the following.

Wagons:

• Mass per axis equal to 22.5 t;

• Design speed 250 \ V B 300 km/h;

• Average daily traffic 50,000–85,000 t;

Fig. 3 The case of standard railway superstructure
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• Dynamic overload coefficient:

– Normal 1.75;

– Exceptional 3.60.

Rails:

• Section 60 UC fiche 860-0 in steel 900A;

• Area section equal to 76.86 cm2;

• Height 177.0 mm;

• EJ = 6.415E?06 Nm2;

• Fixed in LWR with bars of 144.0 m and electric flash

welding.

Sleepers in monobloc prestressed concrete:

• Mass 350–400 kg;

• Dimensions: L = 260.0 cm; b = 30.0 cm; h = 19.0 cm;

• Inter-axis: i = 60.0 cm.

Ballast realized with tough crushed stone, at a low

abrasion coefficient level, coming from volcanic rocks

(basalt) and metamorphic ones:

• Dimensions: /max = 6.0 cm and /min = 3.0 cm;

• Thickness under railway 50.0 cm;

• Headbed 50.0–60.0 cm;

• Crushed stone K C 80.0E?06 N/m2;

• Resilient modulus Mr C 40.0E?06 N/m2.

Sub-ballast in asphalt concrete:

• Thickness 12.0 cm;

• Absolute value of the complex modulus

|E*| C 2,000.0E?06 N/m2.

Soil:

• Super-compacted layer:

– Thickness h = 30.0 cm;

– Deformation modulus Md C 80.0 MPa;

– Resilient modulus Mr C 160.0E?06 N/m2;

• Embankment1:

– Deformation modulus Md C 40.0 MPa;

– Resilient modulus Mr C 80.0E?06 N/m2;

• Embankment foundation:

– Deformation modulus Md C 20.0 MPa;

– Resilient modulus Mr C 40.0E?06 N/m2.

Referring to this configuration, the H function has been

evaluated with the finite elements method and particularly,

by resorting the ANSYS� code, we have discretized the

structural continuum object of this study (see Fig. 4)

through an appropriate mesh (see Fig. 5).

In the determination of the transfer function, the FEM

modeling allows considering (unlike the previous model) all

the superstructure geometric and material inhomogeneities.

Fig. 4 FEM model implemented for the determination of the transfer function

1 These characteristics are also required when marginal materials are

used for the construction of the embankment [12].
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For this purpose, particular attention has been used in the

simulation of the boundary conditions (radiation conditions

or Sommerfeld’s conditions [7]) that consider the damping

due to the propagation of dynamic perturbation from the

application area toward the infinite.

These conditions require a thorough knowledge of stra-

tigraphy and composition of the sub-base. During the mod-

eling phase linear dampers at the edges of the system

(semicircle of Fig. 4) were placed along the x and y directions

to absorb the energy transported up to that point by the waves

generated by the applied load. These dampers are made up of

ANSYS� elements type COMBIN14 [13] characterized by

k = 20.0E?06 N/m and c = 6.0E?06 Ns/m.

For the ground modeling (embankment foundation,

embankment, super-compacted layer), sub-ballast, ballast,

and sleepers, ANSYS� elements type PLANE42 charac-

terized by the parameters shown in Table 1 have been used

[13].

The determination of the transfer function has required

the execution of a harmonic structural analysis in the fre-

quencies field. The frequency interval scanned has been

determined based on the speed of the moving load and of

the geometrical and mechanical characteristics of the bed

surfaces.

In this study the interval has been included between 0

and 400 Hz, while the load has been adopted as equal to a

unitary harmonic displacement applied, as shown in Fig. 4,

in the connection point between rail and superstructure.

