Electronic Notes in Theoretical Computer Science 7 (1997)
URL: http://www.elsevier.nl/locate/entcs/volume7.html 26 pages

Tiles for Concurrent and Located Calculi *

GianLuigi Ferrari

Dipartimento di Informatica, Universita di Pisa, giangi@ds.unipt. it

Ugo Montanari

Computer Science Laboratory, SRI International, Menlo Park, ugo@csl.sri.com

Abstract

When concurrency is a primitive notion, models of process calculi usually include
commuting diamonds and observations of causality links or of abstract locations.
However it is still debatable if the existing approaches are natural, or rather if they
are an ad hoc addition to the more basic interleaving semantics. In the paper a
treatment of concurrent process calculi is proposed where the same operational and
abstract concurrent semantics described in the literature now descend from general,
uniform notions. More precisely we introduce a tile-based semantics for located
CCS and we show it consistent with the ordinary concurrent (via permutation of
transitions) and bisimilarity based location semantics. Tiles are rewrite rules with
side effects, reminiscent of both Plotkin SOS and Meseguer rewriting logic rules. We
argue that the tile model is particularly well suited for defining directly operational
and abstract semantics of concurrent process calculi in a compositional style.

1 Introduction

Process calculi are usually equipped with notions of operational semantics
based on transition systems and of abstract semantics based on observed ac-
tions and bisimilarity. Sometimes it is convenient to consider concurrency as a
primitive notion, rather than to reduce it to nondeterminism via interleaving.

* Research supported by Office of Naval Research Contracts N00014-95-C-0225 and
N00014-96-C-0114 and by the Information Technology Promotion Agency, Japan, as part
of the Industrial Science and Technology Frontier Program “New Models for Software Ar-
chitechture” sponsored by NEDO (New Energy and Industrial Technology Development
Organization). Also research supported in part by CNR Integrated Project Metodi e Stru-
menti per la Progettazione e la Verifica di Sistemi Eterogenei Connessi mediante Reti di
Comunicazione; and Esprit Working Groups CONFER2 and COORDINA. The second au-
thor is on leave from Dipartimento di Informatica, Pisa, Italy.

(©1997 Published by Elsevier Science B. V. Open accessunder CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/3.0/

FERRARI AND MONTANARI

To this purpose, ordinary transition systems have been extended in the liter-
ature in several ways. From the operational point of view, certain commuting
diamonds are introduced (see e.g. [16,5]), whose role is to define as concurrent
those pairs of events which can occur in any order. Concurrent abstract se-
mantics is defined instead by decorating actions with causality links or with
abstract locations and possibly by introducing specialized versions of bisim-
ulation [13,12,4,22,10,30,28]. However, while concurrent semantics of process
calculi has been given a remarkable attention in the past several years, it is
still debatable if the existing approaches are natural, or rather if they are an ad
hoc addition to the more basic interleaving semantics. We believe a more nat-
ural treatment of concurrency should be possible, as we feel has been achieved
(at least from an operational point of view) for other models of computations,
like Petri nets [14] and term [26,23|, graph [7], and term graph [9] rewriting,
where axioms generating commuting diamonds are automatically imposed by
the framework of definition.

The aim of this paper is to propose a treatment of concurrent process cal-
culi where the same operational and abstract concurrent semantics described
in the literature now descend from general, uniform notions. Our approach is
based on the tile model [18-20]. The tile model relies on certain rewrite rules
with side effects, called tiles, reminiscent of both SOS rules [31] and rewriting
logic rules [26]. Also related models! are SOS contexts [24] and structured
transition systems [11].

Tiles have been used for coordination formalisms equipped with flexible
synchronization primitives [29,6] and for calculi for mobile processes, like the
asynchronous m-calculus [17]. The main advantage of the tile model for han-
dling concurrent process calculi is to integrate a distributed representation of
agents and a partial order representation of observations within an SOS-like
compositional framework. In particular, with respect to the location approach
of [4] the tile version has the advantage of employing only local names and of
avoiding infinite branching. Tiles are naturally equipped with a bisimulation-
based equivalence relation, which yields the correct notion of process bisimi-
larity.

We now briefly introduce the tile model. A tile has the form:

a s
S — S
b

and states that the initial configuration s of the system evolves to the fi-
nal configuration s’ producing an effect b. However s is in general open (not
closed) and the rewrite step is actually possible only if the subcomponents
of s also evolve producing the trigger a. Both trigger and effect are called

1 While tiles can be considered as a generalization of SOS inference rules, their algebraic
structure is new. Larsen and Xinxin contexts [24] are analogous, but their algebraic struc-
ture is limited to ordinary terms and not axiomatized. Structured transition systems and
rewriting logic have similar aims and similar algebraic structure, but do not account for
side effects and synchronization.

FERRARI AND MONTANARI

initial
configuration
initial input 5 initial output
interface O (O interface
trigger a b effect
final input O O final output
interface y interface
final
configuration
Fig. 1. A tile.

observations, and model the interaction, during a computation, of the system
being described with its environment. More precisely, both system configu-
rations are equipped with an nput and an output interface, and the trigger
just describes the evolution of the input interface from its initial to its fi-
nal configuration. Similarly for the effect. It is convenient to visualize a tile
as a two-dimensional structure (see Fig. 1), where the horizontal dimension
corresponds to the extension of the system, while the vertical dimension corre-
sponds to the extension of the computation. Actually, we should also imagine
a third dimension (the thickness of the tile), which models parallelism: con-
figurations, observations, interfaces and tiles themselves are all supposed to
consist of several components in parallel.

To match the SOS style as much as possible and to make more readable

the notation, we will more often use the form:
a

PR,

Both configurations and observations are assumed to be equipped with
operations of parallel and sequential composition (represented by infix oper-
ators ® and ; respectively) which allow us to build more parallel and larger
components, extended horizontally for the configurations and vertically for
the observations. Similarly, tiles themselves possess three operations of com-
position?: parallel (_®), horizontal (_*), and vertical composition. If we
consider tiles as logical sequents, it is natural to define the three operations
via inference rules called composition rules (see Definition 3.2).

2 In general, tiles are also equipped with proof terms which distinguish between sequents
with the same configurations and observations, but derived in different ways. Suitable
axioms for normalizing proof terms are also provided [18-20].

3

FERRARI AND MONTANARI

The operation of parallel composition is self explanatory. Vertical compo-
sion models sequential composition of transitions and computations. Horizon-
tal composition corresponds to synchronization: the effect of the first tile acts
as trigger of the second tile, and the resulting tile expresses the synchronized
behavior of both. Computing in a tile logic consists of starting from a set of
basic tiles called rewrite rules (and from a set of auziliary tiles which depend
on the version of the tile model at hand), and of applying the composition
rules in all possible ways.

A tile logic also can be seen as a double category [15] and tiles themselves
as double cells. The categorical interpretation [18,19] is useful since it makes
the model more general (configurations and observations can be arrows of any
category), allows for universal constructions (e.g. a tile logic is the double
category freely generated by its rewrite rules) and suggests analogies with
fruitful concepts of algebraic semantics, like institutions. However, the tile
model is presented here in a purely logical form.

