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  Early death of grafted bone marrow mesenchymal stem cells (MSCs) represents a major limit to their use in 
cell therapy of solid organs. It is well known that oxidative stress plays a major role in cell death. We have re-
cently shown that the serotonin-degrading enzyme monoamine oxidase A (MAO-A) generates large amount 
of hydrogen peroxide (H 2 O 2 ) responsible for cell apoptosis. Hydrogen peroxide generation requires 5-HT inter-
nalization into the cell and its degradation by MAO-A. In the present study, we investigated whether MAO-A 
is expressed in MSCs and we defi ned its role in serotonin-dependent MSCs apoptosis.   RT-PCR analysis and 
western blots showed that the serotonin transporter (SERT) and the 2 MAO isoenzymes, A and B, are expressed 
in MSCs. As shown by enzyme assays using [ 14 C]serotonin or [ 14 C]β-phenylethylamine as selective MAO-A or 
MAO-B substrates, MAO-A is largely predominant in MSCs. Incubation of MSCs with the MAO substrate tyra-
mine led to a time-dependent generation of H 2 O 2  that was prevented by the MAO inhibitor pargyline. Finally, 
exposure of the cells to serotonin promoted an increase in MSCs apoptosis prevented by pargyline and the SERT 
inhibitor imipramine. The pro-apoptotic effect of serotonin was associated to a decrease in the expression of the 
anti-apoptotic factor Bcl-2.   In conclusion, these results show for the fi rst time that the 5-HT-degrading enzyme 
MAO-A is an important source of H 2 O 2  in MSCs and plays a major role in 5-HT-dependent MSCs apoptosis.     

  Introduction 

 Mesenchymal stem cells (MSCs) are progenitor cells 
that can be isolated from different tissues, in partic-

ular from bone marrow and adipose tissue [ 1–3 ]. Results 
obtained in our and other laboratories showed that direct in-
jection of MSCs into the tissue is associated with a functional 
recovery of ischemic kidney [ 4 ] and heart [ 5 ]. In particular, 
MSCs protect against both chemical and ischemia–reperfu-
sion damage and promote repair process in models of acute 
renal injury [ 6 , 7 ]. Although intraparenchymal injection 
allows concentration of MSCs within the injured organ, its 
use is limited by the extensive early death of grafted cells 
[ 8–10 ]. Different mechanisms have been involved in this 
phenomenon including hypoxia, infl ammation, and oxida-
tive stress [ 11–13 ]. The importance of reactive oxygen spe-
cies (ROS) in death of grafted cells has been supported by 
studies showing that prevention of oxidative stress through 
pharmacological approaches [ 7 ] or genetic modifi cations [ 14 ] 

allowed increasing MSCs survival after graft. At present, the 
intracellular sources of ROS and their involvement in MSCs 
death have not been clearly identifi ed. Recently, we have 
shown for the fi rst time that, in different cell types [ 15–17 ], 
the mitochondrial enzyme monoamine oxidases (MAOs) 
generate large amount of hydrogen peroxide (H 2 O 2 ). Based 
on genetic criteria, substrate specifi city, and inhibition by 
selective compounds, MAOs have been classifi ed in 2 isoen-
zymes, MAO-A and MAO-B [ 18 , 19 ]. Both catalyze the oxida-
tive deamination of biogenic and dietary amines [ 20 ] and are 
primarily involved in the degradation of neurotransmitters 
within the central nervous system. There are also implicated 
in the metabolism of biogenic amines in peripheral tissues 
and vascular cells [ 20–22 ]. MAO-A and MAO-B oxidize do-
pamine, norepinephrine, and tyramine whereas serotonin 
(5-HT) is the preferred substrate for MAO-A and phenyleth-
ylamine is the preferred substrate for MAO-B. The control 
of substrate availability has been considered as the major 
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similar hypertrophic and apoptotic responses as those seen 
in primary adult and neonatal cardiomyocytes [ 26 ].  