3 The superstructure frequency response

The parameters on which we have illustrated the sensitiv-

ity’s study are the following:

– Ballast thickness;

– Sub-ballast thickness;

– Super-compacted layer thickness;

– Embankment resilient modulus;

Fig. 5 Particular of the FEM model mesh

Table 1 Mechanical parameters of superstructure materials

Description Modulus range

(N/m2)

Poisson’s

ratio

Density

(kg/m3)

Embankment

foundationa
4.00E?07 0.40 1,800

Embankmenta 6.00E?07

1.20E?08

0.40 1,800

Super-compacted

layera
1.60E?08 0.35 2,000

Sub-ballastb 1.00E?09

5.00E?09

0.30 2,200

Ballasta 3.50E?07

5.00E?07

0.35 1,600

Sleepersc 3.00E?10 0.20 2,500

a Resilient modulus
b Absolute value of asphalt concrete complex modulus
c Concrete Young modulus
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– Ballast resilient modulus;

– Sub-ballast complex modulus.

The variation range of this parameters has been included

in the following limits:

– Ballast thickness: from 0.35 to 0.50 m;

– Sub-ballast thickness: from 0.08 to 0.20 m;

– Super-compacted layer thickness: from 0.25 to 0.45 m;

– Embankment resilient modulus: from 6.0E?07 to

1.2E?08 N/m2;

– Ballast resilient modulus: from 3.5E?07 to

5.0E?07 N/m2;

– Sub-ballast complex modulus2 [14]: from 1.00E?09 to

5.0E?09 N/m2.

Figure 6 shows the transfer function trends H(f),

expressed as modulus value since the harmonic analysis

gives complex results, by varying frequency and defined

parameters inside the limits above.

The transfer function obtained by numerical simulation

represents, in the real part, the dynamic stiffness and, in the

complex part, the superstructure dynamic damping.

We can draw the following conclusions from the general

analysis of the results:

– Above 100 Hz, in every analyzed cases, the bed

surfaces respond in a very flexible way, since the

H(f) tends swiftly to zero and so the bed surfaces turn

out to be lightly loaded, while the rail grasps all the

stress;

– For frequencies under 5 Hz, the responses of all the

analyzed cases match together, while the more marked

differentiations concentrate on the frequencies range

between 10 and 50 Hz.

Subsequently, we have examined in Figs. 7, 8, 9, 10, 11

and 12 the different trends of the transfer functions H(f), by

specifically analyzing the individual parameters.

Figure 7 has pointed out the trend of transfer function

modulus H(f) by varying frequency and ballast thickness.

The data show that a narrow ballast thickness

(H = 0.35 m) gives a less rigid response, with the excep-

tion of the last peak.

Figure 8 shows the analysis responses in the case of the

variation of the sub-ballast thickness, in terms of transfer

Fig. 6 Transfer function modulus trends jH(f)j

0,00E+00

2,00E-10

4,00E-10

6,00E-10

8,00E-10

1,00E-09

1,20E-09

1,40E-09

100101
f (Hz)

|H
(f

)|
H Ballast = 0.50 m H Ballast = 0.35 m

Fig. 7 Trends of jH(f)j by varying the ballast thickness

2 In the calculations concerning the frequency interval between 0 and

60 Hz for the sub-ballast complex modulus, we have taken the highest

value of 2.0E?09 N/m2, at a fixed temperature of 10 �C and

invariable for the frequency, by serving the security in the design

determinations, since from this approximation descends a higher

stress state. The transfer function H(f), for frequency values above

60 Hz, tends to zero and the modulus does not condition the structural

response of the system.
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function modulus. Also in this case, at a smaller thickness

value corresponds a less rigid response, even if the values

for frequency under 5 Hz have the same behavior.

Figure 9 shows the results obtained from the variation of

the super-compacted layer thickness. We can note that,

unlike the previous cases, an increase of the layer thickness

allows to obtain a less rigid general response of the bed

surfaces. Indeed we can observe how at the lowest fre-

quencies the transfer function trends, for H = 0.25 m and

H = 0.30 m (standard), are nearly superimposable, even if

the tendency toward a stiffening, for thickness reduction, is

clear. For the highest frequency values, the response for

H = 0.30 m has a general more rigid behavior than the

other cases.

Figure 10 shows the results obtained for a variation of

the embankment resilient modulus. The diagram clearly
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shows how with an increase of the soil quality, that is, with

an increase of its resilient modulus, corresponds a less rigid

general response, both at the lowest frequencies between 0

and 10 Hz, and at the highest ones. In addition, we can note

that the last peak of the curve in red color shifts toward

higher frequencies and shows lower extent than the other

two cases.