In this paper, observations and configurations are term graphs [3] and
term cographs respectively. Term graphs are similar to terms, but two term
graphs may explicitly share some of their subterms. Thus in a term graph it
is in general not allowed to copy the shared subterms to make the two terms
disjoint, since this would yield a different term graph. An axiomatization
of term graphs by means of gs-monoidal theories has been recently proposed
by Corradini and Gadducci [8,9], and it is reported in the Appendix. Term
cographs are like term graphs, but their direction is inverted: while term
graphs are oriented from leaves to roots, term cographs are visited from roots
to leaves. Term graphs are convenient structures for modeling configurations
of distributed systems and their partial ordering observations, since they are
equipped with an operation of parallel composition (which models indipendent
juxtaposition) and with the possibility of sharing subcomponents. Sharing is
used within configurations for modeling the operator _ | _ of process algebras,
which in this context means sharing the same location. Within observations,
sharing is used to express the fact that two events share the same cause, or,
equivalently, that the same location has two different sublocations.

For instance, the CCS agent a.nil | b.nil is represented by the term co-
graph G = {!(a(e)),!(b(e))}. The shared variable e represents the common
location (the only one in this case) of the two components !(a(e)) and !(b(e)).
Component !(a(e)) has one variable but has no root, since the discharger op-
erator !(_) disposes of the result of the subterm a(e). Thus both component
l(a(e)) and term graph G are arrows from the underlined natural number 0
(i.e. zero roots) to the natural number 1 (i.e. one variable). Term cographs
initiating from 0 represent closed agents, and in fact the discharger operator
represents the agent nil. Notice that while garbage collection is automatic in
term algebra (e.g. !(a(e)) =!(e) since both members represent the empty tuple
of terms), in the algebra of term graphs a term graph with no root may carry
nontrivial information. Notice also that variables have only local meaning, i.e.

4

FERRARI AND MONTANARI

in G = {!(a(e)),!(b(e))} variable e just represents the only existing variable.
In other words also {!(a(e')),!(b(¢'))} would denote the same term graph G.
Only the ordering of variables is meaningful.

The computations a.nil | b.nil % nil | b.nil Ly il | nil and a.nil | b.nil LN
a.nil | nil % nil | nil both correspond to the same tile with empty trigger?:

o Va(e)), 1(be)) Z22ETEDG 0y 1), 1(e).

The effect ' := a(e), e” := b(e), e of a is a term graph with one variable e and
three roots €', €’ and e, i.e. it is an arrow from 1 to 3. Its meaning in terms
of events is as follows. At the beginning there is only an initial event e. After
the computation, we still have the same initial event, but also two new events
e/, " have happened, labelled by a and b respectively, and both caused by e.
In terms of locations, we can say that two sublocations e’ and e” of the initial
location e have been created by actions a and b. However, there is no “left” or
“right” location, and new locations are introduced only when something takes
place at them. The meaning of the final configuration !(e),!(e'),!(e”) is that
all the components in the three locations are inactive. A detailed derivation
of the above tile is shown in Section 5.

We now show a rewrite rule of our system:

el

(Prefix,) o
e = ple) Z=LZ5 ¢ I e).

It represents the firing of a prefix 1 and corresponds to the following SOS
axiom for located CCS [4]:

/L.p—'j)l::p.

Notice that Prefix, does not describe the evolution of a closed system, as
it is the case for the SOS axiom, since its initial configuration is a partial
system €' := pu(e) : 1 — 1. However only a trivial (identity) trigger €' is
required for applying the rule. A rule with this effect is available in our logic
for any agent p and called idp,). Thus the tile relevant for agent p.p is the
horizontal composition idp, * Prefix,. This tile describes the creation of a
new location, where the final configuration [p] is positioned, and states that
there is no nontrivial component left at the initial location. Notice that our
tile is deterministic while the SOS axiom yields an infinite branching.

The paper is organized as follows. Section 2 introduces term graphs, and
the operations of parallel and sequential composition on them. Section 3
presents the tile model, in the simplified version needed in the paper, while
Section 4 describes located CCS in a strong version (at our knowledge original)
and in the weak version. For the operational semantics of the strong version,
the commuting diamonds are defined following the axiomatic approach of [16].

3 In all our tile rewrite systems modeling process algebras, the tiles with a closed agent
as initial configuration have empty trigger, i.e. they can be considered as transitions of a
labelled transition system.

FERRARI AND MONTANARI

Section 5 defines a tile rewrite system for both the strong and the weak ver-
sions, and Section 6 outlines its equivalence with the ordinary semantics of
Section 4. In particular, it is shown that the equality of computations speci-
fied by the commuting diamonds holds in the tile model, and that its uniform
notion of bisimilarity yields in the weak case the same equivalence on agents
as ordinary location bisimilarity.

2 Term Graphs

In this section we review term graphs on which it is based the data stucture
we use for modeling configurations and observations. Term graphs [3,1,8,9],
have a nice algebraic structure and can be finitely axiomatized as gs-monoidal
theories [18,19,8,9]. We follow a style of presentation similar to [1].

Definition 2.1 (one-sorted term graphs)

Let us consider a one-sorted, ranked signature X, with f, € ¥y. Further-
more let V' be a totally ordered (by <) infinite set of names, a name being
denoted by n and similar letters. A term graph is a triple G = (S,var,rt)
where:

* S is a finite set of sentences, which are assignments of the form n :=
fn(ni,...,np), or of the form n := n'. In addition, every name must be
assigned at most once and no cycles (with the obvious meaning) must be
present;

* var 1s a list, without repetitions, of the variables of G, variables being both
all the names which are not assigned in S and possibly other names which
do not appear in S. Variables are usually denoted by v or similar letters;

* rt is a list, without repetitions, of the roots of G, i.e. the names which
appear as left members of assignments of the form n := n'. Roots are

usually denoted by r or similar letters.

The ordering of variables and roots must respect the ordering in V. Further-
more, term graphs are defined up to isomorphic renaming.

Given a term graph G, let h (resp. k) be the number of variables (roots).
Then G can be seen as an arrow of type h — k. We write G : h — k and call
h and k the source and target of G respectively. a

For instance, given the signature ¥ with ¥; = f,¢g and ¥y = d, and
the names nq,...,ng,v1,...,03,71,72, let G : 3 — 2 = (S,var,rt) with S =
{ry = v1,ry 1= ny,ny = d(ng,n3),ne := g(nz),ng := f(vy),ng == f(va2)},
rt = (r,79) and var = (vy, v, v3).

Notice that if we consider as standard the names in the lists of variables
and roots (i.e. vy,...,v, and rq,...,rg), iSomorphic renaming is restricted to
the names which are neither variables nor roots. Furthermore, in this case a
term graph is fully specified when its type and its set of sentences are given,
since the length of its list of variables can be recovered from its type.

