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Abstract 

In the context of the Industry 4.0 and Smart Manufacturing paradigm, this paper proposes a machine vision system for a flexible, precise and 
low-cost in-line geometric inspection of assembly processes. As a case study, the system has been targeted to the catalytic converter assembly 
process, in order to be easily integrated in the consolidated manufacturing flow. The system is based on developed algorithms to be applied on 
the image of the interfaces with the complete exhaust system the catalytic converter will be assembled into. An image segmentation procedure is 
described to robustly identify the region of interest (ROI) in the image. Afterwards, a geometrical model is proposed to detect any possible 
geometrical defects due to planar and/or rotational shifts of the interfaces around their expected positions. For the sake of validation, the proposed 
system has been implemented on a Raspberry Pi 3 Single Board Computer (SBC). It showed a sub-millimeter precision for planar movements 
and a maximum error in detecting the rotation angle lower than 1 degree, respectively. The modularity of the proposed approach makes it suitable 
to be realized also on different computational platforms, such as the modern heterogeneous System-on-Chips (SoC) hosting a general purpose 
microprocessor and a Field Programmable Gate Array (FPGA) on the same chip. Indeed, the most time-consuming computational steps can be 
efficiently realized on the FPGA, exploiting the parallel computing capability offered by a hardware implementation, thus accelerating the overall 
computation.  
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1. Introduction 

Each manufacturing process is continuously required to 
boost its efficiency to remain competitive in its market sector. 
In order to do that and according to the Industry 4.0 and Smart 
Manufacturing paradigm, today’s industrial productive systems 
should activate a series of processes bringing their traditional 
industrial automation towards a form of digital integration of 
all its components. More importantly, there is the need for new 
low-cost digital automation techniques that can be efficiently 
integrated in the existing productive process without requiring 
its complex re-engineering. 

Inspection, measurement and fault detection are commonly 
used control procedures whose importance is crucial in almost 
every industrial assembly process [1]. Typically, the geometric 
inspection of the assembled units is not automated but it is still 
undertaken at the end of the manufacturing process by the 
operator who manually uses specialized instruments, such as 
steel rules, micrometers and calibers which all require a direct 
physical contact. Such an approach has some evident 
drawbacks: it is time consuming, it can be applied just on one 
single sample over a set within the production lot and it may be 
subject to human errors. Moreover, the data of the process 
quality can not be efficiently collected, thus preventing a 
predictive maintenance based on big data analysis. For all these 
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reasons, the development of a digital system aiming to 
automatically inspect the geometric compliance of the 
assembled units with non-contact methods can drastically boost 
the process productivity. The use of 3D optical digitizing 
techniques as contactless measurement methodologies has been 
investigated in several industrial processes [2]-[3]. The 
drawback of such a technique is the need for rotating tables in 
order to get the 3D rendering of the object, which can be very 
hard to be integrated into the consolidated flow of the 
manufacturing process. A similar existing commercial solution 
is based on 3D laser triangulation to construct a 3D point cloud 
of the catalytic converter [4]. However, its main goal is to 
replace expensive and inflexible gauges but it cannot be easily 
integrated in an existing process due to its high measuring time 
(order of minutes) and the need for a motion system. Moreover, 
measurements on the virtual 3D model of the assembled unit 
are not automated but an operator still has to manually choose 
two points on the model surface to measure their relative 
distance. Therefore, such a methodology is not suitable for an 
in-process inspection.  

Machine vision has been widely recognized as an effective 
contactless technology for automated geometric inspection [5]-
[17]. Essentially, machine vision is based on the acquisition of 
an image from a camera and on its elaboration through image 
processing algorithms for some specific tasks, such as image 
analysis and feature extraction. In [8], the Fast Localization 
with Advanced Search Hierarchy (FLASH) algorithm is 
proposed which is based on image comparison to detect 
geometrical deviations from a reference pattern. The paper [7] 
describes a framework to measure the object movement from a 
pixel level analysis of the captured images. The work in [9] 
proposes the use of a stereo pair camera to obtain the 3D 
coordinates of a reference point from two 2D images. Although 
such automation strategies achieve a very good spatial 
resolution (< 1mm), they have some geometrical limitations: 
they work supposing that the observed object can move only on 
a plane and/or they take into account possible rotation of the 
object around only an axis orthogonal to the reference plane.                      