  Apoptosis evaluation 

 Apoptosis was assessed by double staining cells with 
Syto 13 (1 μmol/L; Molecular Probes, Eugene, OR) and pro-
pidium iodide (6 μg/mL; Molecular Probes) for 15 min at 
37°C. Cells were then examined with a fl uorescent micro-
scope, and apoptotic cells were characterized by condensed, 
fragmented nuclear regions. A total of 300 cells were counted 
for each condition.  

  Western blot 

 For western blot (WB), proteins were extracted from MSCs 
and prepared from rat brain and liver lysates. WB analyses 
were performed with samples normalized for protein con-
centration. Membranes were probed with anti-rabbit Bcl-2 
(1:500; Santa Cruz Biotechnology, Santa Cruz, CA), anti-
mouse Bax (1:500; Santa Cruz Biotechnology, Santa Cruz, 
CA), anti-rabbit MAO-A (1:400; Santa Cruz Biotechnology), 
anti-goat MAO-B (1:400; Santa Cruz Biotechnology), or  
anti-goat actin (1:1,000; Santa Cruz Biotechnology) antibod-
ies. Following several washes in Tris-buffered saline-Tween 
(0.2%), membranes were incubated with anti-rabbit or anti-
mouse or anti-goat secondary antibody (1:10,000; Santa 
Cruz Biotechnology). Expression of Bcl-2 and Bax is com-
pared with expression of actin.  

  H 2 O 2  production assay 

 As previously reported, the luminol-amplifi ed chemilu-
minescence assay is a sensitive procedure to measure the 
specifi c contributions of MAO-A and MAO-B to H 2 O 2  pro-
duction [ 27 ]. 

 H 2 O 2  production was measured by chemiluminescence 
assay on MSCs scrapped in Hank’s balanced salt sodium 
(HBSS; 5 μg) in the presence of luminol (30 μM) and horse 
radish peroxidase (0.1 U/μL) by using a thermostatically 
(37°C) controlled luminometer (Mithras, Berthold, France). 
The generation of chemiluminescence triggered with 
tyramine (30 μM), a common MAO substrate, was moni-
tored every 20 s during 60 min.  

  Assays of MAO activity 

 Crude extracts of proteins (50 μg) were incubated at 37°C 
for 20 min, in the presence of 3.125 to 400 μM of [ 14 C]serotonin 
or 200 μM of [ 14 C]β-phenylethylamine to measure MAO-A and 
MAO-B activities, respectively [ 28 ]. To defi ne the nonspecifi c 
activities, the MAO-A inhibitor clorgyline and the MAO-B in-
hibitor deprenyl were used (0.1 μM). The reaction was ended 
by the addition of 0.1 mL of HCl 4 N at 4°C. The reaction pro-
duct was extracted (effi ciency 92%) with 1 mL of ethyl acetate/
toluene (v/v), and the radioactivity contained in the organic 
phase was counted in a liquid scintillation spectrometer.  

  Statistical analysis 

 Results are expressed as mean ± standard error of the 
mean (SEM). Statistical comparison of the data was per-
formed using the  t -test for comparison between 2 groups or 

feature of MAOs in the central nervous system and in the 
periphery. Our recent studies allowed demonstrating the 
existence of an additional function of MAO-A. Indeed, we 
showed that H 2 O 2  produced by MAO-A during 5-HT deg-
radation plays a major role in cardiomyocytes apoptosis in 
vitro and in vivo [ 23 ]. Based on our and other results, it is 
now accepted that 5-HT may act through 2 different mecha-
nisms: one, the receptor-dependent, involves stimulation of 
specifi c 5-HT receptors; the other, the MAO-A-dependent, 
requires 5-HT internalization into the cell, its degradation 
by MAO-A, and H 2 O 2  generation. 

 Recent studies demonstrated that MSCs are a target of 
5-HT. Indeed, it has been shown that 5-HT, through activa-
tion of 5-HT2 receptors, regulate neuroplasticity [ 24 ] and 
proliferation of MSCs [ 25 ]. 

 In the present study, we investigated whether MAO-A 
is expressed in MSCs and we defi ned its role in serotonin-
dependent MSCs apoptosis.  