6

FERRARI AND MONTANARI

Particularly interesting are the following term graphs which are called
atomic:
generators: for every f, € ¥,

foih—=1={r = falvi,...,vn)}
identities: idy,
idp h— h={ri=v1,...,r5 := v };

permutations: pp

pb,bih,—Fk'—)h—i‘k

= {’I“l = Uh4ly- 3Tk ‘= UhakyTkt1 ‘= U1y ..y Tgrp 1= Uh};
duplicators: Vj,
Viih—2h={r :=uvy,...,1h = Up, Thy1 1= U1, ..., Top = Up};
dischargers: 1},
!Q : ﬁ — 0= {}

We now introduce two operations on term graphs. The sequential compo-
sition of two term graphs is obtained by gluing the list of roots of the first
graph with the list of variables of the second, and it is defined only if their
numbers are equal. The parallel composition instead is always defined, and it
is a sort of disjoint union where variable and root lists are concatenated.

Definition 2.2 (sequential and parallel composition of term graphs)

Given two term graphs Gi : h — k = (Sy,var,rty) and Gy : k — [=
(Sa,vary, rty), let us take two instances in their isomorphism classes such
that rty = wvary and that no other names are shared between Gi and Gs.
Furthermore, let S be the set of clauses in Sy of the form r :=n and let o be
the corresponding name substitution. The sequential composition of G| and
Gy is the term graph G1;Go i h — 1= ((S1\ S) U Sy0,vary, rts).

Given two term graphs Gy : hy — ki = (S1,vary,rt1) and Gy : hy = ky =
(Sa,vary, rty), let us take two instances in their isomorphism classes such that
no names are shared between Gy and Go. The parallel composition of G| and
Gy is the term graph G : hy + hy — ki + ko = (S1 U So, vary vary, vty rty). O

We need a concise term-like notation for term graphs, without explicit lists
of variables and roots. Thus we introduce a notion of presentation of a term
graph which allows for several shorthands. To eliminate the need of specifying
variables and roots, we consider the partial ordering on names defined by the
assignments. It is definitely true that all roots are maxima and all variables
which appear in the assignments are minima. However there might be:

i) maxima which are not roots (like name n4 in the our example G); and

ii) variables which do not appear at all (like v3).

To get precisely variables as minima and roots as maxima, we introduce a
fictitious mame T and we assume n C T for all names n in i) and ii) above. To

7

FERRARI AND MONTANARI

express these new dependencies in presentations, we introduce a new sentence
I(n) for each such dependency (e.g. !(n4) and !(v3) in our example). Moreover,
we express the orderings of minima and maxima (which are needed since
minima and maxima are now variables and roots) simply by the orderings of
their names in V. A second shorthand consists of replacing with its definition
every name which is neither a variable nor a root, and which is used just

once. For instance in our example we replace o := ny, ny := d(ny, n3) and
ny = g(ng) with ro := d(g(ns),n3). Finally, we replace assignments like
ry := v; in our example, whose only role is to mark as a root a name which

is used in other sentences, with sentences consisting of single names, like ;.
However we must be careful at this point, since the ordering of r; among the
roots may be different than the ordering of v;.

Since several presentations may correspond to the same term graph, we
give here a reduction procedure able to translate presentations of term graphs
into the form of Definition 2.1.

Definition 2.3 (presentations of term graphs and reduction procedure)
Given a signature 3 and a set V' of names, a presentation P of a term graph
is a set of sentences of the form n, orn =T (nq,...,ng), or (T(ny,...,ng)),
where T is a term on the signature, possibly just a name. As in Definition 2.1,
a name can be assigned at most once and no cycles must be present.
>From presentation P we derive as follows a triple (S,var,rt) defining a
term graph:

» we replace sentence n with n' := n, where n' is a new name with n < n' but
where no name n" exists in P with* n <n" <n';

o we decompose in the obvious way the sentences of the formn := T (nq,...,ny),
or (T (ny,...,ny)) into basic sentences of the form n = fr(ny,...,ny) and
(n), always using new names;

e let P’ be the resulting presentation. We define a partial ordering T, where
nCn iff . =nePorn = f(n,...,n,....,n) € P ; andn C T iff
(n) € P', with T an additional element in the ordering;

* var s the list of the minima in T ordered according to the total ordering of
V. Similarly, rt is the list of the maxima, excluding for T,

o S consists of the set of sentences in P which are assignments, i.e. sentences

(n) are disregarded.
O

A term-like presentation of our example G is as follows:

{n1,n3 := d(g(n2),n2),n2 := f(n1),!(f(na)),(ns)}.

Our notation for presentations is consistent with the ordinary record no-

4 If this is not possible, an a-conversion should be applied to P. These conditions on n'
are dictated by the need of yielding the same root ordering for the derived term graph
independently from the choice of n'.

FERRARI AND MONTANARI

tation for terms and substitutions, and coincides with it when no sentences n
are present, terms like !(T'(ny,...,n,)) are disregarded and no names are left
besides variables and roots. Term like presentations will be used throughout
the paper. However we should translate our presentations to the basic nota-
tion whenever we want to check if two presentations represent the same term
graph.

We close this section with some basic properties of term graphs [8,9].

Theorem 2.4 (decomposition of term graphs)

Every term graph can be obtained by evaluating an expression containing
only atomic term graphs as constants, and sequential and parallel composition
as operators. O

For instance the term graph G of our previous example can be represented
as:
G = (Vg (id® (f; V9 ®@idy; d)) @ (f;1)®!)

The following theorem gives a characterization of term graphs as gs-monoidal
theories. A gs-monoidal theory is a logical theory similar to, but weaker than,
the algebraic theory of terms and substitutions.

Theorem 2.5 (characterization of term graphs)

The term graphs on the signature Y are the arrows of the gs-monoidal
theory GS(X) generated by . 0

In the Appendix we give the finitary axiomatization of gs-monoidal theories
presented in [18,19,8,9].

3 The Tile Model

We now describe the basic features of the tile model, in the version where
observations are term graphs and configurations are term cographs. Term
cographs are term graphs where the arrows of the types are all reversed > .

The presentation follows [19], but is simpler, since the tile sequents we
have here (the flat sequents) have no associated proof terms. In the following
we will call them simply tile sequents.

Definition 3.1 (tile sequent, tile rewrite system)

Let ¥y, and X, be two signatures, called the horizontal and the vertical
signature respectively.

A ¥,-Y, tile sequent is a quadruple s % t, where s:h —kandt:[—m
are term cographs on Xy, whilea : h — [and b : kK — m are term graphs on %,.
(Co)graphs s, t, a and b are called respectively the initial configuration, the
final configuration, the trigger and the effect of the tile. Trigger and effect are

® The example of Section 2, G' = {n1,n3 := d(g(n2),n2),n2 := f(n1),!(f(n4)),(n5)},
can be represented as term graph with (Vy; (idy ® (f; Vi;9®idy;d))) @ (f;11)®@1:2 >3
and as term cograph with ((id; ® (d; 9 ®id1;V1;f)); V) @ (11 /)@l :3— 2

9

FERRARI AND MONTANARI

called observations. Underlined integers h, k, [and m are called respectively
the initial input interface, the initial output interface, the final input interface
and the final output interface.

A tile rewrite system (trs) R is a triple (¥,,%,, R), where R is a set of
Yp-2, sequents called rewrite rules. O

A trs R can be considered as a logical theory, and new sequents can be
derived from it via certain inference rules.
Definition 3.2 (tile logic)

Let R = (¥4,%,, R) be a trs and let GS™ (X)) (resp. GS(X,)) be the
cographs (resp. the graphs) on the signature ¥y, (resp. ¥,).