In this paper, we investigate the possibility to use a machine 
vision system for a flexible, precise and low-cost in-process 
geometric inspection of assembled units that can be easily 
integrated in the consolidated manufacturing process flow. The 
production of close-coupled catalytic converters is taken as a 
case study since it is a significant example of industrial 
application where the geometric inspection is of fundamental 
importance. As part of the exhaust system, catalytic converters 
belongs to the standard equipment of cars with internal 
combustion engines. They are manufactured by joining 
individual components together and the quality of the welding 
process has a direct impact on the converter flanges capability 
to fit the complete exhaust system to be assembled later. 

We developed a geometrical model in order to detect both 
planar and rotational movements of the flanges. In order to 
demonstrate its effectiveness, the model has been included in 
software routines based on an open source computer vision 
library [18], showing a sub-millimeter precision for planar 
movements and a maximum error in detecting the rotation angle 

lower than 1 degree. The machine vision system has been 
implemented on an embedded system based on the Raspberry 
Pi 3 Single Board Computer (SBC) equipped with the 1.4 GHz 
64- bit Cortex-A53 SoC with the aim to send the computational 
results online to a server, where they can be further elaborated 
offline. It is worth noting that the proposed system is general 
and that it can be implemented on different computing 
platforms, according to the required computational needs. As 
an example, a hardware-software co-design approach can be 
used on platforms hosting a heterogeneous System on Chip 
(SoC), as the Xilinx® Pynq [19], where a general purpose 
microprocessor and a Field Programmable Gate Array (FPGA) 
are integrated into the same chip. On such a platform, some 
time-consuming functions can be described in a hardware 
description language (HDL) and they can be realized in 
hardware accelerators into the FPGA, thus considerably 
speeding-up the overall computation. Indeed, several 
operations on images, such as filtering, can efficiently exploit 
the typical parallel computing capability offered by a hardware 
implementation. Conversely, non-critical functions can be 
implemented in software running on the general purpose 
processor, thus exploiting the typical flexibility of the high-
level programming languages that can easily describe complex 
computational procedures, use efficient data structures and 
import third-part libraries.          

The paper is organized as follows: in Section 2, the 
manufacturing process of the catalytic converters is briefly 
described; Section 3 discusses the proposed methodology for 
the flange detection using image segmentation; In Section 4, the 
proposed geometrical models for the detection of planar and 
rotational movements are described and the obtained 
experimental data are discussed; finally, conclusions and future 
work are described in Section 5.  

2. The catalytic converter assembly process 

The assembly of a catalytic converter is essentially based on 
two processes: sensor bosses welding and clamshell welding 
assembly. Most of the sensor bosses Metal-Active-Gas (MAG) 
welding processes develop in parallel on the two different 
clamshells. The latter are then assembled together with 
semiautomatic Metal-Inert-Gas (MIG)/ Metal-Active-Gas  
(MAG) welding.  Finally, the Selective Catalytic Reduction on 
Filter (SCRoF) chamber is welded with the clamshells and the 
input and output collectors, and the final converter is then 
placed in a quality cell for a leakage test that takes about one 
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Fig. 1: a) the assembled catalytic converter and b) its placement into the 
quality cell (courtesy of Magneti Marelli CK Holdings) 
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minute and a half (Fig. 1). Afterwards, the converter is sent for 
the assembly of the heat shield and brackets and then it is ready 
for packaging. The described welding processes affects the 
converter quality. The geometrical inspection of the converter 
shown in Fig. 1 is currently performed only on a single sample 
over a predefined set within the production lot. When the 
inspection occurs, the converter is placed into a specialized cell 
equipped with special calibers, which are used by a human 
operator, and the production is stalled, with a consequent waste 
of time. More importantly, this offline check can not detect any 
possible defects on the previously assembled converters, with 
the risk of wasting a considerable number of units. Finally, the 
statistics of the process is incomplete preventing a meaningful 
offline analysis aiming to efficiently monitor the quality of the 
entire production flow for the purpose of a predictive 
maintenance. For all these reasons, the analyzed machine 
vision system is intended to be integrated into the existing 
quality cell entailing an in-line check of the geometric 
compliance of each assembled converter. The real-time feature 
of the proposed system avoids slowing down the 
manufacturing flow and it overcomes the drawbacks of the 
manual inspection described above. 

Essentially, the most important geometrical check is to 
detect the correct position of the flanges A and B depicted in 
Fig. 1a, which are the interfaces with the complete exhaust 
system the converter will be assembled into. As it is visible in 
Fig. 1b, the flange B is not visually accessible when the 
converter is placed in the quality cell. Consequently, we 
propose to monitor the correct position of the sensor boss C 
since it is not subject to welding but it is monolithically realized 
on the collector thus resulting rigidly coupled with the flange 
B. In the following, the developed procedures to detect the 
flange and/or the sensor boss in an image and their possible 
movement with respect to the expected position will be 
described.  