Figure 11 shows the data connected to the variation of

the ballast resilient modulus. We notice, in this case, how

the three responses are superimposable, with the exclusion

Table 2 Maxima and minima displacement values for the different combinations

No. H ballast

(m)

H sub-

ballast (m)

H supercomp.

(m)

Mr

embankment

(N/m2)a

Mr ballast

(N/m2)a
|E*| sub-

ballast

(N/m2)b

Displacements

Min. Max.

X (m) DY (m) X (m) DY (m)

1 0.50 0.12 0.30 8.00E?07 4.00E?07 2.00E?09 -0.625 -1.72E-06 1.667 8.05E-07

2 0.35 0.12 0.30 8.00E?07 4.00E?07 2.00E?09 -0.625 -1.55E-06 4.167 7.47E-07

3 0.50 0.08 0.30 8.00E?07 4.00E?07 2.00E?09 -0.625 -1.39E-06 3.125 8.31E-07

4 0.50 0.20 0.30 8.00E?07 4.00E?07 2.00E?09 -0.625 -1.72E-06 1.875 8.30E-07

5 0.50 0.12 0.25 8.00E?07 4.00E?07 2.00E?09 -0.625 -1.71E-06 1.667 9.28E-07

6 0.50 0.12 0.45 8 00E?07 4.00E?07 2 00E?09 -0.625 -1.54E-06 2.292 9.21E-07

7 0.50 0.12 0.30 6.00E?07 4.00E?07 2.00E?09 -0.625 -1.87E-06 1.875 9.82E-07

8 0.50 0.12 0.30 1.20E?08 4.00E?07 2.00E?09 -0.625 -1.37E-06 3.333 8.30E-07

9 0.50 0.12 0.30 8.00E?07 3.50E?07 2.00E?09 -0.625 -1.80E-06 1.458 8.87E-07

10 0.50 0.12 0.30 8.00E?07 5.00E?07 2.00E?09 -0.625 -1.55E-06 2.083 7.35E-07

11 0.50 0.12 0.30 8.00E?07 4.00E?07 1.00E?09 -0.625 -2.05E-06 1.250 1.07E-06

12 0.50 0.12 0.30 8.00E?07 4.00E?07 5.00E?09 -0.625 -1.56E-06 4.167 6.97E-07

13 0.50 0.20 0.45 1.20E?08 5.00E?07 5.00E?09 -0.625 -1.44E-06 3.333 7.22E-07

14 0.35 0.08 0.25 6.00E?07 3.50E?07 1.00E?09 -0.625 -1.59E-06 2.083 9.09E-07

a Resilient modulus
b Absolute value of complex modulus

Table 3 Maxima and minima bending moment values for the different combinations

No. H ballast

(m)

H sub-

ballast (m)

H supercomp.

(m)

Mr

embankment

(N/m2)a

Mr ballast

(N/m2)a
|E*| sub-

ballast

(N/m2)b

Bending moment

Min. Max.

X (m) M (Nm) X (m) M (Nm)