Then we say that R entails the class R of the tile sequents s % t obtained

by finitely many applications of the following inference rules:

basic rules:

sSteR
enerators) ———
(8 J —>tER
. P
(h—reﬂ) s:h—k Ed GS° (Eh) (V—reﬂ) -a.@fkf GS(EU);
d—sgsER idg = idp, — td, € R
idyg a

composition rules:

a:s%t,a’:s’i}t'ER
(p-comp) —
a®Ra =s® s —>t®t’ER

a=sStd =5 ?t’GR

(h-comp) -

a*a’:s;s’%t;t’ER

!
a:s%r,a’:r%tGR
b

(v-comp) — ;
a-o' =s >t€eER
by’
auxiliary rules: (permutations)
1dp g
Phk—phk—>ldh+k€R Phk—pkhthMER
id h+k Ph,k
Pk,h 1,1 idpyk
Phk—ldhmépthR Py = Wik — pep € R.
idpyr == Pk,h

O

Basic rules provide the sequents corresponding to rewrite rules, together
with suitable identity tiles, whose intuitive meaning is that an element of
GS(X}),) can be rewritten to itself using only trivial trigger and effect. Sim-
ilarly for GS(X,). Composition rules provide all the possible ways in which

10

FERRARI AND MONTANARI

sequents can be composed, while auxiliary rules are the counterpart of the
atomic permutation graphs discussed above for term graphs.

For instance the tile denoted pg’}ﬂ consists of a horizontal permutation on
the initial configuration (notice the character 0 as the first upper index) of
the tile, and of the inverse permutation on the effect observation (notice the
character 1 as the second upper index). The remaining sides are identities,
and similarly for the other permutation tiles. While for reasons of symmetry
we include four permutation rules, it is easy to see that one would be enough,
since the remaining three could be derived by concatenating one of them with
identity tiles.

The role of permutation tiles is to permute the names on one vertex of the
tile (the initial output interface in the example), still mantaining the same
connections between the adjacent term (co)graphs. For instance, given any
tile a = s % t with s and b having h 4+ k as target and source respectively,
the composition (id; * pzz) - (ax1idp) produces the tile o = s; pp i # t. Here
two permutations have been introduced, but the connections between the two

involved term (co)graphs, represented by the composition s; ppx; pr.n; b, are
still the same as s;b, since ppyx; prp = 1dp k-

It is easy to see that, by horizontal and vertical composition of the basic
permutation tiles, it is possible to obtain permutation tiles p; LN Py With
arbritary permutations p;, p2, p3 and ps on the four sides, proifzided that
P13 P2 = P3; P4-

It is straightforward to extend the notion of bisimilarity to deal with tile
rewrite systems.

Definition 3.3 (tile bisimilarity).

Let R = (X, %, R) be a Trs. A symmetric equivalence relation =,C
GS? (X)) x GS?(Xy) is a tile bisimulation for R if, whenever s =, t for
generic s,t elements of GS(X},), then for any sequent a = s % s' entailed
by R there exists a corresponding one 3 =1t % t" with ' =, t'. The mazimal
tile bisimulation equivalence is called tile bisimilarity, and denoted by ~,. O

Notice that this notion of bisimilarity is more general than the ordinary

one, since it applies to pairs of system components which are open, while the
ordinary notion applies only to closed agents.

4 Concurrent and Located Semantics for CCS

There are many concurrent models for process calculi. Some of them focus on
the operational aspects, defining certain concurrent machines for the calculi.
Other models are equipped with notions of observation able to capture causal

11

FERRARI AND MONTANARI

dependencies or localities, and define abstract semantics, usually via bisimu-
lation. In this section we try to combine both aspects by presenting a version
of concurrent CCS with locations, of which we provide both the concurrent
operational and the abstract location semantics. This calculus is supposed to
be close to those presented in the literature [16,5,4,22,10,28].

The basic idea of location semantics [4] is to associate a different location
with each process, to allow the external observer to see an action together
with the location where it takes place. Hence, processes a.b.nil + b.a.nil and
a.nil | b.nil are distinguished as the second process can perform a and b in
different places, while the first process cannot.

To define the concurrent operational semantics, we follow the approach
of [16] which associates an n-ary operator to each SOS rule for CCS with n-
premises, and then imposes certain y azioms on the resulting algebra of tran-
sitions and computations. Concurrent computations are equivalence classes in
this formal system. In [21] it is proved that the same equivalence is induced by
mapping CCS into Petri nets. It is usually conjectured that the same equiva-
lence can also be derived by following the approach based on proved transition
systems and residuals [5].

We first show a strong version of the operational semantics, where lo-
cations are visible also in the case of synchronization. We then present a
different synchronization rule which hides locations. Besides being closer to
the tile version, this presentation of the locality transition system allows us
to avoid defining two different kinds of transitions (i.e. standard and location
transitions) as in [4].

Syntax
Let A be the alphabet for basic actions, (which is ranged over by «) and

A the alphabet of complementary actions (A = A and AN A = 0); the set
A = AUA will be ranged over by . Let 7 € A be a distinguished action, and
let AU {7} (ranged over by p) be the set of CCS actions.

Let Loc be a totally ordered denumerable set of locations (ranged over by
[). Labels of transitions consist of actions and strings of locations, denoted
by u. A synchronization transition is labelled by two strings (in the strong
version) or none (in the weak case). The generic denotation is k. In [k,
location [is concatenated with each string in £.

The syntax of finite CCS agents with locations is defined by the following
grammar.

p = nil ‘ -p ‘ [:p ‘ p+p ‘ plp

In the following we will consider only agents where p in p.p does not contain
locations. For the sake of simplicity we do not include restriction, although
there is no problem with it. Recursion could also be handled introducing
specialized tiles, as in [17].

12

FERRARI AND MONTANARI
1
(Act) [p,lip >t pp 5 Lp

t:p%q,l & loc(k)

Loc
(Loc) l::t:l::pﬁ>l::q
lk
tip sy tip >y

(Sum) s T,

t<+q:p+q7p q+>t:q+p7p

tip S loc(k)Nloc(q) =0 t:p - p' loc(k) Nloc(q) =0
(Comp) k k

ﬂmmq%ﬂm qwquqw

A A
t1:p1 = qu,te i p2 = qo,loc(ur) Nloc(qz) = 0 = loc(uz) Nloc(qy)
(Synch) th 2

tiltaipi |2 — @1 | @
u,uU2

Table 1
Transition Algebra

We use loc(p) and loc(k) to indicate the set of location names occurring in
process p or in label k. A process p is called pure if loc(p) = . Throughout
the paper we assume that a process contains at most one occurrence of each
location. This restriction does not appear in [4]. In [22], however, it has been
pointed out that no discriminating power is added if we are allowed to choose
a location twice in a computation and that our definition is equivalent to the
one in [4].