3. The image segmentation procedure 

Image segmentation is the first elaboration step on the 
acquired image. It consists in detecting the region of interest 
(ROI) and isolating it from the rest of the image. Without loss 
of generality, in the following we will describe the proposed 
segmentation method to detect the sensor boss C, with the 
obvious assumption that the same procedure can be applied by 
a replica of the system also to the flange A of Fig. 1a.  

The basic components of the embedded machine vision 
system are: a Single Board Computer (SBC) and a video 
camera. A C++ software routine runs on the SCB’s processor 
and performs the image acquisition through the video camera 
making use of useful machine vision functions furnished by the 
open source OpenCV 3.2.0 library. Nevertheless, due to its 
modularity, the proposed approach can be also efficiently 
implemented in heterogeneous SoC, once the critical functions 
to be implemented in hardware have been identified. Figure 2 
shows the experimental setup for the image acquisition and 
segmentation consisting in the used video camera (Microsoft 
VX-500 USB LifeCam) and the catalytic converter. In the 
following, the main computational steps of the proposed 
procedure are listed and described: 

 
1) Color image acquisition from the video camera. The 

chosen image resolution is 640x480. 
 
2) Image conversion from the RGB color space into the 

Grayscale. After this step, each pixel of the image is coded with 
an integer number belonging in the range [0 – 255] (0 for full 
black, 255 for full white). In order to reduce the computation 
complexity, the likely region of interest (ROI) is selected from 
the grayscale image and isolated. For our experimental setup, a 
ROI dimension of 140x120 pixels has been found to be 
appropriate to contain the shape of the sensor boss C. It is worth 
noting that the ROI selection (specifically, its dimension and 
position within the original image) can be easily done since the 
camera-sensor boss relative position is a chosen specification 
of the experimental setup. The output of this computational 
step is depicted in Figure 3a. 

 
3) ROI filtering to remove noise and to detect edges 

within the ROI. A median filter removes the noise from the 
image by substituting the value of the generic pixel P with the 

video 
camera 

catalytic 
converter 

sensor 
boss C 

Fig. 2: Experimental setup (catalytic converter courtesy of Magneti 
Marelli CK Holdings). 

a) b) 

c) d) 

e) 

Fig. 3: Outputs of the proposed image segmentation procedure on the sensor 
boss: a) grayscale conversion, b) ROI filtering; c) contour selection; d) 
morphological filtering; e) center detection.  
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median value among the pixels belonging to a squared window 
centered in P. For our case study, a window length of 5 pixels 
has been found appropriate. In order to detect the edges within 
the ROI, a Canny filter [20] has been employed. The lower and 
upper thresholds of the Canny edge detection filtering have 
been empirically set to 10 and 50, respectively. The output of 
this computational step is depicted in Figure 3b. It is worth 
noting that the resulting image is segmented since all the pixels 
belonging to the edges assume the same value 255 (i.e. white), 
whereas the remaining ones get the same value 0 (i.e. black).     

 
4) Contour selection of the object of interest. As it is 

visible in Figure 3b, the Canny algorithm detects several edges 
besides the ones belonging to the object of interest (the sensor 
boss C). This is due to the presence of irregularities on the 
metallic collector and/or small shadows caused by the 
illumination. With a careful choice of the ROI dimension, it can 
be reasonably inferred that the contour to be actually detected 
is the one with the largest length among all the contours of 
Figure 3b. Towards this aim, all the contours in the segmented 
image are collected into a data structure and only the one with 
the largest length is selected. The output of this computational 
step is depicted in Figure 3c.  

 
5)  Morphological filtering of the selected contour. This 

computational step aims to remove some undesired textures 
that are still present in the image [10]. A clear example is 
visible in Figure 3c, where the selected contour is a line that a) 
does not delimit an enclosed area and that b) contains a fringe 
due to surface irregularities and/or illumination effects. To 
solve the problem a), a morphological dilatation with a kernel 
size 3x3 has been applied. Dilatation thickens the selected 
contour so that it can delimit an enclose area. Afterwards, the 
enclose area is filled with the same color (i.e. all the pixels 
inside the area are set to the same value – 0 for white –). The 
inverse of dilatation, i.e. erosion, has been then applied to the 
enclose area with the same kernel size 3x3. To solve problem 
b), we have applied two consecutive erosion and dilation 
operations with a larger kernel size (we found that the kernel 
size 21x21 is appropriate): the erosion operation eliminates the 

fringe whereas the dilatation operation restores the original 
object size. Figure 3d depicts the final output. 

