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Gradual degradation of the bearing vibration signal is usually studied as a nonstationary stochastic time series. Roller bearings are
working at high speed in a heavy load environment so that the combination of bearing faults gradually degraded during the
rotation might lead to unpredicted catastrophic accidents. )e degradation process has the property of long-range dependence
(LRD), so that the fractional Brownian motion (fBm) is taken into account for a prediction model. Because of the dramatic
changes in the bearing degradation process, the Hurst exponent that describes the fBm will change during the degradation
process. A priori Hurst value of the conventional fBm in the prediction is fixed, thus inducing a minor accuracy of the prediction.
To avoid this problem, we propose an improved prediction method. Based on the following steps, at the initial data processing, a
skip-over factor is selected as the characteristics parameter of the bearing degradation process. Amultifractional Brownianmotion
(mfBm) replaces the fBm for the degradation modeling. We will show that also our mfBm has the same property of long-range
dependence as the fBm.Moreover, a time-varying Hurst exponentH(t) is taken to replace the constantH in fBm. Finally, we apply
the quantum-behaved partial swarm optimization (QPSO) to optimize H(t) for a finite interval. Some tests and corresponding
experimental results will show that our model QPSO+mfBm have a much better performance on the prediction effect than fBm.

1. Introduction

ROLLER bearings represent the largest application of ro-
tating mechanisms. Since they are usually working in high
speed and heavy load environment, then bearing faults
might gradually lead to some catastrophic accidents [1].
)erefore, it is important to study the long-range time
forecasting of the bearing life to optimize the service as-
sistance [2].

)ere already exist some models for the analysis of
bearing faults. )e grey model (GM) was applied to forecast
bearing vibration signal [3]. However, under heavy load
conditions, the accuracy of forecasting for the bearing vi-
bration signal is usually influenced by many factors, such as
deterioration [4], pitting, cracking, etc. Moreover, the GM
model lacks a reflection on the randomness of the data; it

implies that the GM model should be enhanced. Because of
the lacking information, the GM approach only considers
the size of the instant forecasting value. Also the hidden
Markov model (HMM) has been applied to forecast the
bearing fault [5, 6]. But the disadvantage of the HMM is that
a state of the HMM depends only on the state itself, and this
dependence is time-independent. Besides, the HMM can
only predict discrete (step) catastrophe failures and cannot
forecast the trend of continuous fault changes. )e error
back-propagation (BP) algorithm is also widely used in
forecasting bearing vibration, but the selection structure of
the BP algorithm is not single, its training efficiency is not
high, so that overcomplicated structure may cause the
overfitting phenomenon. As a result, it is impossible to
achieve accurate forecasting results [7]. Compared to the
artificial neural network algorithm [8], support vector

Hindawi
Complexity
Volume 2020, Article ID 8543131, 9 pages
https://doi.org/10.1155/2020/8543131

mailto:swqls@126.com
https://orcid.org/0000-0002-0561-3258
https://orcid.org/0000-0001-6519-035X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8543131


machine (SVM) is based on the structural risk minimization
principle, which has a better performance [9]. However, the
SVM needs to set the penalty parameter that makes the
prediction model more complex. Moreover, the calculation
of the remaining useful life for the bearing is crucial. For this
reason, some methods were developed, such as the Gaussian
process (GP) model [10] and the recursive maximum
likelihood estimation (RMLE) [11]. When using the RMLE
to solve the unknown noise in the system caused by non-
stationary operating conditions, the noise value is relatively
large. )e shortcoming of the GP is that the prediction
results are performed on a relatively limited data set. Such
studies employed the regression-based adaptive predictive
models [12], the exponential model [13], and the Extended
Kalman Filtering [14].

Since the bearing failure is a slowly varying process, the
degradation process has a long-range timememory.)e past
states can affect the future degradation states. )is property
is called long-range dependent (LRD).)ere are two kinds of
methods to identify whether the process is of LRD. )e
autocorrelation function (ACF) is nonintegrable [15], or the
power spectrum density (PSD) of the process is divergent at
the origin [16].

