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Abstract

When concurrency is a primitive notion� models of process calculi usually include

commuting diamonds and observations of causality links or of abstract locations�

However it is still debatable if the existing approaches are natural� or rather if they

are an ad hoc addition to the more basic interleaving semantics� In the paper a

treatment of concurrent process calculi is proposed where the same operational and

abstract concurrent semantics described in the literature now descend from general�

uniform notions� More precisely we introduce a tile�based semantics for located

CCS and we show it consistent with the ordinary concurrent �via permutation of

transitions� and bisimilarity based location semantics� Tiles are rewrite rules with

side e�ects� reminiscent of both Plotkin SOS and Meseguer rewriting logic rules� We

argue that the tile model is particularly well suited for de�ning directly operational

and abstract semantics of concurrent process calculi in a compositional style�

� Introduction

Process calculi are usually equipped with notions of operational semantics

based on transition systems and of abstract semantics based on observed ac�

tions and bisimilarity� Sometimes it is convenient to consider concurrency as a

primitive notion� rather than to reduce it to nondeterminism via interleaving�
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To this purpose� ordinary transition systems have been extended in the liter�

ature in several ways� From the operational point of view� certain commuting

diamonds are introduced �see e�g� �����	
� whose role is to de�ne as concurrent

those pairs of events which can occur in any order� Concurrent abstract se�

mantics is de�ned instead by decorating actions with causality links or with

abstract locations and possibly by introducing specialized versions of bisim�

ulation ����������������	� However� while concurrent semantics of process

calculi has been given a remarkable attention in the past several years� it is

still debatable if the existing approaches are natural� or rather if they are an ad

hoc addition to the more basic interleaving semantics� We believe a more nat�

ural treatment of concurrency should be possible� as we feel has been achieved

�at least from an operational point of view
 for other models of computations�

like Petri nets ���	 and term ����	� graph ��	� and term graph ��	 rewriting�

where axioms generating commuting diamonds are automatically imposed by

the framework of de�nition�

The aim of this paper is to propose a treatment of concurrent process cal�

culi where the same operational and abstract concurrent semantics described

in the literature now descend from general� uniform notions� Our approach is

based on the tile model �����	� The tile model relies on certain rewrite rules

with side e�ects� called tiles� reminiscent of both SOS rules ���	 and rewriting

logic rules ��	� Also related models � are SOS contexts ��	 and structured

transition systems ���	�

Tiles have been used for coordination formalisms equipped with �exible

synchronization primitives ����	 and for calculi for mobile processes� like the

asynchronous ��calculus ���	� The main advantage of the tile model for han�

dling concurrent process calculi is to integrate a distributed representation of

agents and a partial order representation of observations within an SOS�like

compositional framework� In particular� with respect to the location approach

of ��	 the tile version has the advantage of employing only local names and of

avoiding in�nite branching� Tiles are naturally equipped with a bisimulation�

based equivalence relation� which yields the correct notion of process bisimi�

larity�

We now brie�y introduce the tile model� A tile has the form�

s

a

��

b

s
�

and states that the initial con�guration s of the system evolves to the ��

nal con�guration s
� producing an e�ect b� However s is in general open �not

closed
 and the rewrite step is actually possible only if the subcomponents

of s also evolve producing the trigger a� Both trigger and e�ect are called

� While tiles can be considered as a generalization of SOS inference rules
 their algebraic

structure is new� Larsen and Xinxin contexts ���� are analogous
 but their algebraic struc�

ture is limited to ordinary terms and not axiomatized� Structured transition systems and

rewriting logic have similar aims and similar algebraic structure
 but do not account for

side e�ects and synchronization�
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Fig� �� A tile�

observations� and model the interaction� during a computation� of the system

being described with its environment� More precisely� both system con�gu�

rations are equipped with an input and an output interface� and the trigger

just describes the evolution of the input interface from its initial to its ��

nal con�guration� Similarly for the e�ect� It is convenient to visualize a tile

as a two�dimensional structure �see Fig� �
� where the horizontal dimension

corresponds to the extension of the system� while the vertical dimension corre�

sponds to the extension of the computation� Actually� we should also imagine

a third dimension �the thickness of the tile
� which models parallelism� con�

�gurations� observations� interfaces and tiles themselves are all supposed to

consist of several components in parallel�

To match the SOS style as much as possible and to make more readable

the notation� we will more often use the form�

a

s

b
�� s

�

Both con�gurations and observations are assumed to be equipped with

operations of parallel and sequential composition �represented by in�x oper�

ators � and � respectively
 which allow us to build more parallel and larger

components� extended horizontally for the con�gurations and vertically for

the observations� Similarly� tiles themselves possess three operations of com�

position
�
� parallel ����
� horizontal ����
� and vertical composition� If we

consider tiles as logical sequents� it is natural to de�ne the three operations

via inference rules called composition rules �see De�nition ��
�

�
In general
 tiles are also equipped with proof terms which distinguish between sequents

with the same con�gurations and observations
 but derived in di�erent ways� Suitable

axioms for normalizing proof terms are also provided ��������

�
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The operation of parallel composition is self explanatory� Vertical compo�

sion models sequential composition of transitions and computations� Horizon�

tal composition corresponds to synchronization� the e�ect of the �rst tile acts

as trigger of the second tile� and the resulting tile expresses the synchronized

behavior of both� Computing in a tile logic consists of starting from a set of

basic tiles called rewrite rules �and from a set of auxiliary tiles which depend

on the version of the tile model at hand
� and of applying the composition

rules in all possible ways�

A tile logic also can be seen as a double category ���	 and tiles themselves

as double cells� The categorical interpretation ������	 is useful since it makes

the model more general �con�gurations and observations can be arrows of any

category
� allows for universal constructions �e�g� a tile logic is the double

category freely generated by its rewrite rules
 and suggests analogies with

fruitful concepts of algebraic semantics� like institutions� However� the tile

model is presented here in a purely logical form�

In this paper� observations and con�gurations are term graphs ��	 and

term cographs respectively� Term graphs are similar to terms� but two term

graphs may explicitly share some of their subterms� Thus in a term graph it

is in general not allowed to copy the shared subterms to make the two terms

disjoint� since this would yield a di�erent term graph� An axiomatization

of term graphs by means of gs�monoidal theories has been recently proposed

by Corradini and Gadducci ����	� and it is reported in the Appendix� Term

cographs are like term graphs� but their direction is inverted� while term

graphs are oriented from leaves to roots� term cographs are visited from roots

to leaves� Term graphs are convenient structures for modeling con�gurations

of distributed systems and their partial ordering observations� since they are

equipped with an operation of parallel composition �which models indipendent

juxtaposition
 and with the possibility of sharing subcomponents� Sharing is

used within con�gurations for modeling the operator j of process algebras�

which in this context means sharing the same location� Within observations�

sharing is used to express the fact that two events share the same cause� or�

equivalently� that the same location has two di�erent sublocations�

For instance� the CCS agent a�nil j b�nil is represented by the term co�

graph G � f��a�e��� ��b�e��g� The shared variable e represents the common

location �the only one in this case
 of the two components ��a�e�� and ��b�e���

Component ��a�e�� has one variable but has no root� since the discharger op�

erator �� � disposes of the result of the subterm a�e�� Thus both component

��a�e�� and term graph G are arrows from the underlined natural number �

�i�e� zero roots
 to the natural number � �i�e� one variable
� Term cographs

initiating from � represent closed agents� and in fact the discharger operator

represents the agent nil� Notice that while garbage collection is automatic in

term algebra �e�g� ��a�e�� ���e� since both members represent the empty tuple

of terms
� in the algebra of term graphs a term graph with no root may carry

nontrivial information� Notice also that variables have only local meaning� i�e�

�
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in G � f��a�e��� ��b�e��g variable e just represents the only existing variable�

In other words also f��a�e�
��� ��b�e�

��g would denote the same term graph G�

Only the ordering of variables is meaningful�

The computations a�nil j b�nil
a

�� nil j b�nil
b

�� nil j nil and a�nil j b�nil
b

��
a�nil j nil

a

�� nil j nil both correspond to the same tile with empty trigger � �

� � ��a�e��� ��b�e��
e
���a�e��e����b�e��e
������������e�� ��e�

�� ��e��
��

The e�ect e�
�� a�e�� e��

�� b�e�� e of � is a term graph with one variable e and

three roots e�� e�� and e� i�e� it is an arrow from � to 	� Its meaning in terms

of events is as follows� At the beginning there is only an initial event e� After

the computation� we still have the same initial event� but also two new events

e�� e�� have happened� labelled by a and b respectively� and both caused by e�

In terms of locations� we can say that two sublocations e� and e�� of the initial

location e have been created by actions a and b� However� there is no �left� or

�right� location� and new locations are introduced only when something takes

place at them� The meaning of the �nal con�guration ��e�� ��e�
�� ��e��

� is that

all the components in the three locations are inactive� A detailed derivation

of the above tile is shown in Section ��

We now show a rewrite rule of our system�

�Prefix��

e�

e�
�� ��e�

e
�����e��e
����� e�� ��e��

It represents the �ring of a pre�x � and corresponds to the following SOS

axiom for located CCS ��	�

��p
�

��
l

l �� p�

Notice that Prefix� does not describe the evolution of a closed system� as

it is the case for the SOS axiom� since its initial con�guration is a partial

system e�
�� ��e� � � �� �� However only a trivial �identity
 trigger e� is

required for applying the rule� A rule with this e�ect is available in our logic

for any agent p and called id��p		� Thus the tile relevant for agent ��p is the

horizontal composition id��p		 � Prefix�� This tile describes the creation of a

new location� where the �nal con�guration 

p�� is positioned� and states that

there is no nontrivial component left at the initial location� Notice that our

tile is deterministic while the SOS axiom yields an in�nite branching�

The paper is organized as follows� Section  introduces term graphs� and

the operations of parallel and sequential composition on them� Section �

presents the tile model� in the simpli�ed version needed in the paper� while

Section � describes located CCS in a strong version �at our knowledge original


and in the weak version� For the operational semantics of the strong version�

the commuting diamonds are de�ned following the axiomatic approach of ���	�

� In all our tile rewrite systems modeling process algebras
 the tiles with a closed agent

as initial con�guration have empty trigger
 i�e� they can be considered as transitions of a

labelled transition system�

�
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Section � de�nes a tile rewrite system for both the strong and the weak ver�

sions� and Section � outlines its equivalence with the ordinary semantics of

Section �� In particular� it is shown that the equality of computations speci�

�ed by the commuting diamonds holds in the tile model� and that its uniform

notion of bisimilarity yields in the weak case the same equivalence on agents

as ordinary location bisimilarity�

� Term Graphs

In this section we review term graphs on which it is based the data stucture

we use for modeling con�gurations and observations� Term graphs ��������	�

have a nice algebraic structure and can be �nitely axiomatized as gs�monoidal

theories ����������	� We follow a style of presentation similar to ��	�

De�nition ��� �one�sorted term graphs


Let us consider a one�sorted� ranked signature �� with fh � �h� Further�

more let V be a totally ordered �by �� in�nite set of names� a name being

denoted by n and similar letters� A term graph is a triple G � �S� var� rt�

where�

� S is a �nite set of sentences� which are assignments of the form n ��

fh�n�� � � � � nh�� or of the form n �� n�� In addition� every name must be

assigned at most once and no cycles �with the obvious meaning� must be

present	

� var is a list� without repetitions� of the variables of G� variables being both

all the names which are not assigned in S and possibly other names which

do not appear in S� Variables are usually denoted by v or similar letters	

� rt is a list� without repetitions� of the roots of G� i�e� the names which

appear as left members of assignments of the form n �� n�� Roots are

usually denoted by r or similar letters�

The ordering of variables and roots must respect the ordering in V � Further�

more� term graphs are de�ned up to isomorphic renaming�

Given a term graph G� let h �resp� k� be the number of variables �roots��

Then G can be seen as an arrow of type h� k� We write G � h� k and call

h and k the source and target of G respectively� �

For instance� given the signature � with �� � f� g and �� � d� and

the names n�� � � � � n
� v�� � � � � v�� r�� r�� let G � 	 �  � �S� var� rt� with S �

fr� �� v�� r� �� n�� n� �� d�n�� n��� n� �� g�n��� n� �� f�v��� n
 �� f�v��g�

rt � �r�� r�� and var � �v�� v�� v���

Notice that if we consider as standard the names in the lists of variables

and roots �i�e� v�� � � � � vh and r�� � � � � rk
� isomorphic renaming is restricted to

the names which are neither variables nor roots� Furthermore� in this case a

term graph is fully speci�ed when its type and its set of sentences are given�

since the length of its list of variables can be recovered from its type�

�
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Particularly interesting are the following term graphs which are called