1 0.50 0.12 0.30 8.00E?07 4.00E?07 2.00E?09 -0.625 -284.294 -2.083 224.752

2 0.35 0.12 0.30 8.00E?07 4.00E?07 2.00E?09 -0.625 -266.121 -2.083 204.650

3 0.50 0.08 0.30 8.00E?07 4.00E?07 2.00E?09 -0.625 -230.611 -1.875 178.813

4 0.50 0.20 0.30 8.00E?07 4.00E?07 2.00E?09 -0.625 -280.968 -2.083 224.808

5 0.50 0.12 0.25 8.00E?07 4.00E?07 2.00E?09 -0.625 -272.945 -2.083 210.056

6 0.50 0.12 0.45 8.00E?07 4.00E?07 2.00E?09 -0.625 -251.300 -2.083 196.433

7 0.50 0.12 0.30 6.00E?07 4.00E?07 2.00E?09 -0.625 -299.059 -2.083 245.444

8 0.50 0.12 0.30 1.20E?08 4.00E?07 2.00E?09 -0.625 -227.942 -1.875 165.731

9 0.50 0.12 0.30 8.00E?07 3.50E?07 2.00E?09 -0.625 -287.945 -2.083 222 324

10 0.50 0.12 0.30 8.00E?07 5.00E?07 2.00E?09 -0.625 -265.610 -1.875 212.066

11 0.50 0.12 0.30 8.00E?07 4.00E?07 1.00E?09 -0.625 -320.799 -2.292 259.074

12 0.50 0.12 0.30 8.00E?07 4.00E?07 5.00E?09 -0.625 -266.102 -2.083 204.536

13 0.50 0.20 0.45 1.20E?08 5.00E?07 5.00E?09 -0.625 -249.878 -2.083 189.683

14 0.35 0.08 0.25 6.00E?07 3.50E?07 1.00E?09 -0.625 -261.954 -1.875 222.061

a Resilient modulus
b Absolute value of complex modulus
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of some peaks at the highest frequencies in the case of the

modulus lowest value.

Finally, Fig. 12 describes the responses in the case of the

variations of the sub-ballast layer complex modulus. In this

case the general response is little conditioned by the variation

of this parameter and the most rigid behavior is showed at the

lowest modulus value, especially at the highest frequencies.

The analysis developed with the FEM modeling has also

allowed highlighting that the hypothesis adopted by using

the simplified model (i.e., the hypothesis of linear rela-

tionship between the stress application frequency and the

dynamic damping) is valid for frequencies higher than

75 Hz or at high speeds ([250 km/h).

4 The general response of the system

Having defined the frequency response of the bed surfaces,

it is possible to evaluate the system response in its totality

(railway and superstructure). The structure behavior has

been evaluated in terms of track displacement, maximum

and minimum bending moment, and total load that the rail

transfers to the bed surfaces. These values are sufficient to

estimate the stress to which the various structural compo-

nents are subjected and thus to evaluate the influence that

the mechanical and geometrical parameters have on the

superstructure performance.

For this purpose we have analyzed 14 value combina-

tions of the mechanical and geometrical parameters

involved, obtaining the results summarized in Tables 2, 3,

and 4 in which maxima and minima values of displace-

ments, bending moment, and bed surface response are

reported, while in Fig. 13a–c has been reported an example

of the bending moment deformation trend and the response

by varying the abscissa.

From the analysis of Tables 2, 3, and 4 we deduce that

the most positive result, that is the one which guarantees

the lower stress level both in terms of bending moment and

of load on the bed surfaces, is obtained by the combination

No. 8 in which, compared with the case stated as the

standard (No. 1) and used today in the Italian railway high

speed, the modulus of the embankment has been increased

up to 1.2E?08 N/m2.

In the combination No. 13 we obtain a nearly equal

result increasing the sub-ballast thickness up to 0.20 m. We

can not obtain an improvement just like that obtained in the

combination No. 6, even if we increase the layer thickness

of the super-compacted layer of the embankment.

Moreover, by increasing the ballast thickness from 0.35

to 0.50 m we do not obtain a substantial improvement in

terms of stress, while going from the combination No. 2 to

the combination No. 6, and thus increasing the super-

compacted layer thickness we have an improvement of the

reaction on the bed surface of around 10 %.

Considering the combinations Nos. 3, 4, 11, and 12 we

can note how in the first two cases there are not substantial

variations in the general response, while in the other two

cases we can note how at an increase of the transfer

Table 4 Maxima and minima response values for the different combinations

No. H ballast

(m)

H sub-

ballast

(m)

H supercomp.

(m)

Mr

embankment

(N/m2)a

Mr ballast

(N/m2)a
|E*| sub-

ballast

(N/m2)b

Response

Min. Max.