Fractional Brownian motion (fBm) is a nonstationary
stochastic process with fractal properties of self-similarity
and LRD [17] and is widely applied in many forecasting
problems, like, e.g., image processing [18] and network
traffic analysis [19]. FBm has also some applications in
degradation modeling and remaining useful life prediction
[20]. Zhang et al. [21] use fBm to describe the degradation of
the blast furnace wall. Qin and Lin [22] combine fBm with
Delft3D, WRF model, and GIS to predict the trajectory of
harmful algal blooms. Xi et al. [23] apply fBm to predict the
remaining useful life of lithium batteries. Song et al. [24] use
fBm for short-term power load forecasting. Gupta et al. [25]
establish the relationship between DCT and discrete fBm to
provide a theoretical basis for applying DCT to fBm signal
reconstruction. FBm can be considered as a generalized form
of the Brownian Motion (BM). Consequently, the fore-
casting results of the fBmmodel are more flexible than those
obtained from the BM model. FBm is characterized by one
parameter called Hurst exponent. )e expression range of
Hurst exponent is 0<H< 1. Except for H � 0.5, fBm is an
LRD model. Under the condition of H � 0.5, fBm degen-
erates to the BM, which is a model with independent in-
crement process.

However, the conventional fBm degradation model has
some restrictions. In fact, in the process of bearing degra-
dation, the degradation process at the early stage of the fault
is relatively stable, so that there will be a huge oscillation in
the later stage. )e dramatic change for the bearing deg-
radation process indicates that the Hurst exponent will
change at different stages of degradation, thus implying that
H usually has multiple values. )e Hurst value of fBm is a
constant and will not change again during the current
prediction phase.

In order to solve this problem, we propose an improved
model called multifractional Brownian motion (mfBm).

Compared with fBm, the fixed exponent H will be replaced
by a time-varying exponent H(t). Moreover the quantum-
behaved particle swarm optimization (QPSO) will be pro-
posed to optimize the fundamental parameters [26]. )e
main idea of QPSO is to optimize the search strategy of the
particle swarm optimization (PSO) to get the global opti-
mum solution.

In order to extract the data from bearing degradation,
the skip-over factor is proposed to measure the tendency of
the gradual collapse [27]. In our model, we propose an
integrated approach for the mfBm and QPSO for forecasting
a bearing skip-over series. )e computedH for the skip-over
series will be used to deduce parameters in the mfBmmodel.
)e QPSO will be used to get the global optimal H(t) value
in the mfBm model; the optimal can be used to make the
accurate forecasting. Finally, we adopt mfBm and mfBm-
QPSO models for the forecasting experiment. Monte Carlo
method is used to show that the combination of mfBm and
QPSO is superior to the fBm model of bearing degradation
forecasting.

)is paper is organized as follows. Section 2 describes the
fBm model to forecast the bearing skip-over series. )e
optimization of H(t) by QPSO for mfBm model is given in
Section 3. Section 4 introduces the computation of the skip-
over factor. Some examples and experimental tests are given
in Section 5, together with a discussion on our model
compared with previous ones. Conclusion is given in Section
6.

2. The Forecasting Model of fBm

Let the fBm model be denoted by BH(t). )us, BH(t) is
defined as follows [28]:

BH(0) � b0,

BH(t) − BH(0) �
1

Γ(H +(1/2))

× 􏽚
0

− ∞
(t − s)

H− (1/2)
− (− s)

H− (1/2)
􏽨 􏽩dB(s)􏼨

+ 􏽚
t

0
(t − s)

H− (1/2)dB(s)􏼩,

(1)

where Γ(.) is the gamma function, τ is the time lag. H is the
Hurst exponent. Reported methods for estimating H are
variance method, absolute value method, curve fitting
method, rescaled range analysis (R/S), periodic graph
method, and wavelet method [28–31]. Here R/S is used to
estimate the Hurst exponent. )e time series of length T is
divided into k subinterval of length n, where T � kn. )e
average value of each subinterval composes a new series
Y(i). )e difference between the maximum and minimum
values of the new series and the standard of deviation S2(n)

are calculated. )en the ratio between the two values is as
follows:
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(2)

where Xn and S2(n) are the mean and variance of the
subinterval, respectively. )e value of R/S looks like cnH as
n⟶∞, where c is a constant independent of n.