atomic�

generators� for every fh � �h

fh � h� � � fr� �� fh�v�� � � � � vh�g

identities� idh

idh � h� h � fr� �� v�� � � � � rh �� vhg�

permutations� �h�k

�h�k � h � k � h� k

� fr� �� vh��� � � � � rk �� vh�k� rk�� �� v�� � � � � rk�h �� vhg�

duplicators� rh

rh � h� h � fr� �� v�� � � � � rh �� vh� rh�� �� v�� � � � � r�h �� vhg�

dischargers� �h

�h � h� � � fg�

We now introduce two operations on term graphs� The sequential compo�

sition of two term graphs is obtained by gluing the list of roots of the �rst

graph with the list of variables of the second� and it is de�ned only if their

numbers are equal� The parallel composition instead is always de�ned� and it

is a sort of disjoint union where variable and root lists are concatenated�

De�nition ��� �sequential and parallel composition of term graphs


Given two term graphs G� � h � k � �S�� var�� rt�� and G� � k � l �

�S�� var�� rt��� let us take two instances in their isomorphism classes such

that rt� � var� and that no other names are shared between G� and G��

Furthermore� let S be the set of clauses in S� of the form r �� n and let � be

the corresponding name substitution� The sequential composition of G� and

G� is the term graph G��G� � h� l � ��S� n S� � S��� var�� rt���

Given two term graphs G� � h� � k� � �S�� var�� rt�� and G� � h� � k� �

�S�� var�� rt��� let us take two instances in their isomorphism classes such that

no names are shared between G� and G�� The parallel composition of G� and

G� is the term graph G � h� � h� � k� � k� � �S� � S�� var� var�� rt� rt��� �

We need a concise term�like notation for term graphs� without explicit lists

of variables and roots� Thus we introduce a notion of presentation of a term

graph which allows for several shorthands� To eliminate the need of specifying

variables and roots� we consider the partial ordering on names de�ned by the

assignments� It is de�nitely true that all roots are maxima and all variables

which appear in the assignments are minima� However there might be�

i
 maxima which are not roots �like name n
 in the our example G
� and

ii
 variables which do not appear at all �like v�
�

To get precisely variables as minima and roots as maxima� we introduce a

�ctitious mame � and we assume n v � for all names n in i
 and ii
 above� To

�
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express these new dependencies in presentations� we introduce a new sentence

��n� for each such dependency �e�g� ��n
� and ��v�� in our example
� Moreover�

we express the orderings of minima and maxima �which are needed since

minima and maxima are now variables and roots
 simply by the orderings of

their names in V � A second shorthand consists of replacing with its de�nition

every name which is neither a variable nor a root� and which is used just

once� For instance in our example we replace r� �� n�� n� �� d�n�� n�� and

n� �� g�n�� with r� �� d�g�n��� n��� Finally� we replace assignments like

r� �� v� in our example� whose only role is to mark as a root a name which

is used in other sentences� with sentences consisting of single names� like v��

However we must be careful at this point� since the ordering of r� among the

roots may be di�erent than the ordering of v��

Since several presentations may correspond to the same term graph� we

give here a reduction procedure able to translate presentations of term graphs

into the form of De�nition ���

De�nition ��� �presentations of term graphs and reduction procedure


Given a signature � and a set V of names� a presentation P of a term graph

is a set of sentences of the form n� or n �� T �n�� � � � � nh�� or ��T �n�� � � � � nh���

where T is a term on the signature� possibly just a name� As in De�nition 
���

a name can be assigned at most once and no cycles must be present�

�From presentation P we derive as follows a triple �S� var� rt� de�ning a

term graph�

� we replace sentence n with n
� �� n� where n

� is a new name with n � n
� but

where no name n
�� exists in P with 


n � n
�� � n

�	

� we decompose in the obvious way the sentences of the form n �� T �n�� � � � � nh��
or ��T �n�� � � � � nh�� into basic sentences of the form n �� fh�n�� � � � � nh� and

��n�� always using new names	

� let P � be the resulting presentation� We de�ne a partial ordering v� where

n v n
� i� n

� �� n � P
� or n

� �� fk�n�� � � � � n� � � � � nk� � P
� 	 and n v � i�

��n� � P
�� with � an additional element in the ordering	

� var is the list of the minima in v ordered according to the total ordering of

V � Similarly� rt is the list of the maxima� excluding for �	

� S consists of the set of sentences in P
� which are assignments� i�e� sentences

��n� are disregarded�

�

A term�like presentation of our example G is as follows�

fn�� n� �� d�g�n��� n��� n� �� f�n��� ��f�n
��� ��n��g�

Our notation for presentations is consistent with the ordinary record no�

� If this is not possible
 an ��conversion should be applied to P � These conditions on n
�

are dictated by the need of yielding the same root ordering for the derived term graph

independently from the choice of n��

�
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tation for terms and substitutions� and coincides with it when no sentences n

are present� terms like ��T �n�� � � � � nh�� are disregarded and no names are left

besides variables and roots� Term like presentations will be used throughout

the paper� However we should translate our presentations to the basic nota�

tion whenever we want to check if two presentations represent the same term

graph�

We close this section with some basic properties of term graphs ����	�

Theorem ��� �decomposition of term graphs


Every term graph can be obtained by evaluating an expression containing

only atomic term graphs as constants� and sequential and parallel composition

as operators� �

For instance the term graph G of our previous example can be represented

as�

G � �r�� �id� � �f �r�� g � id�� d���� �f � �������

The following theorem gives a characterization of term graphs as gs�monoidal

theories� A gs�monoidal theory is a logical theory similar to� but weaker than�

the algebraic theory of terms and substitutions�

Theorem ��� �characterization of term graphs


The term graphs on the signature � are the arrows of the gs�monoidal

theory GS��� generated by �� �

In the Appendix we give the �nitary axiomatization of gs�monoidal theories

presented in ����������	�

� The Tile Model

We now describe the basic features of the tile model� in the version where

observations are term graphs and con�gurations are term cographs� Term

cographs are term graphs where the arrows of the types are all reversed � �

The presentation follows ���	� but is simpler� since the tile sequents we

have here �the at sequents
 have no associated proof terms� In the following

we will call them simply tile sequents�

De�nition ��� �tile sequent� tile rewrite system


Let �h and �v be two signatures� called the horizontal and the vertical

signature respectively�

A �h��v tile sequent is a quadruple s
a
��
b

t� where s � h� k and t � l� m

are term cographs on �h� while a � h� l and b � k � m are term graphs on �v�

�Co�graphs s� t� a and b are called respectively the initial con�guration� the

�nal con�guration� the trigger and the e�ect of the tile� Trigger and e�ect are

� The example of Section �
 G � fn�� n� �� d�g�n��� n��� n� �� f�n��� ��f�n���� ��n��g