Operational Semantics
The Transition Algebra (TA) of CCS with locations is displayed in Table 1.
For instance, the term ([a,l;,p >|p') | [@, (2, ¢ > describes the proof of the

transition:
(ap|p)|a.q z%) (lhzplp)]l
1,2
As another example, a synchronization of process Iy :: a.nil | Iy :: I3 :: a.nil

is described by the following transition:
o [ay Ly, nil >| 1y 2 U3 2 (@, s, nil >:
Loanil |yl anil ——— 1y Ly onil | Dy o Dy o 1y o nal.
l1la,l2l3l5

We can now introduce the concurrency relation y.

Definition 4.1 (concurrency relation x)

13

FERRARI AND MONTANARI

tl then t2 X t3 then t4

t1]pa then q1[t2 x p1[t2 then t1]qe
[::ty then [t x ! ::t3 thenl iy

tl then t2 X t3 then t4 tl then t2 X t3 then t4

t1 < +p then t2 x t3 < +p then t4 p+ > t; then {9 x p+ > t3 then ¢4

t1 then tg x t3 then 4 t1 then t5 x t3 then t,4

t1]p’ then to|p’ x t3|p’ then t4|p" p'|t1 then p'|ts x p'[t3 then p'|t4

t1 then t5 x t3 then t4 t1 then tg x t3 then 4

t1 | t then to|q x t3]p then t4 | ¢ t | t1 then q|t2 x p|ts then t | t4

t1 then t9 x t3 then t4,t) then #}, x t5 then ¢}

ty | t) then to | th x t3 | t5 then t4 | £}

Table 2
The Concurrency Relation

Let (— then — x — then —) be a quaternary relation on transition proof
terms, defined as the least commutative® relation defined by the strucural rules

of Table 2, withti:pi%%’; téipé%qz’-,t:p%q_ -

The concurrency relation y identifies the diamonds in the transition al-
gebra. The axiom defines the basic diamonds, while the inductive rules re-
produce the diamonds in all possible contexts. A diamond then forces an
identification in the algebra of computations”: (¢; then ¢, x t3 then #,) im-
plies t1;ty = t3;14.

Abstract Semantics
The transition algebra for the abstract semantics is obtained by replacing
rules (Act) and (Synch) in Table 1 with the following rules:

(Act') [N\ 1 p >:)\.p%>l::p [r,p>:Tp > p

A by
. ti:ip1t — qi,la 1 p2 — @2
(Synch') uly ual

ty | t2:p1 | p2 S d(qi,l1) | d(go,12)

where d(p,[) deletes [, i.e. replaces [:: p' with p’ in p.

6 Namely, (¢, then ty x t3 then t4) iff (t3 then ¢4 x ¢; then t5).
7 A transition is a computation, and composition _; of computations is associative and
has identities.

14

FERRARI AND MONTANARI

Using (Synch'), the synchronization of process Iy :: a.nil | Iy :: I3 :: @.nil of
the previous example becomes:
Loandl |yl andl 55 1 onil |y o 1y 2 onal

as defined in [4].
We now introduce the notion of location bisimilarity. We adopt the stan-
. - € T o\« A € A €
dard notation for weak transitions: == (—)* and S==S5=-.
u u

Definition 4.2 (location bisimilarity)
A binary relation R is a location simulation if pRq implies:

e for each p % P, with loc(l) Nloc(q) = O, there exists some q % q with
PR
e for each p = p' there exists some ¢ = ¢' with p'R¢'.
A relation R is called a location bisimulation if both R and R~ are location

simulations. Two processes p and q are location bisimilar (p =, q) if pRq for
some location bistmulation R. O

5 A Tile Rewrite System for Concurrent Located CCS

The aim of this section is to show how the framework provided by the tile

model can be applied to provide natural concurrent, located semantics for
CCS.

In what follows we introduce the components of the tile rewrite system,
i.e. horizontal signature, vertical signature and rewrite rules.

Horizontal Signature.
The symbols of the signature ¥,, and their arities, are as follows:

+1+1 + =

X
o
Q
S
L
.
@
3
>
Q
3
Q
D
3
SN—

Configurations of the tile rewrite system are term cographs over the sig-
nature Xj,.

15

FERRARI AND MONTANARI

Vertical Signature
The symbols of 3, are as follows

1 (Action)

: 2 (Synchronization)
1 (Left—T)

-1 (Right — T)

NLNHT N E

Observations are term graphs over the signature X,.

— —
In the above signature, symbols +, + and + are used to translate the

— —

CCS operator +. Similarly, 7', T and T model the 7 action obtained via
synchronization. Symbol « is used for making inactive processes refused in a
choice.

Since configurations and observations of rules are term (co)graphs®, we
use for them the notation developed in Section 2. We denote names as e, €,
etc.

Strong Rewrite Rules
To match the SOS notation as closely as possible, from now on a tile s % s'

will be represented as:
a

PR

Following the SOS convention, the antecedent (trigger) a will be omitted
when it is the empty term graph.

The rewrite rules are displayed in Table 3. Notice that roots (variables) of
term cographs representing configurations belong to input (output) interfaces
of the tiles, while variables (roots) of term graphs representing observations
belong to initial (final) interfaces of the tiles.

We can now comment on the definition of the rules. The application of
the rule Prefix, causes the rewriting of the initial configuration e’ := p(e)
into the final configuration €’,!(e) where a new variable has been created.
The intuition is that this new variable corresponds to the name of the event
associated to the firing of the prefix. Such a name is never cancelled by
further rewriting steps. The rule (Comp,) basically describes the asyncronous
evolution of parallel processes (those associated to e; and e). To illustrate the
application of this rule let us consider the rewriting of process a.nil | b.nil.

8 Employing gs-monoidal theories equipped with hypersignatures would allow for replacing
— — — —
+, +, and + with a unique symbol +’. Similarly, a symbol T could replace T, T and T.

16

FERRARI AND MONTANARI

e1, ez, € = p(er)

(Sum]'/i) pa — e1:=e,e’:=pu(e
e1 =+ (€),e2 :=+ (€),€ := +(e) er=ec =Y e e1,e2 =k
€, €1, e = /1'(6)
(Compy,) T
e, el ::ew e,e el :=e
e1, ez, € = Aep), el := Aez)
Synch
(y)\) ell::%(e,)aeé::%)(e,)vel::T(el782)731762 ! !
€1, €2 €1,€1,€2,€9
T = N = N A
ey =T ('), ey :=T (€'),e :=T(er,e2),e1, e
(Twin) . .
e :=T(€),eh:=T(e'),e':=T(e,e),e ;o
el :=e,eg =€ yep i=e,ep = e, €], 6
Table 3

Strong Rewrite System

We start with the Prefix, rule:

6I

e :=a(e) Calog e, !(e)
we compose horizontally id,, with it, and the result in parallel with id, ;. We
thus get:

(a(e)). '(b(er) “="P51(e), 1(e'), 1(bler)-
We are now ready to compose this tile horizontally with Comp,:

o = 1(a(e)), (b)) Z=2X1(b(e)), !(e)).

We can now compose horizontally idy, with Prefix;,, and the result in
parallel with id,,:

1(b(e)), 1(¢') 21 (e), 1 (e'), (e
Finally, by composing vertically a with the latter tile:
l(a(e)), (b(e) “=22TZHDG), 1(ef), (e,

(
The effect of this tile (the term graph e’ := a(e),e” := b(e), e) tells us that
the two actions can be executed in parallel.
Rule Synch, accounts for synchronizations at different locations, like a.b.nil |
c.b.nil = nil | nil. Rule Twin, when Synch, is composed horizontally with it,

17

FERRARI AND MONTANARI

allows for synchronizations at one location only, like a.nil | @.nil — nil | nil.