  Materials and Methods 

  Cell culture 

 Marrow aspirates were obtained from femurs cavity of 
Lewis rats (Harlan, France) weighing 180–200 g. Bone mar-
row from femurs cavity was fl ushed with minimum essential 
medium (MEM) (ABCYs, France) containing 10% fetal calf 
serum (FCS) and 1% penicillin/streptomycin (Invitrogen, 
Carlsbad, CA) and the cell suspension was centrifuged (400 g , 
5 min). Then, cells were plated in culture fl asks (200,000 cell/
cm 2 ). Nonadherent cells were removed after 72 h and MSCs 
were recovered by their capacity to adhere highly to plastic 
culture dishes. MSCs were then routinely cultured and were 
used for the experiments after passage 3. Most adherent cells 
expressed CD90, CD29, CD106 and were negative for CD34, 
CD45, and CD31.  

  RT-PCR 

 Total ribonucleic acid (RNA) was isolated from MSCs, 
or H9C2 using nucleospin kit (Macherey Nagel, Germany) 
and cDNA was synthesized from 1 μg total RNA using 
SuperScript II reverse transcriptase (Invitrogen, Carlsbad, 
CA). Polymerase chain reaction (PCR) was performed in 
20 μL reaction buffer containing 17 μL PCR Platinium Mix 
(Invitrogen), 1 μg cDNA, 1 μg of specifi c primers. PCR condi-
tions were as follows: 4 min at 94°C, followed by cycles of 
denaturation (30 s, 94°C), 30 s annealing at 60°C, and 30 s 
extension at 72°C. PCR products were confi rmed on a 1% aga-
rose gel and visualized under UV light after ethidium bro-
mide staining. Followed primers (sense/antisense) were used 
(Eurogentec, Belgium): SERT-F AGTGCTGTCAGAGTGT
AAGGA, SERT-R GCGCCCAGGCTATGATGGTGTT; MAO-
A-R: ATGACGGATCTGGAGAAGCC; MAO-A-F: TGCCTCA
CATACCACAGGAAC; MAO-B-R: TTAGATAATTTGTGTG
GGTTGAGAGAA; MAO-B-F: AAGAAAACAAAAGAACC
CAGAAATTATT. 

 For mRNA expression of SERT, H9C2 cells have been 
used as a positive control. The H9C2 cardiomyocyte-like cell 
line (American Type Culture Collection, Molsheim, France) 
is a rat embryonic myoblast-derived cell line commonly used 
as an in vitro model of cardiomyocyte biology that shows 
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  H 2 O 2  production by MAOs in MSC 

 In order to determine whether MAOs are a source of 
ROS in MSCs, H 2 O 2  production was assessed using a con-
tinuous luminol-amplifi ed chemiluminescence assay. We 
have previously shown that this technique allows the mea-
surement of H 2 O 2  generation by MAOs in intact cells using 
the MAO-A/MAO-B substrate tyramine [ 27 ]. As shown in 
 Figure 2 , incubation of MSCs with tyramine (30 μM) led to a 
time-dependent increase in chemiluminescence. This effect 
was prevented by preincubation of MSCs with the irrevers-
ible MAO inhibitor pargyline (5 μM). We observed that ROS 
generation by tyramine was prevented by pargyline by 78% 
(94.8–21). Tyramine is a MAO substrate but it has also been 
shown that it can be metabolized by other amino oxidases, 
in particular, the semicarbazide-sensitive amine oxidase 
(SSAO). Consequently, it is possible that residual H 2 O 2  gen-
eration may be related to the SSAO activity. H 2 O 2  generation 
was also observed using higher tyramine concentrations 
(300 μM and 2 mM). However, this effect was observed only 
within 5 min after tyramine addition and rapidly declined 
with time probably because of MSCs death. This hypothesis 
is supported by our previous results showing that tyramine 
(50 μM, 24 h) induced MSCs apoptosis measured by MTT 

one-way analysis of variance (ANOVA) and post hoc Tukey’s 
test for comparison of >2 groups. A value of  P  < 0.05 was 
considered signifi cant.   

  Results 

  Expression of 5-HT transporter and monoamine 
oxidases in MSCs 

 Serotonin transport into the cell and its degradation by 
MAO-A is necessary for H 2 O 2  generation. RT-PCR performed 
on mRNA obtained from rat MSCs showed the expression of 
mRNA encoding for the 5-HT transporter SERT (serotonin 
transporter), and for the 2 isoforms of MAOs, MAO-A and 
MAO-B ( Fig. 1 , panels A and B, respectively). As shown in 
 Figure 1C , western blot analysis performed on MSCs lysates 
revealed 2 proteins with the apparent molecular weight 
expected for MAO-A and MAO-B (~61 and 60 kDa, respec-
tively). The expression of both MAO-A and MAO-B was con-
fi rmed by radioenzyme assay using [ 14 C]5-HT and [ 14 C]β-PEA 
as substrates for MAO-A and MAO-B, respectively ( Fig. 1D , 
upper panel) and by dose response using [ 14 C]5-HT ( Fig. 1D , 
lower panel). Results indicated that the 2 isoforms were found 
in MSCs with a higher expression of the MAO-A.   

A D

B

C

SERT

0

0
0

100

200

100 200 300 400

[14C]5HT
(MAO-A)

[14C] 5-HT (μM)

[14C]βPEA
(MAO-B)

1

2

3

M
A

O
 A

c
ti
v
it
y
 (

p
m

o
l/
m

g
.m

in
)

M
A

O
-A

 A
c
ti
v
it
y
 (

p
m

o
l/
m

g
.m

in
)

4

5

6

MAO-A

MSC Brain

MSC Brain

MSC Liver

MAO-B

MAO-A

MAO-B

M
S

C

H
9
C

2

H
9
C

2
 R

T
-

M
S

C
 R

T
-

  FIG. 1.     Serotonin transporter (SERT) expression and monoamine oxidases (MAOs) expression/activities in mesenchymal 
stem cells (MSCs). ( A ) SERT mRNA expression in mesenchymal stem cells was defi ned by RT-PCR. H9C2 cells have been 
used as positive control. MSCs RT- are relative to negative control in which reverse transcriptase SuperScript II was omit-
ted. ( B ) MAO-A and MAO-B mRNA expression in mesenchymal stem cells. mRNA from brain is used as positive control. 
( C ) Protein expression of MAO-A and MAO-B was determined by western blot in MSCs lysates. Homogenates of rat liver 
and brain were used as positive control of MAO-A and MAO-B, respectively. ( D ) MAO activities were determined using 
[ 14 C]5-HT (400 μM) and [ 14 C]β-PEA (200 μM) as specifi c substrates for MAO-A and MAO-B, respectively (upper panel). A 
dose response for MAO-A activity was realized with [ 14 C]5-HT (3.125–400 μM) in the lower panel. Results are expressed as 
the difference between total and nonspecifi c activities, the latter being defi ned in the presence of selective inhibitors clor-
gyline (10 −7  M) and deprenyl (10 −7  M) for MAO-A and MAO-B, respectively. These experiments have been done on 3 differ-
ent MSCs preparation isolated from bone marrow of Lewis rat.    
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  Effect of serotonin on Bcl-2 and Bax expression and 
mitochondrial cytochrome  c  release in MSCs 

 Apoptotic processes could be associated to mitochon-
drial dysfunction involving members on the Bcl-2 protein 
family such as the anti-apoptotic protein Bcl-2 and the pro-
apoptotic protein Bax. Exposure of MSCs to 5-HT (10 μM, 24 
h) promoted an increase in cell apoptosis ( Fig. 3B ) that was 
associated to a decrease in Bcl-2 expression ( Fig. 4A ). This 
effect was partially prevented when MSCs were pretreated 
with pargyline (5 μM, 24 h). We next examined the effect of 
serotonin on Bax expression ( Fig. 4B ). Western blot analysis 
showed that incubation of MSCs with 5-HT did not modify 
the level of Bax protein.  

 Release of cytochrome  c  from mitochondria to cytosol is 
a critical step of the mitochondrial-dependent cell apoptosis. 
As shown in  Figure 4C , MSCs treatment with 5-HT (10 μM, 
24 h) induced a slight increase in cytosolic cytochrome  c  as 
defi ned by western blotting. 

 Altogether, these results indicate that 5-HT induces 
MSCs apoptosis through a MAO-A-dependent mechanism. 
This effect could involve ROS generation concomitant to a 
decrease in the amount of the anti-apoptotic factor Bcl-2 that 
could contribute to cell apoptosis.   

  Discussion 

 In the present work, we showed the expression of the 
5-HT-degrading enzyme MAO-A in bone marrow MSCs 
and its role in H 2 O 2  generation. In addition, we demonstrated 
that MAO-A is involved in 5-HT-dependent MSC apoptosis. 

 Monoamine oxidase A is widely distributed in the body. 
While the function of MAO-A has been extensively investi-
gated in the central nervous system, less is known concern-
ing its role in the periphery. As in neuronal cells, MAO-A in 
the liver [ 31 ] and in the lung [ 32 ] is involved in the clearance 
of 5-HT. In other cell types, like cardiomyocytes, we showed 
that MAO-A also participates in the cell effects of 5-HT 
[ 15 ]. The MAO-A-dependent effects of 5-HT requires 5-HT 
transport into the cell and its metabolism by MAO-A. Our 
results show for the fi rst time that this mechanism of action 
of 5-HT exists in MSCs. Indeed, we showed that 2 partners, 
necessary for the receptor-independent effects of 5-HT, 
SERT, and MAO-A, are expressed in MSCs. As previously 
reported for cardiomyocytes, 5-HT induced MSC apoptosis 
and this effect was prevented by the SERT inhibitor imipra-
mine, by the MAO inhibitor pargyline, and more surpris-
ingly by SB206553. We may explain these very intriguing 
results by interactions between 5-HT receptors and SERT. 
Indeed, studies have showed that activation of 5-HT recep-
tors could trigger the phosphorylation of SERT by PKC, PKG, 
or p38. These kinases modulate the SERT membrane expres-
sion and, consequently, promote a reduction or an acceler-
ation of the kinetics of 5-HT uptake [ 33–35 ]. Furthermore, 
in platelets, SERT-mediated accumulation of 5-HT results in 
“transamidation” to small GTPases such as Rho-A and Rho-4 
[ 36 ]. In this case, 5-HT2A receptors synergizes with SERT. 
Consistent with these results, we also showed that 5-HT de-
creased the expression of the anti-apoptotic protein Bcl-2 
through a MAO-A-dependent mechanism. These results 
show that 5-HT and MAO-A may behave as pro-apoptotic 
factors in MSCs. In our experiments, we observed only a 
slight increase of cytochrome  c  release after 5-HT treatment. 

assay (data not shown). According to our fi ndings, Marcocci 
et al. demonstrated that tyramine at concentrations from 
100 to 500 μM altered the mitochondrial membrane perme-
ability transition [ 29 ], an event generally associated with cell 
apoptosis [ 30 ].  

 These results indicate that MAOs are able to produce 
H 2 O 2  during substrate degradation.  

  5-HT treatment induced apoptosis of MSC 

 In these experiments, we investigated whether MAOs are 
involved in 5-HT-dependent MSCs apoptosis. Cell apoptosis 
was evaluated by analysis of DNA fragmentation and the 
measure of cell incorporation of 2 fl uorescence dyes SYTO-13, 
a permeant DNA intercalating green-colored probe, and pro-
pidium iodide, a nonpermeant intercalating orange probe. 
Apoptotic and necrotic cells were discriminated by green 
(SYTO-13) and orange (propidium iodide) staining, respec-
tively. Cell treatment with increasing concentrations of 5-HT 
for 24 h induced a signifi cant increase (25% to 40% for 5-HT 
10 μM) in the number of SYTO-13-stained cells as compared 
to untreated cells ( Fig. 3A ). In contrast, 5-HT treatment did 
not increase cell staining by propidium iodide, the marker of 
necrotic cells. Exposure of MSCs to 5-HT (10 μM) at different 
times (3, 6, 12, and 24 h) induced a time-dependent increase 
in apoptosis ( Fig. 3B ).  

 As we and others have demonstrated that 5-HT could 
induce apoptosis through a receptor-independent pathway, 
we have decided to clarify the involvement of MAOs in 
5-HT-induced apoptosis. MSCs have been pretreated with 
the pargyline (5 μM, 24 h) before 5-HT treatment and results 
indicated that inhibition of MAO activity prevented apop-
tosis ( Fig. 3C ). Furthermore, use of the imipramine (10 −7  M), 
a serotonin uptake inhibitor, and SB206553 (0.1 μM, 1 h), a 
5-HT2B antagonist, also prevented the pro-apoptotic effect 
of 5-HT on MSCs. 

 These results show that, in order to induce MSCs apopto-
sis, 5-HT needs to be internalized into the cells and metabo-
lized by MAO-A and that 5-HT2B receptor could play a role 
in this mechanism.  
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  FIG. 2.     Monoamine oxidase (MAO)-dependent H 2 O 2  
pro duction in mesenchymal stem cells (MSCs) lysates. 
Generation of chemiluminescence was monitored for 60 min 
after the addition of tyramine (30 μM) to MSCs as described 
in “Materials and Methods” section. MSCs were prein-
cubated with pargyline (5 μM, 20 min) before tyramine 
addition. The plot is representative of 4 separate experi-
ments. * P  < 0.05 versus pargyline-treated MSCs.    
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Nevertheless, the slight increase in cytosolic cytochrome  c  
supports the involvement of mitochondrial dysfunction in 
apoptosis of MSCs. 

 The relevance of 5-HT/MAO-A-mediated apoptosis of 
MSCs in vivo is supported by different observations. In the 
periphery, 5-HT is mainly stored in platelet and released 
by activated platelets. Platelet activation occurs in different 

This could be explained by the kinetics of the experiments. 
Indeed, cytochrome  c  release from mitochondria occurs in 
the early step of the apoptosis. After its release, cytochrome 
 c  is associated with Apaf-1 to form the apoptosome that will 
induce the caspase activation. Our experiments were done 
24 h after 5-HT treatment. It is conceivable that, at this time, 
cytochrome  c  may be partially cleaved in apoptotic cells. 
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  FIG. 3.     Time- and dose-dependent effects of 5-HT on apoptosis. Cell nuclei were double-stained with SYTO-13 and pro-
pidium iodide, allowing discriminating normal cells from cells undergoing apoptosis or necrosis by fl uorescence micros-
copy. ( A ) Photomicrographs of mesenchymal stem cells (MSCs) treated with increasing concentration of 5-HT (5, 10, 50, 
or 100 μM) for 24 h. ( B ) Photomicrographs of MSCs treated with 5-HT (10 μM) for different times (3, 6, 12, and 24 h). ( C ) 
Photomicrographs of MSCs pretreated or not with pargyline (5 μM, 24 h), imipramine (0.1 μM, 1 h), or SB206553 (0.1 μM, 1 h) 
before addition of 5-HT (10 μM, 24 h). Lower panels showed the quantifi cation of apoptotic cells illustrated in upper panels. 
Results are mean ± standard error of the mean (SEM) from 3 independent MSCs preparations isolated from bone marrow 
of Lewis rat. *** P  < 0.001 versus control, # P  < 0.05 versus 5-HT (10 μM).    
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of MAO-A in the regulation of 5-HT effects in MSCs and its in-
volvement in physiological and pathological processes.   
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MSCs were pretreated or not with pargyline (5 μM, 24 h) before the addition of 5-HT (10 μM, 24 h). The expression of Bcl-2 
(panel  A ) and Bax (panel  B ) proteins were determined by western blot in cell lysates (upper panel). Actin expression was 
used to confi rm equal loading of the extracts. Lower panel showed a quantifi cation of western blot data. Results are mean 
± standard error of the mean (SEM) from 3 independent experiments. ( C ) Western blot analysis of the cytochrome  c  (Cyt  c ) 
in mitochondria and the cytosol of MSCs. MAO-A and ERK1/2 were used as markers of mitochondria and cytosol, respec-
tively. * P  < 0.05 versus control.    
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