can be represented as term graph with �r�� �id� � �f �r�� g � id�� d���� �f � ������ � �� �

and as term cograph with ��id� � �d� g � id��r�� f���r��� ���� f���� � �� ��

�
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called observations� Underlined integers h� k� l and m are called respectively

the initial input interface� the initial output interface� the �nal input interface

and the �nal output interface�

A tile rewrite system �trs� R is a triple h�h��v� Ri� where R is a set of

�h��v sequents called rewrite rules� �

A trs R can be considered as a logical theory� and new sequents can be

derived from it via certain inference rules�

De�nition ��� �tile logic


Let R � h�h��v� Ri be a trs and let GS
op��h� �resp� GS��v�� be the

cographs �resp� the graphs� on the signature �h �resp� �v��

Then we say that R entails the class R of the tile sequents s
a
��
b

t obtained

by �nitely many applications of the following inference rules�

basic rules�

�generators�
s

a
��
b

t � R

s
a
��
b

t � R

�h�re��
s � h � k � GSop��h�

ids � s
idh
��
idk

s � R

�v�re��
a � h � k � GS��v�

ida � idh
a
��
a

idk � R
�

composition rules�

�p�comp�
� � s

a
��
b

t� �� � s�
a�

��
b�

t� � R

�� �� � s� s�
a�a�

��
b�b�

t� t� � R

�h�comp�
� � s

a
��
c

t� �� � s�
c
��
b

t� � R

� � �� � s� s�
a
��
b

t� t� � R

�v�comp�
� � s

a
��
b

r� �� � r
a�

��
b�

t � R

� 	 �� � s
aa�

��
bb�

t � R
�

auxiliary rules� �permutations


�
���

h�k � �h�k
�h�k
���
idh�k

idh�k � R �
���

h�k � �k�h
idh�k
���
�h�k

idh�k � R

�
���

h�k � idh�k

�k�h
���
idh�k

�h�k � R �
���

h�k � idh�k

idh�k
���
�k�h

�k�h � R�

�

Basic rules provide the sequents corresponding to rewrite rules� together

with suitable identity tiles� whose intuitive meaning is that an element of

GS
op��h� can be rewritten to itself using only trivial trigger and e�ect� Sim�

ilarly for GS��v�� Composition rules provide all the possible ways in which

��
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sequents can be composed� while auxiliary rules are the counterpart of the