X (m) R (N) X (m) R (N)

1 0.50 0.12 0.30 8.00E?07 4.00E?07 2.00E?09 -1.875 -4,002.509 -0.417 5,915.723

2 0.35 0.12 0.30 8.00E?07 4.00E?07 2.00E?09 -1.875 -4,032.182 -0.417 5,984.580

3 0.50 0.08 0.30 8.00E?07 4.00E?07 2.00E?09 -1.875 -3,615.824 -0.417 5,651.975

4 0.50 0.20 0.30 8.00E?07 4.00E?07 2.00E?09 -2.083 -3,962.010 -0.417 5,738.226

5 0.50 0.12 0.25 8.00E?07 4.00E?07 2.00E?09 -1.875 -3,662.011 -0.417 5,648.867

6 0.50 0.12 0.45 8.00E?07 4.00E?07 2.00E?09 -1.875 -3,792.344 -0.417 5,638.877

7 0.50 0.12 0.30 6.00E?07 4.00E?07 2.00E?09 -2.083 -4,242.639 -0.417 5,934.945

8 0.50 0.12 0.30 1.20E?08 4.00E?07 2.00E?09 -1.875 -3,341.496 -0.417 5,507.585

9 0.50 0.12 0.30 8.00E?07 3.50E?07 2.00E?09 -2.083 -3,844.206 -0.417 5,714.466

10 0.50 0.12 0.30 8.00E?07 5.00E?07 2.00E?09 -1.875 -4,230.597 -0.417 6,085.297

11 0.50 0.12 0.30 8.00E?07 4.00E?07 1.00E?09 -2.083 -4,129.349 -0.625 5,758.841

12 0.50 0.12 0.30 8.00E?07 4.00E?07 5.00E?09 -1.875 -4,056.394 -0.417 6,017.052

13 0.50 0.20 0.45 1.20E?08 5.00E?07 5.00E?09 -1.875 -3,576.307 -0.417 5,454.509

14 0.35 0.08 0.25 6.00E?07 3.50E?07 1.00E?09 -1.875 -4,337.428 -0.417 6,079.627

a Resilient modulus
b Absolute value of complex modulus
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response on the bed surfaces corresponds a bending

moment decrease.

We observe an equivalent behavior in the combinations

Nos. 9 and 10, in which from a variation of the ballast

modulus follows both an increase of the response trans-

ferred to the superstructure and a bending moment decrease

in the rail.

In the remained cases there are not substantial variations

either in the bending moment on the rail, or in the response

applied on the bed surfaces.

5 Conclusions

The sensitivity analysis, on the mechanical and geometrical

parameters that mainly condition the operation of the

railroad superstructure at high speed, has allowed to draw

some useful considerations for rational design which takes

into account the dynamic effects.

In general, we have verified that at the lowest frequen-

cies the superstructure response is not at all conditioned by

the variation of the geometrical parameters and is barely

conditioned by the variation of the mechanical ones.

In every other cases to an improvement of the

mechanical characteristics of one of the layers (ballast,

sub-ballast, super-compacted layer, soil embankment)

corresponds to an increase of the load on the bed surfaces

and a bending moment decrease on the rail. On the contrary

to a decrease of the layers mechanical characteristics cor-

responds to a decrease of the load transferred to the bed

surfaces and an increase of the bending moment on the rail.

Moreover, from the analysis of the interaction among all

the parameters involved, we draw the following design

indications:

(1) The use of the embankment soil of higher quality

entails a stress decrease both on the embankment and

on the rail;

(2) A nearly equal to the previous effect can be obtained

with the employment of an higher sub-ballast thick-

ness from 12.0 to 20.0 cm; rather than with an

improvement of the crushed stone employed;

(3) The structural responses of the bed surfaces and of the

rail do not change in a substantial way by decreasing

from 50.0 to 35.5 cm the ballast thickness;

(4) An increase of the super-compacted thickness, even if

it does not give the same performances achievable in

the cases Nos. 1 and 2, entails a better structural

response compared to the increase of the ballast

thickness only.

In conclusion from the critical analysis of the standard

railway superstructure, adopted in Italy for the high speed,

the authors draw the following design proposal which can

guarantee a more effective structural response:

(1) The introduction of a sub-ballast thickness of 20.0 cm

instead of the present 12.0 cm;
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(2) The realization of a super-compacted layer with

thickness of 45.0 cm instead of 30.0 cm;

(3) The retention of the ballast thickness of 50.0 cm

considered that, in addition to the dynamical effects,

it is needed to guarantee a suitable distribution of the

loads when they are transferred in a nearly static

condition;

(4) The employment of a soil embankment, possibly

granularly stabilized, that can guarantee a resilient

modulus Mr C 120 MPa.
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