 
6) Center detection of the enclose area. This is the final 

computation step aiming to identify the coordinates of the 
center of the enclose area in the 2D camera plane. Through a 
connected components analysis of the image, the (single) 
connected component has been identified and its center has 
been detected (Figure 3e). 

 
In order to make the described procedure more robust, we 

propose to iterate it over a set of consecutive acquired frames 
and to evaluate the coordinates of the center by averaging the 
obtained results [11]. Indeed, due to imperceptible micro 
variations of the illumination condition over time, the output of 
the ROI filtering step may result different even for the same 
object if it is detected in different times. Moreover, in our 
experiment we noticed that, for the same reason, the actual 
contour of the sensor boss was not detected at all for some of 
the acquired frames. As a result, the value of the coordinates of 
the center was clearly unreasonable. For such a reason, we 
neglected from the averaging operation those values that were 
outside a reasonable neighborhood of the expected position of 
the center. Figure 4 depicts the detected center coordinates as a 
function of the total number of acquired frames. Our 
experiments reveal that a number of frames equal to 50 is 
enough to obtain a steady value of the center coordinates. 
However, it is worth noting that, using less frames, the 
maximum error was found to be just of 3 pixels, hence the 
number of frames to be acquired is also a function of the desired 
precision. 

The obtained center can be used as reference point to detect 
possible movements of the sensor boss around its expected 
position, as it will be shown in the following Sections. 

4. The proposed machine vision-based geometric 
inspection 

 Once the object of interest - i.e. the sensor boss in our case 
study - has been identified through the segmentation procedure, 
the next step is to elaborate the segmented image in order to 
automatically detect a possible incongruity between the actual 
and the expected object position. As described in Section 2, this 
may occur when the quality of the welding seams is below an 
acceptable threshold. Without losing of generality, in this study 
we suppose that a displacement of the sensor boss can be 
attributed to a planar and/or rotation movement. In the 
following, we investigate the possibility to use a machine 
vision system to detect such movements. 

 

4.1. Planar movements detection 

Reasonably, when the catalytic converter enters the quality 
cell, the sensor boss planarity and size are assumed to be 
compliant with the standard values since the check of the 
collector is independently carried out before the assembly 
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median value among the pixels belonging to a squared window 
centered in P. For our case study, a window length of 5 pixels 
has been found appropriate. In order to detect the edges within 
the ROI, a Canny filter [20] has been employed. The lower and 
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process. Hence, the center of the sensor boss can be used as 
reference point to detect a rigid planar movement. In order to 
investigate the feasibility of a machine vision system towards 
this aim, an experimental environment as the one showed in 
Figure 5 has been set up. The camera and the target object have 
been mounted on an optical bench. The camera position is fixed 
and it is assumed to be a known specification of the system, 
taken as the origin of the 3D Cartesian space. The target object 
has the same shape and dimension of the sensor boss and it is 
mounted on a mechanical carriage that allows controllable and 
measurable micro movements along the XY plane (with a 
resolution of tenths of millimeter).    

 

4.1.1. First scenario: the camera and the target object planes 
are parallel 

We started our investigation by studying the simplest case 
in which the camera and the target object are lying on parallel 
planes, as depicted in Figure 5. Let’s define: (𝑋𝑋𝑝𝑝, 𝑌𝑌𝑝𝑝) the pixel 
coordinates of the center in the image plane; (𝑋𝑋𝑊𝑊, 𝑌𝑌𝑊𝑊 ) the 
center coordinates in the real world; 𝑍𝑍0  the camera-object 
distance in the real world; 𝐹𝐹 the focal length (in pixels) of the 
camera. According to the pinhole camera model [21], the 
mapping from the coordinates of a 3D point to the 2D image 
coordinates of the point's projection onto the image plane is 
given by Equation 1: 

 

(
𝑋𝑋𝑝𝑝
𝑌𝑌𝑝𝑝) =

𝐹𝐹
𝑍𝑍0
∙ (𝑋𝑋𝑊𝑊𝑌𝑌𝑊𝑊)  (1) 

 

From Equation 1, it can be easily inferred that, when the 
point moves from position A to position B, the movement 
amount in the real world can be obtained as described by 
Equation 2: 

 