atomic permutation graphs discussed above for term graphs�

For instance the tile denoted �
���

h�k

consists of a horizontal permutation on

the initial con�guration �notice the character � as the �rst upper index
 of

the tile� and of the inverse permutation on the e�ect observation �notice the

character � as the second upper index
� The remaining sides are identities�

and similarly for the other permutation tiles� While for reasons of symmetry

we include four permutation rules� it is easy to see that one would be enough�

since the remaining three could be derived by concatenating one of them with

identity tiles�

The role of permutation tiles is to permute the names on one vertex of the

tile �the initial output interface in the example
� still mantaining the same

connections between the adjacent term �co
graphs� For instance� given any

tile � � s
a

��
b

t with s and b having h� k as target and source respectively�

the composition �id
s
��

���

k�h
� 	 �� � id

b
� produces the tile �� � s� �

h�k

a

���
�k�hb

t� Here

two permutations have been introduced� but the connections between the two

involved term �co
graphs� represented by the composition s� �
h�k
� �

k�h
� b� are

still the same as s� b� since �
h�k
� �

k�h
� id

h�k
�

It is easy to see that� by horizontal and vertical composition of the basic

permutation tiles� it is possible to obtain permutation tiles ��
��

��
��

�
 with

arbritary permutations ��� ��� �� and �
 on the four sides� provided that

��� �� � ��� �
�

It is straightforward to extend the notion of bisimilarity to deal with tile

rewrite systems�

De�nition ��� �tile bisimilarity
�

Let R � h�
h
��

v
� Ri be a trs� A symmetric equivalence relation 


b
�

GS
op��

h
� � GSop��

h
� is a tile bisimulation for R if� whenever s 


b
t for

generic s� t elements of GSop��
h
�� then for any sequent � � s

a

��
b

s
� entailed

by R there exists a corresponding one � � t
a

��
b

t
� with s

�



b
t
�� The maximal

tile bisimulation equivalence is called tile bisimilarity� and denoted by 
t
� �

Notice that this notion of bisimilarity is more general than the ordinary

one� since it applies to pairs of system components which are open� while the

ordinary notion applies only to closed agents�

� Concurrent and Located Semantics for CCS

There are many concurrent models for process calculi� Some of them focus on

the operational aspects� de�ning certain concurrent machines for the calculi�

Other models are equipped with notions of observation able to capture causal

��



Ferrari and Montanari

dependencies or localities� and de�ne abstract semantics� usually via bisimu�

lation� In this section we try to combine both aspects by presenting a version

of concurrent CCS with locations� of which we provide both the concurrent

operational and the abstract location semantics� This calculus is supposed to

be close to those presented in the literature �������������	�

The basic idea of location semantics ��	 is to associate a di�erent location

with each process� to allow the external observer to see an action together

with the location where it takes place� Hence� processes a�b�nil � b�a�nil and

a�nil j b�nil are distinguished as the second process can perform a and b in

di�erent places� while the �rst process cannot�

To de�ne the concurrent operational semantics� we follow the approach

of ���	 which associates an n�ary operator to each SOS rule for CCS with n�

premises� and then imposes certain 	 axioms on the resulting algebra of tran�

sitions and computations� Concurrent computations are equivalence classes in

this formal system� In ��	 it is proved that the same equivalence is induced by

mapping CCS into Petri nets� It is usually conjectured that the same equiva�

lence can also be derived by following the approach based on proved transition

systems and residuals ��	�

We �rst show a strong version of the operational semantics� where lo�

cations are visible also in the case of synchronization� We then present a

di�erent synchronization rule which hides locations� Besides being closer to

the tile version� this presentation of the locality transition system allows us

to avoid de�ning two di�erent kinds of transitions �i�e� standard and location

transitions
 as in ��	�

Syntax

Let � be the alphabet for basic actions� �which is ranged over by �
 and

� the alphabet of complementary actions � � � � and � �� � �
� the set

� � ��� will be ranged over by 
� Let � �� � be a distinguished action� and

let � � f�g �ranged over by �
 be the set of CCS actions�

Let Loc be a totally ordered denumerable set of locations �ranged over by

l
� Labels of transitions consist of actions and strings of locations� denoted

by u� A synchronization transition is labelled by two strings �in the strong

version
 or none �in the weak case
� The generic denotation is k� In lk�

location l is concatenated with each string in k�

The syntax of �nite CCS agents with locations is de�ned by the following

grammar�

p �� nil

�
�
� ��p

�
�
� l �� p

�
�
� p � p

�
�
� p j p

In the following we will consider only agents where p in ��p does not contain

locations� For the sake of simplicity we do not include restriction� although

there is no problem with it� Recursion could also be handled introducing

specialized tiles� as in ���	�

�
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�Act� ��� l� p �� ��p
�

��

l

l �� p

�Loc�
t � p

�

��

k

q� l �� loc�k�

l �� t � l �� p
�

��

lk

l �� q

�Sum�
t � p

�

��

k

p�

t � �q � p� q
�

��

k

p�

t � p
�

��

k

p�

q� � t � q � p
�

��

k

p�

�Comp�
t � p

�

��

k

p�� loc�k� � loc�q� � �

tcq � p j q
�

��

k

p�
j q

t � p
�

��

k

p�� loc�k� � loc�q� � �

qbt � q j p
�

��

k

q j p�

�Synch�
t� � p�

�
��
u�

q�� t� � p�
�
��
u�

q�� loc�u�� � loc�q�� � � � loc�u�� � loc�q��

t� j t� � p� j p�
�

���
u��u�

q� j q�

Table �

Transition Algebra

We use loc�p� and loc�k� to indicate the set of location names occurring in

process p or in label k� A process p is called pure if loc�p� � �� Throughout

the paper we assume that a process contains at most one occurrence of each

location� This restriction does not appear in ��	� In �	� however� it has been

pointed out that no discriminating power is added if we are allowed to choose

a location twice in a computation and that our de�nition is equivalent to the

one in ��	�

Operational Semantics

The Transition Algebra �TA
 of CCS with locations is displayed in Table ��

For instance� the term �
a� l�� p �cp�� j 
a� l�� q � describes the proof of the

transition�

�a�p j p�� j a�q
�

��
l��l�

�l� �� p j p�� j l� �� q�

As another example� a synchronization of process l� �� a�nil j l� �� l� �� a�nil
is described by the following transition�

l� �� 
a� l
� nil �j l� �� l� �� 
a� l�� nil ��

l� �� a�nil j l� �� l� �� a�nil
�

�����
l�l��l�l�l�

l� �� l
 �� nil j l� �� l� �� l� �� nil�

We can now introduce the concurrency relation 	�

De�nition ��� �concurrency relation 	


��
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t�cp� then q�bt� � p�bt� then t�cq�
t� then t� � t� then t


l �� t� then l �� t� � l �� t� then l �� t


t� then t� � t� then t


t� � �p then t� � t� � �p then t


t� then t� � t� then t


p� � t� then t� � p� � t� then t


t� then t� � t� then t


t�cp
�
then t�cp

�
� t�cp

�
then t
cp

�

t� then t� � t� then t


p
�bt� then p

�bt� � p
�bt� then p

�bt


t� then t� � t� then t


t� j t then t�cq � t�cp then t
 j t

t� then t� � t� then t


t j t� then qbt� � pbt� then t j t


t� then t� � t� then t
� t
�

� then t
�

� � t
�

� then t
�




t� j t�
�
then t� j t�

�
� t� j t�

�
then t
 j t�




Table 	

The Concurrency Relation

Let �� then � 	 � then �� be a quaternary relation on transition proof

terms� de�ned as the least commutative � relation de�ned by the strucural rules

of Table 
� with ti � pi
�i

��
ki

qi� t
�

i � p
�

i

��

i

��

k�

i

q
�

i� t � p
�
��
k

q� �

The concurrency relation 	 identi�es the diamonds in the transition al�

gebra� The axiom de�nes the basic diamonds� while the inductive rules re�

produce the diamonds in all possible contexts� A diamond then forces an

identi�cation in the algebra of computations � � �t� then t� 	 t� then t
� im�

plies t�� t� � t�� t
�

Abstract Semantics

The transition algebra for the abstract semantics is obtained by replacing

rules �Act� and �Synch� in Table � with the following rules�

�Act�� 

� l� p �� 
�p
�
��
l
l �� p 
�� p �� ��p

�
�� p

�Synch��
t� � p�

�
��
u�l�

q�� t� � p�
�
��
u�l�

q�

t� j t� � p� j p�
�
�� d�q�� l�� j d�q�� l��

where d�p� l� deletes l� i�e� replaces l �� p� with p
� in p�

� Namely
 �t� then t� � t� then t�� i� �t� then t� � t� then t���
� A transition is a computation
 and composition ��� of computations is associative and

has identities�

��
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Using �Synch��� the synchronization of process l� �� a�nil j l� �� l� �� a�nil of
the previous example becomes�

l� �� a�nil j l� �� l� �� a�nil
�

�� l� �� nil j l� �� l� �� nil

as de�ned in ��	�

We now introduce the notion of location bisimilarity� We adopt the stan�

dard notation for weak transitions�
�

��� �
�

���� and
�

��
u

�
�

��
�

��
u

�

���

De�nition ��� �location bisimilarity


A binary relation R is a location simulation if pRq implies�

� for each p
�

��
ul

p�� with loc�l� � loc�q� � �� there exists some q
�

��
ul

q� with

p�Rq�	

� for each p
�

�� p� there exists some q
�

�� q� with p�Rq��

A relationR is called a location bisimulation if bothR andR�� are location

simulations� Two processes p and q are location bisimilar �p �
l
q� if pRq for

some location bisimulation R� �

� A Tile Rewrite System for Concurrent Located CCS

The aim of this section is to show how the framework provided by the tile

model can be applied to provide natural concurrent� located semantics for

CCS�

In what follows we introduce the components of the tile rewrite system�

i�e� horizontal signature� vertical signature and rewrite rules�

Horizontal Signature�

The symbols of the signature �
h
� and their arities� are as follows�

� � � �Prefix�

� � � �Choice�
�

� � � �Left� Choice�
�

� � � �Right� Choice�

 � � �Codischarger��

Con�gurations of the tile rewrite system are term cographs over the sig�

nature �h�

��
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Vertical Signature

The symbols of �v are as follows

� � � �Action�

T �  �Synchronization�
�

T � � �Left� T �
�

T � � �Right� T �

Observations are term graphs over the signature �v�

In the above signature� symbols ��
�

� and
�

� are used to translate the

CCS operator �� Similarly� T �
�

T and
�

T model the � action obtained via

synchronization� Symbol  is used for making inactive processes refused in a

choice�

Since con�gurations and observations of rules are term �co
graphs � � we

use for them the notation developed in Section � We denote names as e� e��

etc�

Strong Rewrite Rules

To match the SOS notation as closely as possible� from now on a tile s
a

��
b

s
�

will be represented as�
a

s
b

�� s
�

Following the SOS convention� the antecedent �trigger
 a will be omitted

when it is the empty term graph�

The rewrite rules are displayed in Table �� Notice that roots �variables
 of

term cographs representing con�gurations belong to input �output
 interfaces

of the tiles� while variables �roots
 of term graphs representing observations

belong to initial ��nal
 interfaces of the tiles�

We can now comment on the de�nition of the rules� The application of

the rule Prefix� causes the rewriting of the initial con�guration e
� �� ��e�

into the �nal con�guration e
�
� ��e� where a new variable has been created�

The intuition is that this new variable corresponds to the name of the event

associated to the �ring of the pre�x� Such a name is never cancelled by

further rewriting steps� The rule �Comp�� basically describes the asyncronous

evolution of parallel processes �those associated to e� and e
� To illustrate the

application of this rule let us consider the rewriting of process a�nil j b�nil�

� Employing gs�monoidal theories equipped with hypersignatures would allow for replacing

	

�

	
 and
�

	 with a unique symbol 	�� Similarly
 a symbol T � could replace T 

�

T and
�

T �

��
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�Prefix��
e

�

e
� �� ��e�

e
�
����e��e

������ e
�
� ��e�

�Suml��
e�� e�� e

� �� ��e��

e� ��
�

� �e�� e� ��
�

� �e�� e �� ��e�
e���e�e

�
����e�

�������� e
�
� e�� e� �� �

�Comp��
e� e�� e

� �� ��e�

e� e� �� e
e�e

�
����e�

������ e� e
�
� e� �� e

�Synch��

e�� e�� e
�

� �� ��e��� e
�

� �� ��e��

e�� e�

e
�

�
��
�

T �e
�
��e
�

�
��
�

T �e
�
��e
�
��T �e��e���e��e�

������������������������ e�� e
�

�� e�� e
�

�

�Twin�
e
�

� ��
�

T �e��� e�� ��
�

T �e��� e� �� T �e�� e��� e�� e�

e� �� e� e� �� e
e
�

�
��
�

T �e
�
��e
�

�
��
�

T �e
�
��e
�
��T �e�e��e

�������������������� e� �� e� e� �� e� e
�

�� e
�

�

Table 


Strong Rewrite System

We start with the Prefix
a
rule�

e
�

e
�
�� a�e�

e
�
��a�e��e

����� e
�
� ��e�

we compose horizontally id��
with it� and the result in parallel with id��b

� We

thus get�

��a�e��� ��b�e���
e
�
��a�e��e�e�
���������e�� ��e

�
�� ��b�e����

We are now ready to compose this tile horizontally with Comp
a
�

� � ��a�e��� ��b�e��
e
�
��a�e��e

�������b�e��� ��e
�
��

We can now compose horizontally id��
with Prefix

b
� and the result in

parallel with id��
�

��b�e��� ��e
�
�
e
��
��b�e��e�e

�

���������e�� ��e
�
�� ��e

��
��

Finally� by composing vertically � with the latter tile�

��a�e��� ��b�e��
e
�
��a�e��e

��
��b�e��e

������������e�� ��e
�
�� ��e

��
��

The e�ect of this tile �the term graph e
�
�� a�e�� e

��
�� b�e�� e
 tells us that

the two actions can be executed in parallel�

Rule Synch� accounts for synchronizations at di�erent locations� like a�b�nil j

c�b�nil
ac�

�� nil j nil� Rule Twin� when Synch� is composed horizontally with it�

��
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allows for synchronizations at one location only� like a�nil j a�nil
�

�� nil j nil�

Rule Suml� puts a codischarger constant  on the refused branch� Refused

alternatives will appear as inactive � factors in con�gurations�

In addition to Comp�� we also have rules TlComp�� TrComp� and TwinComp

which take care of composition for T�moves �left and right side
 and twin

T�moves� We also have a rule Sumr�� We do not show these rules�

According to our de�nition of term graph given in Section � an ordering of

variables and roots must be provided� For instance� it is essential in computing

the sequential composition of two term graphs� Thus it would appear as

necessary to specify the ordering of names in all the interfaces of our tiles� For

instance� what is the ordering between e
�
and e� in the �nal input interface

of rule Comp�� However it is easy to see that name ordering is immaterial for

rules� In fact� given a rule � it is always possible to obtain tiles with di�erent

orderings of names in the interfaces by composing � with suitable auxiliary

�permuation
 tiles� Thus any consistent renaming in the presentation
�
of the

rules of a tile rewrite system R does not change the tiles entailed by R�

Abstract Semantics

We would like to handle weak location bisimulation with the uniform no�

tion of tile bisimulation presented in De�nition ���� To this purpose� it is

necessary to add rewrite rules able to transform e�ects with � and T observa�

tions into identities�

More precisely� we need an additional symbol in the horizontal signature�

F � � �Filter�

and the following three additional weak rules�

�Filter��

e�� e
�

� �� 
�e��

e� �� F �e�
e�e

�����e�
����� e� �� F �e�� e

�

� �� F �e
�
�

�Filter� �
e�� e

�

� �� ��e��

e� �� F �e�
e

�� e� �� e
�
� e

�

� �� e
�
� e

�
�� F �e�

�Filtersynch�
e

��

� ��
�

T �e
�
�� e

��

� ��
�

T �e
�
�� e

�
�� T �e

�

�� e
�

��� e
�

�� e
�

�

e
�

� �� F �e��� e
�

� �� F �e��
e��e�
�� G

where G � fe�� �� e�� e
��

� �� e�� e
�

� �� e�� e
��

� �� e�� e� �� F �e��� e� �� F �e��g�

The weak rewrite system consists of the strong rules and of the above three

weak rules�

	 Remember that names appear only in our presentations for term graphs and tiles� Tiles

themselves contain no names�

��
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The �lters work as follows� If we start from a con�guration with a �lter for

every variable� observations containing 
 are able to go through as they are�

while � and T observations are transformed into identities� Notice that in the

latter case the new name�s
 generated by the transition �one for � and two for

T 
 are merged with the names before the transition� i�e� eliminated� Notice

also from Filter� that �lters reproduce themselves on every newly generated

variable�

Location bisimilarity for our con�gurations is thus de�ned for the weak

rewrite system as tile bisimulation �see De�nition ���
�

� Comparing SOS and Tile Semantics

We �rst show the correspondence for the concurrent operational semantics

and then for the abstract location semantics�

Operational Semantics

To show the correspondence of our tile rewrite system with the transition

algebra normalized with the concurrency relation 	� we �rst translate located

agents p into con�gurations 

p��� It is convenient to de�ne inductively the aux�

iliary function ind
p� as returning a pair of con�gurations� the �rst translating
the sequential components of p which do not contain a location� the second