Rule Suml, puts a codischarger constant x on the refused branch. Refused
alternatives will appear as inactive ® factors in configurations.

In addition to Comp,, we also have rules T1Comp,, TrComp, and TwinComp
which take care of composition for T-moves (left and right side) and twin
T-moves. We also have a rule Sumr,. We do not show these rules.

According to our definition of term graph given in Section 2, an ordering of
variables and roots must be provided. For instance, it is essential in computing
the sequential composition of two term graphs. Thus it would appear as
necessary to specify the ordering of names in all the interfaces of our tiles. For
instance, what is the ordering between e’ and e; in the final input interface
of rule Comp,? However it is easy to see that name ordering is immaterial for
rules. In fact, given a rule « it is always possible to obtain tiles with different
orderings of names in the interfaces by composing a with suitable auxiliary
(permuation) tiles. Thus any consistent renaming in the presentation® of the
rules of a tile rewrite system R does not change the tiles entailed by R.

Abstract Semantics

We would like to handle weak location bisimulation with the uniform no-
tion of tile bisimulation presented in Definition 3.3. To this purpose, it is
necessary to add rewrite rules able to transform effects with 7 and 7" observa-
tions into identities.

More precisely, we need an additional symbol in the horizontal signature:

F :1 (Filter)
and the following three additional weak rules:

er, e = Aep)

(Filtery)
ee’:=\(e) ' '
e :=F(e) ——— e := F(e),¢e| := F(€')
(Filter,) e =)
’ e1:=F(e) S e :=¢ ¢ :=¢ ¢ :=Fle)
— —

¢ = Fl(ey), ey := Fley) 22 @
where G = {e| =€, ¢ =€, ¢, :=e3,¢) :=e3,e1 := F(ey),e3 := F(ea)}.

The weak rewrite system consists of the strong rules and of the above three
weak rules.

9 Remember that names appear only in our presentations for term graphs and tiles. Tiles
themselves contain no names.

18

FERRARI AND MONTANARI

The filters work as follows. If we start from a configuration with a filter for
every variable, observations containing A are able to go through as they are,
while 7 and T observations are transformed into identities. Notice that in the
latter case the new name(s) generated by the transition (one for 7 and two for
T) are merged with the names before the transition, i.e. eliminated. Notice
also from Filter) that filters reproduce themselves on every newly generated
variable.

Location bisimilarity for our configurations is thus defined for the weak
rewrite system as tile bisimulation (see Definition 3.3).

6 Comparing SOS and Tile Semantics

We first show the correspondence for the concurrent operational semantics
and then for the abstract location semantics.

Operational Semantics

To show the correspondence of our tile rewrite system with the transition
algebra normalized with the concurrency relation y, we first translate located
agents p into configurations [p]. It is convenient to define inductively the aux-
iliary function ind[p| as returning a pair of configurations, the first translating
the sequential components of p which do not contain a location, the second
referring to the located components. Function [p] is the parallel composition
of the two configurations, where the variables corresponding to the located
components are ordered according to the total ordering of Loc.

Definition 6.1 (from located CCS agents to configurations)

Let p be a located CCS agent. Then [p] : 0 — |loc(p)| + 1 is the con-
figuration corresponding to agent p, where function [_] is defined below. In
the inductive definition we assume ind[p] = (f,g), where f : 0 — 1 and
g :0 — |loc(p)|, and similarly for p; and p,.

ind[nil] = (13, idp)

ind[p.p] = (fip, ido)

ind[p1 +pa) = (f1 ® f2;—<|_— ® jr;Vl; +, idp)

ind[l::p] = (1, f®g)

ind[py | p2] = (f1® f;V1, g1 ® g2)

[#] = [®(g;0p)
where 0, = {ry == vy, ..., == v;, }, with iy, ..., i, the list of locations of p
ordered according to the prefix tree walk of p, and v; < vy iff | <. O

Maybe the only surprising clause is that for [:: p. It states that, when an
agent is prefixed with a location, the component which is nonlocated becomes

19

FERRARI AND MONTANARI

the first located component, while the new nonlocated component is empty.
Notice that this ordering of located components (as the one for p; | po) is
consistent with the prefix tree walk of p.

Some examples, where we use our notation for term graphs, should make
the mapping clear. We start with some pure agents.

[a.b.nil] =!(b(a(e)))
[a.nil | b.nil] =!(a(e)),!(b(e))
[(a.nil | b.nil) | (c.nil + d.nil)] =
(aen)), Mb(er)), e1 = e, 1o+ (e2))),1(d(F (e2), e2 = +(e) =
(al(€). 1b(e)), e+ (e2))), 1(A(F (e2)), €2 = +(e).
Considering now a located agent p = Iy :: (I7 :: a.nil | l5 :: b.nil) we have:
[p] = @ (l1;0) ® (11;0);idy @ pr1y 10 — 4
or, using our term graph notation:

[p] =!(e0), !(e1), H(b(e2)), !(ales)).

Notice that variable ey is not used in [p], since there is no sequential com-
ponent in p which is nonlocated, while we also have !(e;) since no sequential
component is prefixed only by [;.

As another example, we have:

[anil | (b.nil | 1 :: enil)] =!(aleo)),(b(eg)), (c(er))-

In what follows, we will consider configurations defined up to ® factors
s = [p]; k. Such components are inactive, in the sense that any tile o having
s ® s as initial configuration can be decomposed as o = id; ® o/, where o' is
a tile having s as initial configuration.

It is possible to define a translation {|_[} from transitions to tiles derivable in
the strong rewrite system, using induction on transition proof terms. The tiles
obtained in this way are complete, in the sense that, when composed vertically,
they yield essentially all derivable tiles. Furthermore, given any diamond of
the concurrency relation x of Table 2, the translated computations commute.

Proposition 6.2 (from proved transitions to tiles)
It is possible to define inductively a function {|t|} from termst of the tran-
sition algebra in Table 1 to tiles such that the following properties hold.
(i) Tile {t} is derivable in the strong tile rewrite system.

(ii) Any derivable tile with initial configuration [p] can be obtained by repeat-
edly composing vertically tiles in the range of {-[} and tiles composed of
identity and auxiliary tiles.

(iii) A diamond (t; then ty x t3 then ty) implies {|t1]} - {|t2[} = {|t3]} - {|tal}-
20

FERRARI AND MONTANARI

O

We now briefly outline the proof of Proposition 6.2. As hinted above,
function {_[} is defined by induction on transition proof constructors. Clauses
for (Act), (Loc) and (Sum) are easy:

{ m,l,p > |} = idp * Prefix,;
{10t = udy @ {tl};
1t < +pl) = ({1} @ idy) » Sumd,.