(∆𝑋𝑋𝑊𝑊∆𝑌𝑌𝑊𝑊 ) = (|𝑋𝑋𝑊𝑊,𝐵𝐵 − 𝑋𝑋𝑊𝑊,𝐴𝐴|
|𝑌𝑌𝑊𝑊,𝐵𝐵 − 𝑌𝑌𝑊𝑊,𝐴𝐴|

) = 𝑍𝑍0
𝐹𝐹 ∙ (

|𝑋𝑋𝑝𝑝,𝐵𝐵 − 𝑋𝑋𝑝𝑝,𝐴𝐴|
|𝑌𝑌𝑝𝑝,𝐵𝐵 − 𝑌𝑌𝑝𝑝,𝐴𝐴|

) = 𝑍𝑍0
𝐹𝐹 (

Δ𝑋𝑋𝑝𝑝
Δ𝑌𝑌𝑝𝑝)  (2) 

 
Equation 2 has been included in the developed software 

routine and tested. Figure 6 collects the measurement errors 
committed by the described procedure, obtained 
experimentally for different values of 𝑍𝑍0 and object shift in the 
XY plane. The amount of the object shift has been calculated 
by measuring the shift of the object center with respect a known 
position. It is worth noting that the maximum absolute error is 
always lower than 500um.  

4.1.2. Second scenario: the camera and the target object 
planes are not parallel 

Our investigation on the feasibility of the machine vision 
system continued by removing the parallelism ideality between 
the camera and the object planes. Indeed, as it can be easily 
inferred from the position of the catalytic converter in the 
quality cell of Figure 1b, this may represent a more realistic 
scenario. The latter has been modelled as depicted in Figure 7. 
Let’s define:  the angle between the camera and the object 
planes; 𝑍𝑍0 the distance between the object center and camera 
plane; 𝑏𝑏 the distance between the object center and the point A 
(aligned with the camera focal point). Let’s suppose that the 
object shifts from the point B to the point D along the direction 
𝑟𝑟 by a distance equal to 𝑐𝑐. After detecting the object center 
coordinates in the image plane and applying Equation 2, the 
value 𝑎𝑎 is measured. The latter is not the actual object shift but, 
according to the pinhole camera model, it is the distance 
between the points B and C. Under the realistic assumption that 
𝑍𝑍0 is much larger than the camera focal length, we can derive 
the geometrical model described by Equation 3 in order to 
obtain the actual shift 𝑐𝑐: 

 

𝛿𝛿 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 + 𝑏𝑏
𝑍𝑍0
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𝛽𝛽 = 𝜋𝜋

2 − 𝛿𝛿 = 𝜋𝜋
2 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎+𝑏𝑏

𝑍𝑍0
  

      
𝜗𝜗 = 𝜋𝜋

2 + 𝛿𝛿 − 𝛼𝛼 = 𝜋𝜋
2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎+𝑏𝑏

𝑍𝑍0
− 𝛼𝛼  

 

𝑐𝑐 = 𝑎𝑎 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎 ∙
𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑏𝑏𝑍𝑍0

)

𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑏𝑏𝑍𝑍0
−𝛼𝛼)

   (3) 

 
Figure 8 depicts the absolute measurement error of the 

proposed model for different values of α (in the performed 
experiment, we set 𝑏𝑏 = 5 cm and 𝑍𝑍0 = 48 cm). Also for this 
scenario, the proposed model achieves a high precision with a 
maximum error below the millimeter. It is worth noting that the 
measured absolute error tends to increase with the increasing 
of the actual shift of the object. Nevertheless, it may 
confidently be stated that the tolerable sensor boss shifts are 
below 1 cm, thus the error introduced by the proposed machine 
vision system is assumed to be not higher than small fractions 
of millimeter. 

4.2. Rotational movements detection 

Apart from planar shifts, the sensor boss can also undergo 
rotational movements due to a low quality of the welding seam. 
In such a case, the detection of just the center is not enough to 
evaluate the geometric compliance of the object. As an 
example, if the object rotates across an axis passing through the 
center, the latter does not change its position in the real world. 
As a consequence, the catalytic converter may wrongly pass the 
quality check. For such a reason, we enriched our machine 
vision system with the geometrical model described in Figure 
9, that is able to detect rotations. 