)e increment process of the fBm called fractional
Gaussian noise (fGn) is stationary. )e ACF of the fGn is
expressed as

RH(τ) �
σ2ε2H− 2

2
×

|τ|

ε
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2H

− 2
|τ|

ε
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2H

+
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ε
− 1􏼠 􏼡

2H

⎡⎣ ⎤⎦,

(3)

where ε> 0 is used by smoothing fBm so that the smoothed
fBm is differentiable. σ2 is the intensity of the fGn, and it is
written by

σ2 � Γ(1 − 2H)
cos(πH)

πH
. (4)

)en the fBm can generate a specific stochastic time
series as the prediction for next power load series. )e
stochastic differential equations (SDEs) [32, 33] of the
prediction model is written by

dXt � μXtdt + σXtdBH(t), (5)

where μ is the drift parameter, σ is the diffusion coefficient.
)e Hurst exponent is the most significant parameter in
fBm; once it is obtained, the two parameters μ and σ of the
fBm model can be calculated by maximum likelihood es-
timation (MLE) [34, 35].

Discretize (5), the increments of the series are in the
form

ΔXt � μXtΔt + σXtw(t)(Δt)H
, (6)

where w(t) is unit white noise. )e prediction model of the
fBm is rewritten as

Xt+1 � Xt + μXtΔt + σXtw(t)(Δt)H
. (7)

In fBm, the Hurst exponent H is a constant, and it will
not change again during the current prediction phase.
However, as the degradation progresses, the Hurst exponent
is time-varying; thus, the series generated by (6) cannot
characterize the nonlinear trend. )erefore, fBm is replaced
by the mfBm. For mfBm, H(t) will change at different stages
of degradation, and it is a time-varying parameter. To further
improve the prediction accuracy, the QPSO is used to op-
timize the H(t) of the mfBm.

3. Quantum-Behaved Particle Swarm for the
Hurst Exponent Optimization

)e QPSO introduces quantum computing into the PSO, so
that each particle in the space has the quantum behavior.
Since each particle of the PSOmoves in the search space with

a velocity vector to find its local optimum and the global
optimum, the disadvantage of the PSO is that it will be
trapped in its optimal local solution and cannot reach the
optimal global one. To avoid this problem, the particles in
QPSO have a probability to appear anywhere in space; thus,
QPSO has the ability to avoid falling into a locally optimal
solution by searching a globally optimal solution. It has also
fewer parameters to be adjusted. )e optimization com-
putation of H(t) by QPSO will be exhibited as follows.

Clerc and Kennedy [36] have proved that each particle
must converge to the local attractor pi,j to provide the
convergence for the PSO algorithm. )ey defined it as

pi,j(t) � φPi,j(t) +(1 − φ)Pg,j(t), φ ∼ U(0, 1). (8)

Comparing with the convergence of the PSO, the QPSO
defines one-dimensional delta potential well for each di-
mension at the point pi(t), and each particle has a quantum
behavior, which can be described by the Schrödinger [37].
)e distribution function of the particle position is given as

F Hij(t + 1)􏼐 􏼑 � e
− 2 pi,j(t)− Hi,j(t+1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/Li,j(t)

. (9)

where Li,j(t) is the standard deviation of the distribution.
)e position of each particle can be obtained by [38]

Hi,j(t + 1) � pi,j(t) ±
Li,j(t)

2
ln

1
u

􏼒 􏼓, (10)

where u ∼ U(0, 1), m(t) is defined as the average of a global
mean best position:

m(t) � m1(t), m2(t), . . . , m2(t)( 􏼁

�
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􏽘
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1
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􏽘
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i�1
Pi,2(t), . . . ,

1
N

􏽘

N

i�1
Pi,D(t),⎛⎝ ⎞⎠,

(11)

where N is the population size, and pi is the local best
position of ith particle. )e values of Li,j(t) and the position
Hi,j(t + 1) are evaluated as follows:

Li,j(t) � 2β · mj(t) − Hi,j(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

Hi,j(t + 1) � pi,j(t) ± β · mj(t) − Hi,j(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · ln
1
u

􏼒 􏼓,

(12)

where β< 1.781, which is the only parameter that can
guarantee the convergence of the particle. Continuing with
the previous example, we use the previous 30 point to
forecast next 30 point.

(1) Initialize H, let the number of particles N � 20, and
each Hi,j(t) � 2∗ randint(1, 1, [0, 2]) with dimen-
sion equal to 3, and the number of iterations t � 20.
)e 20 particles of H is shown in Table 1. Initialize
the current position, individual optical positions,
and the population’s global optimal position. )en
each particle is used to find the global optimal
solution.

(2) Initialize the local optimal position Pi,j(0) for the
current position Hi,j(0). )e mean optimal position

Complexity 3



mj(t) is computed by (11). Select a suitable value Î2
and evaluate the objective function value f(Hi,j(t)).

(3) )e local attractor pi,j(t) is computed by (8). If
rand(0, 1)> 0.5, then

Hi,j(t + 1) � pi,j(t) + β · mj(t) − Hi,j(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · ln
1
u

􏼒 􏼓, (13)

else

Hi,j(t + 1) � pi,j(t) − β · mj(t) − Hi,j(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · ln
1
u

􏼒 􏼓. (14)

(4) )e optimal position pi,j(t) of each particle Hi,j(t) is
updated by Pg,j � argminPi

(Pi).
(5) )e global optimal position is given by

Hgbest � argminPg
(Pg).

(6) End of iteration.

During the process of updating the particle’s position, it
is necessary to have a comparison between the fitness value
of the current individual position of each particle and the
fitness value of the global optimal position. )e loop iter-
ation is used to find the global optimal solution. Once the
iteration number or minimum error is reached in QPSO, the
optimal approximation power curve for the H can be found.
)is effective value ofH parameter will be used by the mfBm
model for the next data series forecasting.

4. Computing the Skip-Over Series

)e dimensionless parameter skip-over factor is essentially
an improvement of variance. Variance is an indicator related
to energy. Energy-related indices will be disturbed by drastic
operating load changes. )e skip-over factor reduces the
sensitivity to energy; thus, the gradual degradation trend can
be reflected better. )e skip-over factor is the average of the
sum of squares of the difference between the data and the
mean of the minimum and the measure of the difference
between the source data and the expected value of the
minimum value. Based on the whole-period sampling, the
vibration waveforms of bearings often show skip-over
characteristic, such as the failure of foundation loosening.
With the faults deteriorating, the skip-over factor also
changes. )e essence of the skip-over factor is amplitude
modulation of a waveform. )e computation of skip-over
factor is as follows:

(1) Firstly, the bearing vibration signals are sampled and
normalized:

xi �
kxi

xmax
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, k> 1, i � 1, 2, . . . , n, (15)

where k is a scale factor.
(2) )e vibration signals of the bearing after normali-

zation are divided into x11, x12, . . . , x1m; . . . ;

xn1, xn2, . . . , xnm.
(3) Let m � 1024 [27], among set x11, x12, . . . , x1m, ex-

tract minimum value xmin � x1,p, 1<p<m; then get
the average value for all m sets:

x �
1
n

􏽘

n

i�1
xip. (16)

(4) Calculated variance

Dx �
1
n

􏽘

n

i�1
xip − x􏼐 􏼑

2
. (17)

Table 1: )e 20 particles of H.

0.7513 0.8909 0.1493 0.8143 0.1966
0.2551 0.9593 0.2575 0.2435 0.2511
0.5060 0.5472 0.8407 0.9293 0.6160
0.6991 0.1386 0.2543 0.3500 0.4733

Input vibration signal

The value of H(t) is
calculated by R/S

The equivalent sequence of 
parameter estimation of X is 

Y = (Yh, Y2h, ..., YNh)′ t = (h, 2h, ..., Nh)′

μ = (t′ΓH
–1Y)/(t′ΓH

–1t)ˆ σ̂2 = 1/N ((Y′ΓH
–1Y)(t′ΓH

–1t) – (t′ΓH
–1Y))2/(t′ΓH

–1t)

ΓH = 1/2 h2H (i2H + j2H – |i – j|2H)i,j=1,2,...,N

Xt+1 = Xt + μXth + σXtw(t)hHˆˆˆ

w(t)

X = (Xt+1, Xt+2, ..., Xt+T)ˆ ˆ ˆ ˆ

The value of H(t) is 
optimized by QPSO

Extract the features of the signal 
through skip-over as the form

X = (X1, X2, ..., Xt)′

(0, 1)

Figure 1: )e prediction flowchart of the QPSO+mfBm.
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Define Dx as the skip-over factor.
Figure 1 shows the prediction flowchart of the

QPSO+mfBm.

5. Experiment

)e actual data was generated from accelerated life test of
roller bearing Center for Intelligent Maintenance Systems
(IMS), University of Cincinnati. Four Rexnord ZA-2115
double-row bearings were installed on the shaft as shown in
Figure 2. )e shaft is driven by an ACmotor and coupled by
rub belts. Accelerometers were installed on the bearing
housing. )e rotation speed of the shaft was 2000 rpm, the
sampling rate was set at 20 kHz, and the data length was
20,480 points. Bearing 1 of vibration signals with an outer
race failure is selected.