We can also hint at the form of the clauses for (Comp) and (Synch), even
if writing them in detail may require the development of suitable notation.
For {|t|q[} we have several cases. If ¢ has no nonlocated component, or if
the action of ¢ takes place at located components only (either one or two
according to the action being p or T') then an identity is enough. Otherwise, if
t performs an action p then rule Comp,, is used. If ¢ performs a synchronization
between two nonlocated components, rule TwinComp is needed. Finally, if ¢
performs a synchronization between a non located and a located component,
rules T1Comp,, or TrComp,, are required.

For {|t; | t2]} we always use Synch,. We also use Twin if the synchronization
involves nonlocated components for both p; and p,, T1Comp,, or TrComp,, if only
one of them is located, nothing else otherwise. In all cases we need permutation
tiles built from auxiliary tiles pzjk to ensure suitable “wire twisting”. For
instance, using permutation tiles it is possible to bring close the components
we want to synchronize, to synchronize them, and to bring them back to the
original positions.

It is possible to see that derivable tiles starting from [p] can be broken
down vertically into one-step tiles, i.e. tiles computed by {|_[}, and perm-tiles
of the form s 5 s;p, where p is any permutation. This decomposition is
essential for the correctness of the tile semantics shown in the next paragraph.

The validity of the x axiomatization in the tile model can be easily checked
on the inductive definition of {|_[}. It would be interesting if the y axiomati-
zation were also complete, i.e. enough to equate all computations in the CCS
algebra yielding the same tile via {|_[}. This is not the case here, since e.g.
the two transitions of a.nil + a.nil would yield the same tile but would not be
equated by x. A natural option to try for capturing exactly the operational
concurrency of located CCS would be to consider tiles equipped with a proof
term as originally defined in [19].

Abstract Semantics
Location bisimilarity and tile location bisimilarity coincide for pure CCS
agents.

Proposition 6.3 (tile semantics is correct)
Given two pure CCS agents p and q, we have™ p =y q iff [p]; F ~; [¢]; F.O

10 Remember that F is the filter needed to convert strong effects into weak effects.

21

FERRARI AND MONTANARI

We sketch the proof of Proposition 6.3.

* We define a transition algebra with a slightly more informative label. In-

stead of p % g we require transitions p — ¢ = p % q, exposing also
loc(p),k

the locations of the agent. It is easy to see that this modification does not
change bisimilarity.

« We define a function'* [o] on transition labels as follows:

=
il
[—

= idg;
[[{ll,..‘.i,ln},l]] = {l = :U’(lo)alﬂalla---aln};
[[{ll,...fn},ulil]] = {l = ,U/(lz), lOa lla sy ln}

Notice that our function depends only on the last two locations (i.e. it does
not depend on u). In fact, it has been noticed [28] that the same bisimilarity
relation is obtained relying on an incremental observation, where the string
of locations is truncated to the last two items.

» We define modified functions [_] and {-[} (for which however we will use
the same denotations as in the strong case) to replace SOS rules (Act) and
(Synch) with (Act’) and (Synch’) and to include filters and weak rewrite
rules. Taking advantage of Proposition 6.2, we then show that if the initial
configuration and the effect of a tile are [p] and [o] for some p and o, then
the tile is the vertical composition of one-step tiles.

« We show that if p ~; ¢ and [p] = s, [q] = s, are perm-tiles, then there
exist p' and ¢’ with p’ &~ ¢’ such that [p'] = s; and [¢'] = so. Informally,
this is true because permuting the variables in the observation corresponds
just to apply some injective substitution to agent locations, which does not
affect bisimilarity.

* To show the only if part, given a bisimulation S for configurations, we prove
that if we take pRq for agents whenever [p]S[q], then R is also a bisim-
ulation. To this purpose, we show that given a pair pRq and a transition
t:p > p, we have {t[} : [p] 1l [p']. Thus there is a tile [¢] Pl ¢ with
[p']Ss. This tile consists of the vertical composition of one-step tiles. As a
consequence we have ¢ = ¢' with [¢'] = s and p'Rq'.

» To show the if part, we prove that if we take [p]; pS[q]; p for every permu-
tation p whenever p ~; ¢, then S is also a bisimulation. In fact, given a pair
[p]S[q], a tile [p] = s can be either a one-step tile or a perm-tile (or a ver-
tical composition of several of these tiles, but this case is as usual subsumed
by the shorter moves). If it is a perm-tile with permutation p, then also [¢]
has a perm-tile with the same p and the final configurations are in S since
[]; pS[q]; p by construction. If [p] % s is a one-step tile, then there exist
o and p' with p % p/, [o] = @ and [p'] = 5. Thus we have a computation

' We overload the notation used for mapping configurations, since the meaning is analogous.

22

FERRARI AND MONTANARI

q = ¢ with p’ =, ¢’. As a consequence, there is a tile [¢] — [¢'], which
is the vertical composition of the tiles corresponding to the transitions in
the computation. Finally the proof obligation for [p]; pS[q]; p is already
fulfilled, since by a property previously proved there are agents p” and ¢”,

with p" ~; ¢"; and [p"] = [p]; p and [¢"] = [q]; p.

7 Conclusions

In the paper we have presented a version of the tile model aimed at providing
a uniform operational and abstract framework for concurrent process calculi.
As a case study, we have presented tile rewrite systems for strong and weak
versions of located CCS and we have shown their correctness. An advantage
of the tile approach is the full compositionality of the underlying logic, which
is able to handle computations of open system components as they were new
rewrite rules specifying complex behaviors. Another innovative aspect is re-
lated to the use of term graphs for representing distributed configurations and
partial ordering observations.

The case study in the paper concerns located CCS, but it is easy to see that
the strong version presented here is actually the same that is needed for causal
CCS [12]. The weak causal version however is more complex, since an event
can have any number of immediate causes. To handle this case, we should
consider more complicate structures then term graphs as observations. For
instance we should have, besides a V for sharing causes, also another atomic
graph V to share effects.

8 Acknowledgments

We would like to thank Roberto Bruni, Fabio Gadducci, Narciso Marti-Oliet
and Marco Pistore for their comments.

References

[1] Z.M. Ariola, J.W. Klop, Equational Term Graph Rewriting, Fundamenta
Informaticae 26, 207-240, 1996.

[2] E. Badouel, P. Darondeau, Trace Nets and Process Automata, Acta Informatica
32 (7), 1995. pp. 647-679.

[3] H.P. Barendregt, M.C.J.D. van Eekelrn, J.R.W. Glauert. J.R. Kennaway. M.J.
Plasmeijer, M.R. Sleep, Term Graph Reduction, Proc. PARLE, Springer LNCS
259, 141-158, 1987.

[4] G. Boudol, I. Castellani, M. Hennessy and A. Kiehn, Observing Localities,
Theoretical Computer Science, 114: 31-61, 1993.

23

FERRARI AND MONTANARI

[5] G. Boudol, I. Castellani, Flow Models of Distributed Computations: Three
Equivalent Semantics for CCS, Information and Computation 114(2):247-314
(1994).

[6] R. Bruni, U. Montanari, Zero-Safe Nets, or Transition Synchronization Made
Simple, to appear in Proc. Express’97, Santa Margherita, September 1997.

[7] A. Corradini, H. Ehrig, M. Lowe, U. Montanari, F. Rossi, Abstract Approach to
Graph Transformation - Part I: Basic Concepts and Double Pushout Approach,
in: G Rozenberg, Ed., The Handbook of Graph Grammars and Computing by
Graph Transformation, Vol.1: Foundations.