Let’s define: 𝜙𝜙  the rotation angle to be detected; 𝑍𝑍0  the 
distance between the camera and the object planes for 𝜙𝜙=0; B 
(D) the point representing the left border of the object for 𝜙𝜙=0 
(𝜙𝜙>0); a the distance between the points B and A (aligned with 
the camera focal point). Let’s suppose that, due to a rotation of 
an angle 𝜙𝜙, the left border of the object D is projected onto the 
image plane in the same position of the projection of the point 
C. Due to rotation, the sensor boss on the image plane assumes 
an elliptic shape whose eccentricity depends on the rotation 

angle. Hence, the length of the segment 𝑐𝑐 can be obtained as the 
length of one semi axis of such an ellipse. Once the sensor boss 
has been detected in the image, through the segmentation step 
described in Section 3, its elliptical shape is matched to a 
synthetic ellipse. As an example, when implemented in 
software, such a step can be easily realized with the OpenCV 
function fitEllipse. The latter looks for an elliptical shape in the 
image, matches it with an ideal ellipse and returns some useful 
information such as the length in pixels of the concerned semi 
axis (the segment 𝑐𝑐 ). Afterwards, the length in pixels is 
converted into its actual length in the real world by applying 
Equation 2. The actual length 𝑏𝑏 in the real world is then easily 
calculated since the actual length of the sensor boss semi axis 
is a known system parameter. As a result, the value of the 
rotation angle 𝜙𝜙 can be found by the following Equation (4): 

 

𝛽𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
|𝑏𝑏 + 𝑎𝑎|
𝑍𝑍0

 

 
𝛼𝛼 = 𝜋𝜋

2 − 𝛽𝛽 
 

𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

𝑏𝑏 + 𝑐𝑐
sin⁡(𝜋𝜋 − 𝛼𝛼) 

 

𝛾𝛾 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 ∙ sin⁡(𝜋𝜋 − 𝛼𝛼)
𝑏𝑏 + 𝑐𝑐  

 
𝜙𝜙 = 𝜋𝜋 − 𝛾𝛾 − (𝜋𝜋 − 𝛼𝛼) = 𝛼𝛼 − 𝛾𝛾  (4) 
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not parallel (Equation 3). 
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Fig. 10: Elliptical matching (in red) of the sensor boss surface (in white) 
with the OpenCV function fitEllipse.   
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Figure 10 shows the ellipse (in red) found by the fitEllipse 
function matching the border of the sensor boss (in white). It 
can be noted how the matching is almost perfect, so the 
measurement of the segment 𝑐𝑐  can be assumed to be very 
reliable. Figure 11 depicts the measured absolute error of the 
proposed model (4) for different values of the actual rotation 
angle 𝜙𝜙. The proposed model is able to measure the angle 𝜙𝜙 
with a high accuracy, showing a maximum error of just 0.9 
degrees.    

5. Conclusions and future works 

The geometric quality check is an important step in the 
manufacturing process of catalytic converts. It consists in 
checking the correct position of the flanges/sensor bosses 
which are the interfaces with the complete exhaust system. The 
current procedures require specialized operators and the use of 
measurement methodologies that are based on a direct physical 
contact. This prevents the possibility of an in-line quality check 
on every manufactured converter and the collection of the 
process statistics for the purpose of a predictive maintenance. 
In this paper, we investigated the possibility to exploit a 
machine vision-based system that can be easily integrated into 
the existing productive flow in order to perform a real time 
quality check of the catalytic converter. We developed a robust 
algorithm to correctly detect the border of the flange/sensor 
boss in an image acquired from a video camera. Afterwards, we 
modeled the geometry of the case study and we derived some 
mathematical formula to detect potential geometric defects in 
the flange/sensor boss due to unwanted planar and rotational 
movements. The presented system has been prototyped using 
the Raspberry Pi 3 SBC. Experimental results showed that the 
proposed methodology is able to detect planar and rotational 
movements with a maximum error of just 900um and 0.9 
degrees, respectively. It is worth noting that the proposed 
approach is general and that it can be implemented on different 
platforms. As an example, the modularity of the proposed 
procedure makes it easy to profile the computational time of 
each step. Consequently, the time-critical computational steps 
can be realized and accelerated in hardware into the FPGA 
resources of modern heterogeneous SoCs.      

The high obtained precision reveals the reliability of 
machine vision as a low-cost and real time quality check 
methodology of the catalytic converters assembly process. 
Going through the path indicated by the proposed feasibility 
study, we are planning to enrich our system with ad-hoc 
stereoscopic techniques and/or time-of-flight sensors for the 
purpose of an automatic detection of the camera-object 
distance. The main goal of our work is to provide the embedded 
system with the appropriate intelligence to detect any kind of 
possible object movements in the 3D space.        
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