referring to the located components� Function 

p�� is the parallel composition

of the two con�gurations� where the variables corresponding to the located

components are ordered according to the total ordering of Loc�

De�nition ��� �from located CCS agents to con�gurations


Let p be a located CCS agent� Then 

p�� � � �� jloc�p�j� � is the con�

�guration corresponding to agent p� where function 

 �� is de�ned below� In

the inductive de�nition we assume ind
p� � hf� gi� where f � � �� � and

g � � �� jloc�p�j� and similarly for p� and p��

ind
nil� � h��� id�i

ind
��p� � hf �� � id�i

ind
p� � p�� � hf� � f��
�

� �

�

��r�� � � id�i

ind
l �� p� � h��� f � gi

ind
p� j p�� � hf� � f��r� � g� � g�i



p�� � f � �g� �p�

where �p � fr� �� vi� � � � � � rn �� ving� with i�� � � � � in the list of locations of p

ordered according to the pre�x tree walk of p� and vl � vl� i� l � l�� �

Maybe the only surprising clause is that for l �� p� It states that� when an

agent is pre�xed with a location� the component which is nonlocated becomes

��
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the �rst located component� while the new nonlocated component is empty�

Notice that this ordering of located components �as the one for p� j p�
 is

consistent with the pre�x tree walk of p�

Some examples� where we use our notation for term graphs� should make

the mapping clear� We start with some pure agents�



a�b�nil�� ���b�a�e���



a�nil j b�nil�� ���a�e��� ��b�e��



�a�nil j b�nil� j �c�nil � d�nil��� �

��a�e���� ��b�e���� e� �� e� ��c�
�

� �e����� ��d�
�

� �e����� e� �� ��e� �

��a�e��� ��b�e��� ��c�
�

� �e����� ��d�
�

� �e����� e� �� ��e��

Considering now a located agent p � l� �� �l� �� a�nil j l� �� b�nil� we have�



p�� ������ � ���� a�� ���� b�� id� � ���� � � �� �

or� using our term graph notation�



p�� ���e��� ��e��� ��b�e���� ��a�e����

Notice that variable e� is not used in 

p��� since there is no sequential com�

ponent in p which is nonlocated� while we also have ��e�� since no sequential

component is pre�xed only by l��

As another example� we have�



a�nil j �b�nil j l �� c�nil��� ���a�e���� ��b�e���� ��c�e����

In what follows� we will consider con�gurations de�ned up to � factors

s � 

p��� � Such components are inactive� in the sense that any tile � having

s� s
� as initial con�guration can be decomposed as � � id

s
� �

�� where �
� is

a tile having s
� as initial con�guration�

It is possible to de�ne a translation fj jg from transitions to tiles derivable in

the strong rewrite system� using induction on transition proof terms� The tiles

obtained in this way are complete� in the sense that� when composed vertically�

they yield essentially all derivable tiles� Furthermore� given any diamond of

the concurrency relation 	 of Table � the translated computations commute�

Proposition ��� �from proved transitions to tiles


It is possible to de�ne inductively a function fjtjg from terms t of the tran�

sition algebra in Table � to tiles such that the following properties hold�

�i
 Tile fjtjg is derivable in the strong tile rewrite system�

�ii
 Any derivable tile with initial con�guration 

p�� can be obtained by repeat�

edly composing vertically tiles in the range of fj jg and tiles composed of

identity and auxiliary tiles�

�iii
 A diamond �t� then t� 	 t� then t
� implies fjt�jg 	 fjt�jg � fjt�jg 	 fjt
jg�

�
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�

We now brie�y outline the proof of Proposition ��� As hinted above�

function fj jg is de�ned by induction on transition proof constructors� Clauses

for �Act�� �Loc� and �Sum� are easy�

fj 
�� l� p � jg � id��p		 � Prefix��
fjl �� tjg � id�� � fjtjg�
fjt � �pjg � �fjtjg � id��p		� � Suml��

We can also hint at the form of the clauses for �Comp� and �Synch�� even
if writing them in detail may require the development of suitable notation�

For fjtcqjg we have several cases� If q has no nonlocated component� or if

the action of t takes place at located components only �either one or two

according to the action being � or T 
 then an identity is enough� Otherwise� if

t performs an action � then rule Comp� is used� If t performs a synchronization

between two nonlocated components� rule TwinComp is needed� Finally� if t

performs a synchronization between a non located and a located component�

rules TlComp� or TrComp� are required�

For fjt� j t�jg we always use Synch�� We also use Twin if the synchronization

involves nonlocated components for both p� and p�� TlComp� or TrComp� if only

one of them is located� nothing else otherwise� In all cases we need permutation

tiles built from auxiliary tiles �
i�j

h�k
to ensure suitable �wire twisting�� For

instance� using permutation tiles it is possible to bring close the components

we want to synchronize� to synchronize them� and to bring them back to the

original positions�

It is possible to see that derivable tiles starting from 

p�� can be broken

down vertically into one�step tiles� i�e� tiles computed by fj jg� and perm�tiles

of the form s
�

�� s� �� where � is any permutation� This decomposition is

essential for the correctness of the tile semantics shown in the next paragraph�

The validity of the 	 axiomatization in the tile model can be easily checked

on the inductive de�nition of fj jg� It would be interesting if the 	 axiomati�

zation were also complete� i�e� enough to equate all computations in the CCS

algebra yielding the same tile via fj jg� This is not the case here� since e�g�

the two transitions of a�nil� a�nil would yield the same tile but would not be

equated by 	� A natural option to try for capturing exactly the operational

concurrency of located CCS would be to consider tiles equipped with a proof

term as originally de�ned in ���	�

Abstract Semantics

Location bisimilarity and tile location bisimilarity coincide for pure CCS

agents�

Proposition ��� �tile semantics is correct


Given two pure CCS agents p and q� we have �� p �l q i� 

p���F t 

q���F ��

�
Remember that F is the �lter needed to convert strong e�ects into weak e�ects�

�
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We sketch the proof of Proposition ����

� We de�ne a transition algebra with a slightly more informative label� In�

stead of p
�

��
k

q we require transitions p
o

�� q � p
�

����

loc�p��k
q� exposing also

the locations of the agent� It is easy to see that this modi�cation does not

change bisimilarity�

� We de�ne a function ��


o�� on transition labels as follows�




�

L
�� � idjLj�




�

fl������lng�l
�� � fl �� ��l��� l�� l�� � � � � lng�




�

fl������lng�ulil
�� � fl �� ��li�� l�� l�� � � � � lng�

Notice that our function depends only on the last two locations �i�e� it does

not depend on u
� In fact� it has been noticed ��	 that the same bisimilarity

relation is obtained relying on an incremental observation� where the string

of locations is truncated to the last two items�

� We de�ne modi�ed functions 

 �� and fj jg �for which however we will use

the same denotations as in the strong case
 to replace SOS rules �Act� and

�Synch� with �Act
�
� and �Synch

�
� and to include �lters and weak rewrite

rules� Taking advantage of Proposition ��� we then show that if the initial

con�guration and the e�ect of a tile are 

p�� and 

o�� for some p and o� then

the tile is the vertical composition of one�step tiles�

� We show that if p �l q and 

p��
a

�� s�� 

q��
a

�� s� are perm�tiles� then there

exist p
� and q

� with p
�
�l q

� such that 

p
�
�� � s� and 

q

�
�� � s�� Informally�

this is true because permuting the variables in the observation corresponds

just to apply some injective substitution to agent locations� which does not

a�ect bisimilarity�

� To show the only if part� given a bisimulation S for con�gurations� we prove

that if we take pRq for agents whenever 

p��S

q��� then R is also a bisim�

ulation� To this purpose� we show that given a pair pRq and a transition

t � p
o

�� p
�� we have fjtjg � 

p��

��o		
�� 

p

�
��� Thus there is a tile 

q��

��o		
�� s with



p
�
��Ss� This tile consists of the vertical composition of one�step tiles� As a

consequence we have q
o

�� q
� with 

q

�
�� � s and p

�
Rq

��

� To show the if part� we prove that if we take 

p��� �S

q��� � for every permu�

tation � whenever p �l q� then S is also a bisimulation� In fact� given a pair



p��S

q��� a tile 

p��
a

�� s can be either a one�step tile or a perm�tile �or a ver�

tical composition of several of these tiles� but this case is as usual subsumed

by the shorter moves
� If it is a perm�tile with permutation �� then also 

q��

has a perm�tile with the same � and the �nal con�gurations are in S since



p��� �S

q��� � by construction� If 

p��
a

�� s is a one�step tile� then there exist

o and p
� with p

o

�� p
�� 

o�� � a and 

p

�
�� � s� Thus we have a computation

��We overload the notation used for mapping con�gurations
 since the meaning is analogous�
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q
o

�� q
�
with p

�
�l q

�
� As a consequence� there is a tile 

q��

a

�� 

q���� which
is the vertical composition of the tiles corresponding to the transitions in

the computation� Finally the proof obligation for 

p��� �S

q��� � is already

ful�lled� since by a property previously proved there are agents p
��
and q

��
�

with p
��
�l q

��
� and 

p���� � 

p��� � and 

q���� � 

q��� ��

� Conclusions

In the paper we have presented a version of the tile model aimed at providing

a uniform operational and abstract framework for concurrent process calculi�

As a case study� we have presented tile rewrite systems for strong and weak

versions of located CCS and we have shown their correctness� An advantage

of the tile approach is the full compositionality of the underlying logic� which

is able to handle computations of open system components as they were new

rewrite rules specifying complex behaviors� Another innovative aspect is re�

lated to the use of term graphs for representing distributed con�gurations and

partial ordering observations�

The case study in the paper concerns located CCS� but it is easy to see that

the strong version presented here is actually the same that is needed for causal

CCS ��	� The weak causal version however is more complex� since an event

can have any number of immediate causes� To handle this case� we should

consider more complicate structures then term graphs as observations� For

instance we should have� besides a r for sharing causes� also another atomic

graph r to share e�ects�
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A Appendix	 Gs
Monoidal Theories

Here the interested reader may �nd the axiomatic de�nition �taken from

����������	
 of gs�monoidal theories �in the case of an ordinary signature
�

They are similar to the ordinary algebraic �Lawvere
 theories ��	� the dif�

ference being the missing naturality axioms for duplicators and dischargers�

Gs�monoidal theories are monoidal theories� since the naturality axiom of per�

mutations holds instead�
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De�nition A�� �graphs
 A graph G is a ��tuple hOG� AG� ��� ��i� OG� AG are
sets whose elements are called respectively objects and arrows �ranged over by

a� b� � � � and f� g� � � ��� and ��� �� � AG � OG are functions� called respectively
source and target� A graph G is re�exive if there exists an identity function

id � OG � AG such that ���id�a�� � ���id�a�� � a for all a � OG	 it is with
pairing if its class OG of objects forms a monoid	 it is monoidal if it is reexive
with pairing and also its class of arrows forms a monoid� such that id� �� and

�� respect the neutral element and the monoidal operation� �

De�nition A�� �one�sorted gs�monoidal theories
 Given a signature �� the
associated gs�monoidal theory GS��� is the monoidal graph with objects the

elements of the commutative monoid �N ��� �� �where � is the neutral object
and the sum is de�ned as n�m � n�m�	 and arrows those generated by the
following inference rules�

�generators�
fk � �

fk � k � � � GS���
�sum�

s � n� m� t � n� � m�

s� t � n� n� � m�m�

�identities�
n � N

idn � n� n
�composition�

s � n� m� t � m� k

s� t � n� k

�duplicators�
n � N

rn � n� n� n
�dischargers�

n � N

�n � n� �

�permutations�
n�m � N

�n�m � n�m� m� n

Moreover� the composition operator � is associative� and the monoid of arrows

satis�es the functoriality axiom�

�s� t�� �s� � t�� � �s� s�
�� �t� t��

whenever both sides are de�ned	 the identity axiom� idn� s � s � s� idm for all
s � n� m	 the monoidality axioms�

idn�m � idn � idm �n�m�p � �idn � �m�p�� ��n�p � idm�

�n�m ��n��m rn�m � �rn �rm�� �idn � �n�m � idn�

�� � r� � ���� � id� ���n � �n�� � idn

for all n�m� p � N 	 the coherence axioms�

rn� �idn �rn� � rn� �rn � idn� rn� �n�n � rn

rn� �idn��n� � idn �n�m� �m�n � idn � idm

for all n�m � N 	 and the naturality axiom�

�s� t�� �m�q � �n�p� �t� s�

for all s � n� m� t � p� q � GS���� �

�


