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Abstract This study aims to develop an automatic

detector of the A phases of the cyclic alternating pattern,

periodic activity that generally occurs during non-REM

(NREM) sleep. Eight polysomnographic recordings from

healthy subjects were examined. From EEG recordings,

five band descriptors, an activity descriptor and a variance

descriptor were extracted and used to train different

machine-learning algorithms. A visual scoring provided by

an expert clinician was used as golden standard. Four

alternative mathematical machine-learning techniques

were implemented: (1) discriminant classifier, (2) support

vector machines, (3) adaptive boosting, and (4) supervised

artificial neural network. The results of the classification,

compared with the visual analysis, showed average accu-

racies equal to 84.9 and 81.5% for the linear discriminant

and the neural network, respectively, while AdaBoost had a

slightly lower accuracy, equal to 79.4%. The SVM leads to

accuracy of 81.9%. The performance achieved by the auto-

matic classification is encouraging, since an efficient auto-

matic classifier would benefit the practice in everyday clinics,

preventing the physician from the time-consuming activity of

the visually scoring of the sleep microstructure over whole 8-h

sleep recordings. Finally, the classification based on learning

algorithms would provide an objective criterion, overcoming

the problems of inter-scorer disagreement.

Keywords Sleep � Cyclic alternating pattern � Neural

networks � Support vector machines � Machine learning

1 Introduction

The cyclic alternating pattern (CAP) is a periodic activity

that occurs on the electroencephalographic (EEG) signal

during sleep and is characterized by an activation phase,

called phase A, which is very different from the back-

ground, and a second phase, called B, in which only the

background is visible. Both A and B phases may have a

duration between 2 and 60 s. Phases A are classified into

three subtypes: A1 is characterized by strong delta waves

(0.5–4 Hz); A2 has rapid EEG activities that occur for

20–50% of the total activation time and A3 is characterized

by rapid activities, especially beta (16–30 Hz), that occupy

more than the 50% of the total activation time. Phase A and

the following phase B shape a CAP cycle and at least two

consecutive CAP cycles are needed to define a CAP

sequence. A typical example of the EEG signal during CAP

and non-CAP sleep is shown in Fig. 1 [26].

In normal physiological conditions, CAP only occurs

during NREM sleep, although it can appear in REM sleep

in pathological conditions. Being connected with sleep

instability, CAP sleep contains information that is relevant
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in clinics for the evaluation of the quality of a subject’s

sleep. Increased amounts of CAP are a regular finding in

obstructive sleep apnea syndrome (OSAS) [27] and in the

upper airway resistance syndrome (UARS) as a reaction of

the sleeping brain to a repetitive breathing disturbance.

Primary insomnia shows increased amounts of CAP,

compared with sound sleepers [25]. Furthermore, CAP A

phase has been interpreted in several studies as a kind of

gate through which pathologic events occur more easily.

The gating effect has been demonstrated among several

sleep disturbances such as periodic leg movements (PLM)

[6, 11, 20], sleep bruxism [15], and epilepsy [5, 12, 28].

Fig. 1 An example of non-CAP and CAP sleep in sleep stage 2.

Phase A is characterized by amplitude/frequency content that stands

out against the background, while Phase B shows a return to the

background itself. Both Phase A and B may last between 2 and 60 s.

We have a CAP sequence when there are at least two consecutive

CAP cycles, terminated by a phase A. The remaining NREM sleep is

classified as non-CAP
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In the light of this, the ratio between NREM CAP sleep

and total NREM sleep (CAP rate), and the different distri-

bution of CAP A phases through the sleep stages can be

measured in sleep centers to characterize sleep pathologies.

Nowadays, the neurologists in sleep centers analyze the EEG

of whole night sleep recordings and visually score each

activation to compute the parameters used in diagnosis [3].

This method has two drawbacks: first of all, it is extremely

time-consuming for the neurologist, limiting the use and

study of sleep microstructure in routine clinics; secondly, it is

subject to a certain inter-scorer variability in the classifica-

tion: a fairly recent study estimated that the average repeat-

ability between the classifications of single EEG traces by

two different clinicians ranges from 69 to 77% [24].

This work is aimed at creating an automatic method to

detect activations that may constitute CAP A phases, where

the goal is not only to accelerate and optimize the physi-

cian’s time, but also to provide a more precise and objec-

tive detection based on the EEG spectral parameters.