Figure 3 shows the full-lifecycle tendency of bearing
within 7 days of the skip-over series. )e skip-over series has
relative stability and sensitivity to initial fault. )e initial
fault appears about 7000min. Here the ACF method is used
to calculate the Hurst exponent of the series. Denote the
measured ACF of the skip-over series by r(k), R(k) be the
modeled ACF. For simplicity, we use the normalized ACF.
Equation (7) is rewritten as

R(k) �
1
2

(k + 1)
2H

− 2k
2H

+|k − 1|
2H

􏽨 􏽩. (18)

Accelerometers

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Motor

Radial
Load Thermocouples

Figure 2: Bearing test rig.
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Figure 3: Skip-over series for full-life tendency of bearing 7 days.
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Figure 4: )e fitting ACF curve. Red line is the ACF of real data;
blue line is the ACF of the theoretical curve.

Table 2: )e parameters value of model.

Model μ σ
FBm 0.1345 321.9634
PSO+mfBm 78.3264 4.2128e+ 04
QPSO+mfBm 97.6945 2.7573e+ 05
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Figure 5: Forecasting with different models.
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Let M � E[(R − r)2] be the mean square errors. As the
M is minimized, the corresponding H value is the Hurst
exponent. Figure 4 shows the fitting ACF curve, the cal-
culated Hurst exponent is H � 0.849. )e high fit of the
measured curve to the model curve also indicates that the
skip-over series is in accordance with the fBm.

)e H of this skip-over series is 0.5<H< 1. We focus on
fBm, PSO+mfBm, and QPSO+mfBm models. )e value of
each 30 points is selected to calculate one H, the model
parameters μ, and σ of the fBm change with H. )en, we can
deduce 􏽢Xt+1⟵ 􏽢Xt by (6), the fBm can generate the ap-
proximation series. )e parameter estimation results are
shown in Table 2. In this prediction model, the estimation of
parameters is affected by two aspects: the observed value and
the time interval.)e feature extraction process is to integrate

multiple points of the original vibration signal into one point,
that is, skip-over factor. After feature extraction, the values of
skip-over factor are determined, and the time interval is
changed. When the time interval is small, the calculated
parameter values will increase. )e larger the time interval,
the smaller the corresponding parameter values. Here, the
time interval is set as Δt � 0.1, resulting in a large calculated
value. Figure 5 shows the prediction by three models. In the
fBm prediction, the average relative error of fBm is 4.0%. In
PSO+mfBm prediction, the average relative error of mfBm is
3.2%. In QPSO+mfBm prediction, the average relative error
of the QPSO+mfBm can be reduced to 2.5%. Obviously,
QPSO+mfBm has performed better on prediction accuracy.

In order to obtain the best prediction accuracy, different
combinations of observation data length and prediction step
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Figure 6: Forecasting skip-over series difference step long.
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length are tested. Figures 6(a)–6(d) show that 30 points to
forecast next 20 points, 30 points to forecast next 30 points,
40 points to forecast next 30 points, 50 points to forecast the
next 30 points, respectively. )e parameter estimation re-
sults are shown in Table 3 and the average relative error is
shown in Table 4.

Obviously, 30 points predict next 30 points has mini-
mum average error in statistic meaning. Figure 7 shows
prediction results by three models from 600th to 981th
points.

Figure 8 shows a box-scatter plot describing the relative
error distribution of the forecasting skip-over series. )e
mean relative error of the QPSO+mfBm is lower than the
other two models. Meanwhile, the relative error distribution
of the QPSO+mfBm is more concentrated than the other
two models; it means the QPSO+mfBm has lower relative
error and stable prediction performance.

6. Conclusion

In this paper, a hybrid framework (mfBm and QPSO) for
predicting a bearing skip-over series is proposed. We have
used the ACFmethod to estimate the Hurst value of the entire
degradation process. )e fitting results show that the deg-
radation process of the bearing has the LRD property;
moreover, the fBm-based model gives the more reasonable
description of the process. However, we have shown that the
fBM-based model can be significantly improved by adopting
the QPSO+mfBm. By using this improved method, we have
shown that the predicted value is more consistent with the
actual value, and the average relative error is significantly
lower. In terms of relative error distribution, the QPSO
+mfBm is more efficient. )e experimental results have also
shown that the improvement to the LRD prediction method
for fBm is effective.
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