[8] A. Corradini, F. Gadducci, An Algebraic Presentation of Term Graphs
via Gs-Monoidal Categories, submitted for publication. Available at
http://www.di.unipi.it/ gadducci/papers/aptg.ps, 1997.

[9] A. Corradini, F. Gadducci, A 2-Categorical Presentation of Term Graph
Rewriting, Proc. CTCS’97, Springer LNCS, to appear, 1997.

[10] F. Corradini, R. De Nicola, Distribution and Locality of Concurrent Systems, in
Proc. ICALP’94, LNCS 920, pages 154-165. Springer Verlag, 1994.

[11] A. Corradini, U. Montanari, An Algebraic Semantics for Structured Transition
Systems and its Application to Logic Programs, Theoretical Computer Science
103, 1992, pp. 51-106.

[12] P. Darondeau, P. Degano, Causal Trees, In: Proc. ICALP 89, LNCS, Vol. 372,
1989.

[13] P. Degano, R. De Nicola, U. Montanari, Partial Ordering Descriptions and
Observations of Nondeterministic Concurrent Processes, in: Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, LNCS
354, 1989.

[14] P. Degano, J. Meseguer, U. Montanari, Aziomatizing the Algebra of Net
Computations and Processes, Acta Informatica Vol.33(7), (October 1996)
pp.641-667.

[15] C. Ehresmann, Catégories Structurées: I and 11, Ann. Ec. Norm. Sup. 80, Paris
(1963), 349-426; 111, Topo. et Géo. diff. V, Paris (1963).

[16] G. Ferrari, U. Montanari, Towards the Unification of Models for Concurrency,
in Proc. Collogium on Trees and Algebra of Programming (CAAP 90), LNCS
431, 162-176, 1990.

[17] G. Ferrari, U. Montanari, A Tile-Based Coordination View of the Asynchronous
w-calculus, to appear in Proc. MFCS’97, Springer LNCS, 1997.

[18] F. Gadducci, On the Algebraic Approach to Concurrent Term Rewriting, PhD
Thesis, Universita di Pisa, Pisa, Technical Report TD-96-02, Department of
Computer Science, University of Pisa, 1996.

24

FERRARI AND MONTANARI

[19] F. Gadducci, U. Montanari, The Tile Model, Technical Report TR-96-27,
Department of Computer Science, University of Pisa, 1996.

[20] F. Gadducci, U. Montanari, Tiles, Rewriting Rules and CCS, in Proc. 1st
international workshop on Rewriting Logic and Applications, J. Meseguer Ed.,
ENTCS 4 (1996), pp.1-19.

[21] R. Gorrieri, U. Montanari, On the Implementation of Concurrent Calculi into
Net Calculi: Two Case Studies, TCS 141, 1-2, 1995 pp.195-252.

[22] A. Kiehn, Local and Global Causes, Acta Informatica 31, 697-718 (1994).

[23] C. Laneve, U. Montanari, Aziomatizing Permutation Equivalence, Math. Struct.
in Comp. Sc. (1996), vol.6, pp.219-249.

[24] K.G. Larsen, L. Xinxin, Compositionality Through an Operational Semantics
of Contezts, in Journal of Logic and Computation, vol.1, n.6, 1991 (conference
version in Proc. ICALP’90, Springer-Verlag, LNCS 443, 1990).

[25] F. W. Lawvere, Functorial Semantics of Algebraic Theories, Proc. National
Academy of Science 50, 1963, pp. 869-872.

[26] J. Meseguer, Conditional Rewriting Logic as a Unified Model of Concurrency,
Theoretical Computer Science 96, 1992, pp. 73-155.

[27] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes (parts I and
II), Information and Computation, 100:1-77, 1992.

[28] U. Montanari, M. Pistore, D. Yankelevich, Efficient Minimization up to Location
Equivalence, in Proc. ESOP’96, LNCS 1058. Springer Verlag, 1996.

[29] U. Montanari, F. Rossi, Graph Rewriting and Constraint Solving for Modelling
Distributed Systems with Synchronization, in: Paolo Ciancarini and Chris
Hankin, Eds., Coordination Languages and Models, LNCS 1061, 1996, pp. 12-27.
Full paper submitted for publication.

[30] U. Montanari, D. Yankelevich, Location Equivalence in a Parametric Setting,
Theoretical Computer Science 149, 1995.

[31] G. Plotkin, A Structural Approach to Operational Semantics, Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

A Appendix: Gs-Monoidal Theories

Here the interested reader may find the axiomatic definition (taken from
[18,19,8,9]) of gs-monoidal theories (in the case of an ordinary signature).
They are similar to the ordinary algebraic (Lawvere) theories [25], the dif-
ference being the missing naturality axioms for duplicators and dischargers.
Gs-monoidal theories are monoidal theories, since the naturality axiom of per-
mutations holds instead.

25

FERRARI AND MONTANARI

Definition A.1 (graphs) A graph G is a 4-tuple (Og, Ag, d0,01): Oq, Ag are
sets whose elements are called respectively objects and arrows (ranged over by
a,b,... and f,g,...), and 0y, 01 : Ag — Og are functions, called respectively
source and target. A graph G is reflexive if there exists an identity function
id : Og — Ag such that 6y(id(a)) = §1(id(a)) = a for all a € Og; it is with
pairing if its class Og of objects forms a monoid; it is monoidal if it is reflexive
with pairing and also its class of arrows forms a monoid, such that id, dy and
01 respect the neutral element and the monoidal operation. O

Definition A.2 (one-sorted gs-monoidal theories) Given a signature 3, the
associated gs-monoidal theory GS(X) is the monoidal graph with objects the
elements of the commutative monoid (N, ®,0) (where 0 is the neutral object
and the sum is defined as n ® m = n + m); and arrows those generated by the
following inference rules:

(generators) frex foum) s:n—m,t:n —m
& frik—1€e GST) s@t:n@n - mem
eN n—m,t:m—k
(identities) ; fﬂ;ﬂ (composition) s ﬂs;t:mﬂ _}mﬁ K
neN neN
duplicat — disch —
(duplicators) —aonon (dischargers) im0
: n,m €N
(permutations)

Pom :NOM—>MRION

Moreover, the composition operator ; is associative, and the monoid of arrows
satisfies the functoriality axiom:
(s®@t); (s @) = (s;8") ® (t;¢)

whenever both sides are defined; the identity aziom: idy;s = s = s;idy, for all
s :n — m; the monoidality arioms:

idnom = 1dy ® idy, Prnem,p = (idﬁ ® Pm,g)S (P@,g ® idﬂ)

lnom ='n®m Viem = (Vo ® Vi); (idy ® pom @ id,)
o=Vo=poo=idy pon = Pno=idn

for all n,m,p € N; the coherence azioms:
Vi (idn ® Vn) = Vy; (V@ ® id@) Vi P = Va
Vi (idn®ln) = idy Pr.ms Pmp = idn @ tdm
for all n,m € N; and the naturality aziom:
(s ®1); Pm.q = Pn,p; (t®s)
forall s:n —m,t:p—qe GSX). O

26