Only a few studies do exist in literature where similar

algorithms were developed:

• Largo et al. [16] implemented an automatic detection

algorithm using wavelets to filter the EEG signal in several

bands, two moving average windows to compute the band

descriptors, and a two-threshold criterion to detect the

beginning and the end of each A phase. The two moving

average windows and the thresholds were established

through a Genetic Algorithm. They applied a minimum

overlapping criterion of 0.25 s for counting a true positive

(TP), i.e., an automatically scored activation that has also

been visually scored, and thus obtained 84.9% of sensi-

tivity auto-visual (ratio between the number of true

positives and the total number of visually recognized

activations), 77.6% of sensitivity visual-auto (ratio

between the number of true positives and the total number

of automatically recognized activations) and 81.1% of

concordance (a combination of the previous indexes).

• Barcaro et al. [1] used band descriptors computed on

the F4-C4 trace and two-threshold criteria (a detection

threshold and a length threshold) in order to recognize

activations from the background. They achieved a

maximum concordance equal to 83.5%, although the

criterion for counting a TP and the other statistics are

not reported.

• Ferri et al. [7] implemented a human-supervised

automatic approach for the detection of CAP A phases,

letting the clinician choose the threshold values for

each subject by examining part of the sleep recording

(C3-A2 or C4-A1 derivation), and then using threshold

criteria applied to a delta and a beta band descriptor.

The statistic reported in the article are computed on the

average number of A phases automatically and visually

detected over 10 subjects’ recordings, and show values

of Kendall’s W coefficient greater than 0.8.

• Navona et al. [19] developed an automatic method for A

phases detection based on the computation of five

descriptors, each of them corresponding to a different

EEG frequency band. The computation of these descrip-

tors, followed by the superimposition of two thresholds

and the application of logical criteria, provided a 77%

correctness, a 90% sensitivity auto-visual and a 84%

sensitivity visual-auto. The analysis was carried out on

some selected segments of the F4-C4 EEG trace.

Although all these methods achieved remarkable results,

most of them require additional intervention from the cli-

nician, either by tuning parameters and thresholds for each

subject, or by a prior selection of trace segments at specific

sleep stages; therefore, further effort has to be put in the

research of an automatic method that could be reliable

enough to be effectively introduced in everyday clinics.

The present study wishes to implement such an automatic

system able to detect the CAP dynamic based on features

extracted from a single EEG lead, lasting approximately 8 h,

independent of any a priori information provided by the cli-

nicians or any other type of human intervention. For the

automatic classification, four different classifiers were com-

pared: support vector machines (SVM), linear discriminant

(LD), neural network (NN) and AdaBoost.

2 Methods

2.1 Clinical protocol

The recordings employed in this study belong to the all-night

polysomnographic database of the Parma Sleep Disorders

Center. Eight healthy subjects, four males and four females,

aged between 29 and 42 years (mean 34.25 ± 4.86), were

selected after the accomplishment of an entrance investigation

in order to obtain a homogeneous group free from psychiatric,

neurological and medical disorders. All subjects gave their

informed consent to the study. Sleep/wake schedule was

investigated for 14 days before the recordings with a sleep log.

Inclusive criteria were the absence of sleep disorders and

daytime napping. A personal interview integrated by a struc-

tured questionnaire confirmed good vigilance level during

daytime, normal sleep habits without any difficulties in falling

or remaining asleep at night. All participants were requested to

avoid any drug intake and excessive alcohol or coffee con-

sumption in the previous 3 weeks. All subjects slept at least

two consecutive nights in a video-monitored, temperature-

controlled and soundproof (Leq\ 35 dB) laboratory. The

first night was used for adaptation to the recording environ-

ment and for screening respiratory or other sleep-related
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disorders. Exclusion criteria were: apnea–hypopnea index C5

and/or PLM index C15 [20, 27]. Only the PSG recordings

following the adaptation night were analyzed.

Each signal was recorded using the commercial PSG-

system Siesta (CompumedicsTM); sleep scoring was man-

ually performed on the commercial software Somnologica

Studio (Embla SystemsTM).

Sleep stages were scored by an expert on a monopolar

derivation (C3-A2 or C4-A1) using standard criteria [14]

CAP detection [26] was based on a bipolar montage from

the left or right hemisphere according to the 10–20 inter-

national system (Fp1-F3; F3-C3; C3-P3; P3-O1 or Fp2-F4;

F4-C4; C4-P4; P4-O2).

A central trace (C3-A2 or C4-A1, containing equivalent

information due to their symmetry) was used for the

automatic analysis. This choice is due to the requirements

of conventional sleep scoring [23] that state that monopolar

derivations are preferred when performing a single-lead

analysis. In the recordings used in the present study, EEG

signals were originally digitized with frequencies between

128 and 256 Hz. The acquired EEG signals were exported

from Somnologica to the programming environment Mat-

lab (The Mathworks Inc.) at a sampling frequency equal to

100 Hz. Portions of the signal relative to wake and REM

sleep were removed from the analysis. The A phases

scoring provided by the clinicians was used as the golden

standard for the automatic classification.

Sleep parameters about the subjects used in the study—

according to the visual scoring performed by the sleep experts—

such as time in bed, total sleep time, sleep efficiency, wake,

NREM and REM time, number of phases A of each subtype,

number of phases B and CAP rate, are reported in Table 1.

2.2 Feature set

Several features were extracted from the NREM sleep EEG:

• Band descriptors The EEG signal was filtered with a

low-pass anti-aliasing filter at 30 Hz. Then, it was

separated in the following bands: 0.5 \ delta B 4 Hz,

4 \ theta B 8 Hz, 8 \ alpha B 12 Hz, 12\ sigma B

15 Hz, 15\ beta B 30 Hz. A FIR filter with 30 coeffi-

cients and a Kaiser window was used for this purpose.

For each band, the resulting signal was squared and

normalized between 0 and 1 (with respect to the maximum

power in the band), and, for each of the five bands under

study, a set of descriptors was implemented in the form:

db tð Þ ¼ pbsðtÞ � pblðtÞ
pblðtÞ

ð1Þ

where pbl and pbl are the mean power in the considered

band on a window of 2 and 64 s, respectively, centered on

the second t. For example, the delta descriptor was

computed as follows: the EEG signal x(t)was filtered

between 0.5 and 4 Hz xdelta(t), then squared and normalized

xdeltan(t), and for each second t its average value on a 64 s

window pdeltal and its average value on a 2 s window pdeltas

centered on the 1 s time window t were computed. Thus,

the delta descriptor, resulting in a new signal sampled at

1 Hz, is calculated as:

ddelta tð Þ ¼ pdeltasðtÞ � pdeltalðtÞ
pdeltalðtÞ

ð2Þ

The windows were chosen according to previous studies

[1, 16].

• Hjorth activity [13] It was applied to the EEG signal

filtered in the delta band. It was computed over

overlapped 3-s windows, each centered on the second

of interest. This descriptor captures the overall increase

of the delta power occurring during the activations over

a longer time span. It is calculated as the simple

variance r2 of the signal segment.

Table 1 Sleep data of the eight recorded subjects: the table reports time in bed, total sleep time (TST), sleep efficiency (SE), wake, NREM and

REM time, number of A1, A2 and A3 phases, both belonging to CAP sequences and isolated, number of B phases and CAP rate for each subject

Subject Time

in

bed

(min)

TST

(min)

SE

(%)

Wake

time

(min)

NREM

time

(min)

REM

time

(min)

A1

phases

(CAP)

A2

phases

(CAP)

A3

phases

(CAP)

A1

phases

(isolated)

A2

phases

(isolated)

A3

phases

(isolated)

B

phases

CAP

rate

(%)

1 513.5 495 96.40 18.5 371 124 274 111 61 48 26 10 446 57.35

2 526 491 93.35 35 359 132 296 84 76 31 30 17 456 61.31

3 492.5 459 93.20 33.5 335.5 123.5 285 120 37 53 29 6 442 55.67

4 500.5 437.5 87.410 63 338.5 99 152 58 115 53 21 45 325 45.84

5 515 455 88.35 60 342 113 163 39 31 55 19 17 233 31.54

6 490 405.5 82.76 84.5 323 82.5 135 93 65 61 35 9 293 39.29

7 495 479.5 96.87 15.5 330.5 149 183 28 19 35 16 21 230 31.74

8 492.5 469 95.23 23.5 370 99 228 90 66 21 38 29 384 45.31

All the parameters derive by scorings performed by sleep experts
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• EEG variance It was computed from the raw EEG

signal on 1-s windows. The variance difference

between adjacent 1-s windows was calculated and the

result normalized by its maximum value. This descrip-

tor is expected to account for the abrupt frequency

shifts occurring in correspondence with the activations.

Figure 2 shows an example of the trend of the

descriptors.

Since each feature refers to a resolution of 1 s, for an

approximately 8-h-long sleep and 8 subjects, we had a total

of 240,429 samples, 26,305 of which accounted for acti-

vations and the remaining 214,124 accounting for the

background.

In order to homogenize the values of the descriptors

around the activations, a moving window f(x) was applied

to all the band descriptors besides the delta, and to the

activity descriptor in the delta band, which is given by:

f xtð Þ ¼ max
k2½�r;þr�

xtþk ð3Þ

where xt is the center of the window, and r is equal to 2 for

the band descriptors and to 1 for the activity.

For the differential variance of the EEG, the mere

absolute value was computed.

All these seven features were used for training the four

presented machine-learning methods.

A detailed study of the features here employed has been

shown in a previous study of the same authors, where the

features have been evaluated by means of ROC curves, and

redundancies in the feature set eliminated by correlation

analyses [18]. All these features have been shown to have

relevant information content in discriminating CAP A

phases from the background, especially the delta descrip-

tor, the delta activity and the differential EEG variance.

2.3 Statistical measurements

We define as a true positive (TP) every second recognized

as belonging to an activation both by the human and the

automatic classifiers, as a false positive (FP) every second

belonging to the background but recognized as belonging

to an activation by the automatic classifier, as a false

negative (FN) every second belonging to an activation but

recognized as belonging to the background by the auto-

matic classifier, as a true negative (TN) every second

recognized as belonging to the background both by the

human and the automatic classifiers.

The statistics sensitivity [TP/(TP ? FN)], specificity

[TN/(TN ? FP)], and accuracy [(TP ? TN)/TP ? TN ?

FP ? FN] were calculated through a simple second-

by-second comparison of the automatic classification vec-

tors with the visual classification vector.

Furthermore, the statistical parameter Cohen’s kappa was

computed. This parameter is able to provide a measure of the

agreement between different scorers (or different scoring

methods), statistically discarding the cases in which the

agreement is due to chance. The equation for j is:

j ¼ Pr að Þ � PrðeÞ
1� PrðeÞ ð4Þ

where Pr(a) is the relative observed agreement among

raters (accuracy), and Pr(e) is the hypothetical probability
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Fig. 2 Example of the trend of the descriptors in correspondence of visually scored A phases
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of chance agreement, using the observed data to calculate

the probabilities of each observer randomly saying each

category. If the raters are in complete agreement then

j = 1. If there is no agreement among the raters (other

than what would be expected by chance) then j B 0 [10].

2.4 Training stage

The previously described features were used to train the

classifiers. Four different classifier types were taken into

account and their performances were compared: the dis-

criminant function, the support vector machines, the

adaptive boosting and the neural networks. A detailed

mathematical description of these methods is reported in

the Appendix (ESM).

The data were classified by using the leave one out

procedure: one subject at the time was classified with the

algorithm previously trained over the remaining seven

subjects’ data.

The desired output data consisted of binary vectors of

the same length of the features (one sample per second),

where each sample was assigned value 1 if belonging to a

visually scored activation, 0 if belonging to the back-

ground. Since there is more background than activation,

there were more zeros than ones. Thus, in order to avoid

biasing the classifier, a re-sampled training set was created

that included an equal number of samples indicative of an

A phase and of those indicative of the background. This

was done simply by taking into account only a fraction of

the samples corresponding to the background, uniformly

distributed through the original descriptors.

2.4.1 Discriminant

Three types of discriminant function were tried in order to

select the one providing the best classification:

• Linear Dividing the feature space by a hyperplane

decision surface that maximizes the ratio of between-

class variance to within-class variance.

• Quadratic Dividing the feature space by a hypersphere,

hyperellipsoid or hyperhyperboloids decision surface

that maximizes the ratio of between-class variance to

within-class variance.

• Mahalanobis Exploits the Mahalanobis distance

D2 ¼ x� lð Þ
0
R�1ðx� lÞ ð5Þ

where x is the vector of the data, l is the centroid of a

certain class, and R is the covariance matrix of the data

distribution, and assigns each datum x to the class l that

minimizes D2 (see Appendix) [4].

The statistics in Table 2 compare the performance of the

three discriminant functions. A t test was applied to com-

pare the average performances of the classifiers, requiring

p \ 0.05 as the statistical significance level.

As shown by the table, the discriminant function offer-

ing the best performance (highest accuracy and Cohen’s

kappa) is the linear, thus, it was chosen for the classifica-

tion. The statistical significance is verified for the k index

with a p value equal to 0.0198 for the linear discriminant

versus the quadratic, equal to 5.26 9 10-8 for the linear

versus the Mahalanobis discriminant.

2.4.2 Support vector machines

Support vector machines are motivated by many of the

same considerations as the linear discriminant, but rely on

preprocessing the data to represent patterns in a high

dimension—typically much higher than the original feature

space. With an appropriate nonlinear mapping U to a suf-

ficiently high dimension, data from two categories can

always be separated by a hyperplane. The mapping func-

tion U is called kernel. A soft-margin support vector

machine was implemented, that means introducing vari-

ables that measure the degree of misclassification of each

datum and assigning a penalty C to such error (see

Appendix) [2, 8].

The first step consisted in finding the best SVM

parameters to classify the data. Two separate studies were

carried out for the two types of SVM kernel: polynomial

and Gaussian [29].

For what concerns the polynomial kernel, the varying

parameters were the error penalty C, and the polynomial

order o. C varied from 2-30 to 212 while o varied from 1

(therefore including also the linear kernel case) to 6.

For what concerns the Gaussian kernel, the varying

parameters were the error penalty C, and the Gaussian

standard deviation r. C varied from 2-5 to 212, r varied

from 2-12 to 25.

Table 2 Comparison of the performances of the three discriminant functions in classifying the data

Discriminant function Sensitivity (%) Specificity (%) Accuracy (%) Cohen’s kappa

Linear 72.5 ± 10.9 86.6 ± 6.3 84.9 ± 4.8 0.45 ± 0.05

Quadratic 69.9 ± 8.0 88.0 ± 3.8 84.1 ± 5.9 0.41 ± 0.07

Mahalanobis 95.8 ± 7.5 44.8 ± 15.2 50.4 ± 8.7 0.18 ± 0.05

The mean classification statistics and their respective standard deviations over the eight subjects are reported
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The leave one out cross-validation method was applied.

One subject at the time was taken out of the dataset. The

data of the remaining seven subjects were used for the

determination of the optimal kernel parameters, in the

following way: for each combination of the parameters,

one of the seven subjects in turn was used as testing set,

while the remaining six were used as training set. Then, the

Cohen’s kappa was computed. In order to pick the

parameters that led to the best classification, the statistics

were averaged on the seven patients’ classifications. The

best parameters were identified as those maximizing the

Cohen’s kappa. Such parameters were used to classify the

remaining subject’s data.

The procedure is synthesized in Fig. 3.

Figure 4 reports an example of the Cohen’s kappa val-

ues, averaged over seven subjects, while varying the values

of the parameters.

The optimal parameters concerning the polynomial

kernel ranges are: C = 211–212 and polynomial

order = 3–4; while for the Gaussian kernel, the optimal

parameters ranges are: C = 29–212 and Gaussian standard

deviation = 2-2–20.

The mean values for the classification statistics obtained

using the two kernels with the parameters determined with

this procedure were compared, applying the t test and

requiring p \ 0.05, as the statistical significance level.

The polynomial kernel offers a slightly better perfor-

mance, measured with the k index, with respect to the

Gaussian, with a p value equal to 0.0081. The average

results over the eight subjects are reported in Table 3.

2.4.3 AdaBoost

AdaBoost, from ‘‘Adaptive Boosting’’, is an algorithm that

combines a certain number of classifiers, called ‘‘weak

learners’’, to form an ensemble whose joint decision rule

has arbitrarily high accuracy on the training set. The final

classification decision is composed by the weighted sum of

the outputs of all the classifiers (see Appendix) [4].

Similar to what was done for the SVM, the leave one out

technique was applied for the selection of the parameter of

interest, in this case, the number of weak learners to

employ.

Each analysis was carried out increasing the number of

weak learners used from 1 to 20. The data from one

subject at the time were used as testing set, and for each

number of weak learners the testing error was computed

as follows:

Fig. 3 LOO procedure for the

estimate of the optimal

classification parameters (r and

C for Gaussian kernel, o and

C for the polynomial kernel)

and classification of the data
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Testingerror ¼
n� ðTPþ TNÞ

n
¼ 1� Accuracy ð6Þ

The testing errors for the eight analyses were averaged and

plotted with respect to the number of weak learners.

Figure 5 illustrates an example of the trend of the

training and the testing error. It can be noticed how they

both decrease with respect to the number of weak learners

used. This was true for all the LOO reiterations. Thus, a
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Fig. 4 a Polynomial kernel:

mean Cohen’s kappa values

averaged over seven subjects for

varying values of the

penalization parameter, C and

of the polynomial order,

o. b Gaussian kernel: mean

Cohen’s kappa values averaged

over seven subjects for varying

values of the penalization

parameter, C and the Gaussian

standard deviation, r. The boxes
report the optimal couples

chosen for the parameters in this

example case

Table 3 Results obtained with a SVM using a polynomial kernel or a

Gaussian kernel

Kernel Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

Cohen’s

kappa

Polynomial 70.1 ± 8.6 84.0 ± 11.1 81.9 ± 7.8 0.44 ± 0.08

Gaussian 75.0 ± 7.5 78.0 ± 11.2 77.7 ± 8.2 0.39 ± 0.10

Mean and standard deviation over the eight subjects’ recordings
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number of weak learners equal to 20 was considered

optimal for this type of classification.

2.4.4 Neural network

An artificial neural network (ANN) is an information

processing paradigm that is inspired by the way biological

nervous systems, such as the brain, process information. It

is composed of several processing elements (neurons) that

are able of adapting their parameters to learn from a spe-

cific training set (inductive learning), in a systematic

fashion (training mode). If the examples in the training set

are accompanied by labels, we talk about supervised

learning, otherwise, the learning is unsupervised (see

Appendix) [21, 22].

A three-layer supervised neural network was chosen,

with a 7-neuron input layer, a x-neuron hidden layer, and a

1-neuron output layer. The number x of the hidden layer

neurons varied from 2 to 30.

The chosen activation function was logsig for the hidden

and output layers. The training mode was the backpropa-

gation with the Levenberg–Marquardt algorithm

In order to achieve an adequate classification perfor-

mance for each subject, we proceeded in the following

way: for each test subject, the neural networks were trained

using the remaining seven subjects’ data, and partitioning

them using the leave one out technique: the data of one of

the seven subjects at the time were used as the testing set,

while the remaining six subjects’ data were equally divided

into training set and validation set. With these data, and for

each value of x, 2 \ x\30, the neural networks were

trained and restarted 10 times, and the one with the best

performance was chosen, in order to avoid local minima

problems. The network with the best performance, i.e., the

one with the lowest testing error, was then chosen among

those obtained with different values of x.

This modus operandi led to 7 ‘‘best’’ neural networks for

each of the 8 subjects, for a total of 56 networks.

The seven networks were then simulated on the corre-

sponding subject’s data, in order to obtain seven classifi-

cation vectors. The seven vectors were rounded to 0 or 1 by

setting a threshold at 0.5 and the final classification vector

was computed second by second thanks to a majority

voting system: thanks to the odd number of voters (the

seven output vectors), ties were avoided. An example of

the procedure for the classification of subject number 1 is

synthesized in Fig. 6.

2.5 Post-processing stage

According to Terzano’s rules, [26] CAP A phases cannot

last more than 60 s or less than 2 s, thus the automatically

recognized activations lasting longer than this limit had to

be re-classified. This was necessary for only an approxi-

mately 1% of the automatically recognized A phases. The

re-classification was performed using a competitive neural

network for clustering, with 2 neurons and 500 epochs, that

received in input only the delta and the beta band

descriptors and split the original activations into shorter-

lasting ones, as shown in Fig. 7a). An alternative clustering

method such as K-means [17] was tried for this re-classi-

fication, but it was eventually discarded because it offered

a poorer classification performance with respect to the

competitive neural network.

Fig. 5 Training (left) and

testing (right) error evaluated

with respect to the number of

weak learners employed
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Moreover, a post-processing was applied to eliminate

automatically detected A phases and B phases shorter than

2 s, as shown in Fig. 7b): isolated ones and isolated zeros,

indicating A phases and B phases lasting approximately

1 s, respectively, were replaced by a 0 and a 1, respec-

tively. It must be highlighted that the three operations

happen in sequence: (1) re-classification step, (2) replace-

ment of isolated zeros, (3) replacement of isolated ones. A

double-check was applied to avoid eventual merging into

segments longer than 60 s due to the post-processing.

3 Results

The statistics averaged over the eight subjects, are reported

in Table 4.

Fig. 6 Scheme of the procedure for the choice of the seven optimal

neural networks for a generic subject. Subject 1 is taken out from the

set, one of the remaining subjects at the time is used as the testing set,

while the remaining six subjects are divided in half and used as

training and validation sets. For each x (number of hidden layer

neurons) the best network is chosen after ten restarts. The optimal

network is eventually chosen among those with different values of

x. The seven resulting networks are simulated on Subject 1 data

obtaining seven classification vectors. For each second, a voting

system among the seven classifiers provides the final classification

Fig. 7 a Example of re-

classification of a fragment of

activation lasting longer than

60 s. The first set of arrows
shows the classification

computed by the expert

clinician. The second shows an

example of classification

performed by the automatic

algorithm that exceeds the 60 s

limit. The bottom line reports

the result of the re-classification

performed via the competitive

NN. b Scheme of the post-

processing procedure
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A comparison among the classifiers’ performance was

conducted applying the paired t test to the classification

statistics, and requiring p \ 0.05 as the statistical sig-

nificance level and is reported in Table 5. Empty cells

indicate no statistical significance. Filled cells indi-

cate statistical significance according to the t test with

p \ 0.05.

The SVM leads to a high accuracy, equal to 81.9% and

specificity (84.0%) but to a lower sensitivity with respect to

the NN. AdaBoost leads to good accuracy and specificity

(79.4%, 79.3%), but to a lower sensitivity (68.5%). The

main drawback of AdaBoost is the long computational time

required for its training, especially when a large number of

classifiers is employed.

The linear discriminant and the neural network seem to

be the better-performing methods, showing high accuracy

values, equal to 84.9 and 81.5%, and Cohen’s kappa val-

ues, equal to 0.45. Examples of classification performed by

these two algorithms are shown in Fig. 8.

All the correctly recognized phases were circled with a

thin black box:

• Solid lines are used for automatically recognized A

phases that coincide with visually recognized A phases.

• Dashed lines are used for visually recognized A phases

that have been automatically recognized as more than one

A phase.

• Dotted lines are used for automatically recognized A

phases that are longer than visually recognized A phases.

All the incorrectly recognized phases have been cir-

cled with a thicker gray box. Some of the false positive A

phases show an evident increase of more than one

descriptor so, according to the criteria used by the dis-

criminant, they should be classified as true positives.

Maybe, this kind of misclassification can be due to the

variability of classification between different human

scorers [24]. A possible solution could be having more

than one visual classification of A phases in order to

better understand this kind of error. Though the perfor-

mances of the algorithms are comparable, the neural

network (Fig. 8b), seems to better follow short-lasting

activations.

4 Discussion

A statistical comparison among different classifiers to

automatically distinguish the EEG activations that char-

acterize the cyclic alternating pattern was presented.

Our main achievements are:

(a) The sleep microstructure can be automatically

detected using a single EEG lead with good accuracy.

(b) The proposed methods are entirely automatic, without

any need of human intervention.

(c) With a reduced number of descriptors, a complete

frame of the EEG variations that occur during CAP A

phases could be captured.

We can observe that, due to the complexity of the data,

inductive machine-learning methods constitute much more

accurate classifiers than a simple threshold method,

employed in many studies in literature [1, 7, 16, 19].

Table 4 Results obtained with

each classifier

Mean and standard deviation

over the eight subjects’

recordings

Method Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

Cohen’s

kappa

Linear

discriminant

72.5 ± 10.9 86.6 ± 6.3 84.9 ± 4.8 0.45 ± 0.05

SVM 70.1 ± 8.6 84.0 ± 11.1 81.9 ± 7.8 0.44 ± 0.08

AdaBoost 68.5 ± 6.7 79.3 ± 9.4 79.4 ± 5.5 0.41 ± 0.11

Neural

network

72.9 ± 7.5 82.3 ± 7.1 81.5 ± 6.4 0.45 ± 0.20

Table 5 Comparison among the performances of the four classifiers obtained by applying the paired t test to the classification statistics, and

requiring p \ 0.05 as the statistical significance level

Sensitivity Specificity Accuracy Cohen’s kappa

LD vs. SVM

LD vs. AdaBoost Higher for LD Higher for LD

LD vs. NN Higher for LD

SVM vs. AdaBoost Higher for SVM

SVM vs. NN Higher for NN

NN vs. AdaBoost Higher for NN

Filled cells indicate statistical significance according to the t test with p \ 0.05 while empty cells indicate no statistical significance
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The linear discriminant and the artificial neural network seem

to be the better-performing algorithms in the classification,

although the performance of the four methods is rather similar.

This suggests that a peculiar role in a good classification is

played not only by the choice of the specific machine-learning

classifier, but by the selection of appropriate descriptors.

A possible idea for a future improvement of the method

is that of splitting the EEG signal into windows of different

Fig. 8 Example of

classification via: a linear

discriminant, b neural network.

In both figures, the descriptors

(from the top) differential

variance of the EEG signal,

Hjorth activity, beta, alpha,

theta, sigma and delta

descriptors are represented. The

CAP phases A are shown at the

bottom (beginning and end

marked by the gray arrows),

where the automatic scoring is

compared to the visual one. The

boxes highlight the correctness

of classification: solid black
lines highlight correct

classification, solid gray lines
highlight incorrect

classification, dotted lines
indicate correct recognition, but

wrong duration, dashed lines
highlight more than one phase A

recognized by the automatic

scorer where the visual scorer

had selected a single event
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lengths. In fact, here, for ease of computation, all the

descriptors have been computed on 1 s-long windows,

although, being the EEG a non-stationary signal, it would

perhaps be more appropriate to employ segmentation tech-

niques such as that proposed in [9] in order to split it into

windows in which it maintains uniform statistical properties,

and to compute the features on these new windows.

The use of a single EEG trace makes the algorithms easy

to implement and reduces the computational burden of the

methods: the introduction of a second trace, perhaps a

frontal derivation, where the delta components are better

represented, could somehow improve the classification at

the expense of some computational load.

Among the automatic methods used to detect the sleep

microstructure, some published techniques require some

sort of intervention by the clinician [7], obtaining moderate

classification results and reducing the time for the detection

of the microstructure. The advantage of the proposed

methods is their total independence from any a priori

information besides the mere REM/NREM distinction.

There are a few studies [1, 16] that have employed band

descriptors used as training features similar to those used in

this paper. However, the introduction of new features, other

than the band descriptors, improves the classification: the

Hjorth activity descriptor is able to better account for the

average increase of delta power during activations, whereas

the differential variance of the raw EEG signal captures the

abrupt frequency variations occurring during CAP A phases.

Moreover, differently from previous studies [1, 16, 19],

that also report high accuracy values, ranging around

77–84%, here all the statistics were computed not only by

applying a mere overlap criterion between visually and

automatically scored activations, but considering each 1-s

window as an observation, leading to a much more precise

statistic.

As it can be seen from the high standard deviations in

the statistics (see Table 4), the results are strongly depen-

dent on the subject, even after the normalization of the

descriptors.

This is probably due to some inter-subject variability of

the CAP A phase rhythms. The subject-dependency could

also be due to the scoring performed by different clinicians:

in fact, as we mentioned before, the repeatability between

classifications of the same EEG trace performed by two

different experts ranges between 69 and 77% [24]. Thus, an

automatic method based on training data could distinguish

the activations with a criterion that is similar to that of a

certain human scorer, but dissimilar to that of another.

In spite of the limited number of subjects, the statistics

obtained are encouraging, and suggest that better results

could be obtained increasing the dimensions of the dataset

and thus the size of the training set for the automatic

algorithms.

The limited number of subjects available for studies on

CAP is indeed a critical issue and the main reason why

CAP scoring still remains a debated topic in sleep medi-

cine. The development of an efficient automatic classifier,

on the other hand, could allow for the quick scoring of a

large number of sleep recordings, that could then be dou-

ble-checked by experts, leading to significant advance-

ments in the field.

The intrinsic characteristics of these methods increase

the potential discrepancy between visual and automatic

definition of phase A duration. In fact, while the clinician

performs her scoring by visualizing portions of the EEG

traces of duration approximately equal to 30 s, the auto-

matic recognition methods are based on 1-s moving win-

dows, and classifies each second as a separate entity. In

order to overcome this problem, before identifying CAP

sequences based on the recognition of A phases and the

application of the duration criteria, we suggest having an

expert perform an a posteriori validation and control of the

duration of each potential A phase as scored by the chosen

automatic algorithm.

As described in the Sect. 1, CAP A phases can belong to

three subtypes (A1, A2 and A3), with different frequency–

amplitude characteristics and distribution through the

night. As a final idea for a further development, an algo-

rithm capable of distinguishing among the three A phase

subtypes could be implemented, that exploits filters in low

and high frequency bands to attribute the activation to

subtype 1, 2 or 3, depending on the de-synchronization

time/total time rate.

In conclusion, the present study could constitute a good

starting point for the development of an efficient CAP

detection tool for the use in clinics, allowing to speed up

the study of sleep microstructure and avoid the difficulties

due to human rater disagreement, together with providing a

means to shed light on the physiological mechanisms that

are at the basis of CAP.
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