
p ()

URL: http://www.elsevier.nl/locate/entcs/volume85.html 17 pages

Coordination Model and Noninterference

Alessandro Aldini 1;2

Istituto di Scienze e Tecnologie dell'Informazione

Universit�a di Urbino \Carlo Bo"

Urbino, Italy

Abstract

Noninterference properties for the analysis of secure information ow are proposed

in the setting of a process algebra modeling some Linda coordination primitives

(asynchronous communication and read operation). To this end, relaxed de�nitions

of equivalence are introduced that take into consideration the observational power

of the external observer. The resulting taxonomy is compared with corresponding

security de�nitions for synchronous communication models. As a result, we em-

phasize how the proposed coordination model a�ects the expressive power of some

noninterference properties, by giving a new intuition to the relative merits.

1 Introduction

Con�dentiality issues in multi-level security systems have been deeply and

successfully treated in several formal models. In particular, we want to fo-

cus on those semantics-based models (i.e., models that analyze the program

behavior to verify security properties) that rely on the noninterference ap-

proach to information ow analysis (see, e.g., [5] and the references therein).

The basic idea of noninterference [7] is that lack of implicit information ow

from high- to low-security levels is ensured if the interactions observed at

the low-security level are invariant under changes in high-level behaviors. In

practice, by interacting with the low-level interface of the system at hand, an

observer cannot deduce anything about the interplay between a high-class user

and the high-security part of the system. A common feature of most of the

noninterference-based formal models is the synchrony of both input and out-

put operations, which represent the possible interactions between the system

and the environment. In essence, the main principle behind a synchronous

communication model is that the environment and the modeled system must

1 This work has been supported by MEFISTO project \Metodi Formali per la Sicurezza e

il Tempo".
2 Email: aldini@sti.uniurb.it

c2003 Published by Elsevier Science B. V.

37

Aldini

agree on the events to be performed if we want that they really happen. For

instance, a con�dential high-level output takes place the instant a high-class

user of the environment is available to accept it. Symmetrically, an input

operation is allowed to be performed the instant the environment activates

that input. On the basis of such a symmetric treatment of communication

primitives, the system at hand is analyzed in order to establish whether or

not a low-security observer can distinguish alternative behaviors of the system

that di�er in the high-level operations only. The motivation for symmetrically

treating inputs and outputs in security issues is argued in many works (see,

e.g., [8]). Anyway, in many cases a model that does not distinguish output

actions from input ones can lead to noninterference results that turn out to

be too restrictive. In fact, there may be several output communications that

cannot be refused, such as the appearance of information on a screen, and

that allow the system to proceed just after performing them (as emphasized,

e.g., in [13]). Since their occurrence is entirely uninuenced by the high-level

environment behavior, con�dential output operations cannot cause an infor-

mation leakage from a high-level user to a low-level unauthorized observer that

interact with the same system. In essence, the execution of an asynchronous

high-security output can be neither refused (delayed) by the high-level user

nor observed by the low-level user.

In this paper, we analyze the e�ect of considering output events as asyn-

chronous communications on the expressive power of some noninterference

properties. In particular, we consider the CCS-based security properties in-

troduced in [4] to describe in a process algebraic setting the basic idea of non-

interference. The formal framework we employ, which is borrowed from [3],

expresses some Linda coordination primitives (asynchronous communication

and read operation) in the setting of a nondeterministic process algebra in-

spired by CCS [12]. In this model, asynchronous communication is realized

by means of a so-called tuplespace, which models a shared box that explicitly

(i) receives messages (also called tuples) generated via output operations, and

(ii) allows processes of the environment to remove (read without removing)

the same messages via input (read) operations. Hence, from the observability

viewpoint, the focus moves from the behavior of the system, which can inter-

act with the environment via the execution of inputs and outputs, to the set

of tuples that can be removed (read) from the tuplespace. In other words,

since communications take place through access to the tuplespace, what an

observer can see is just the tuplespace. As a consequence, we have that a read

operation performed by the system has the same e�ect as an internal action,

since it does not cause changes in the tuplespace. Obviously, this requires

that the equivalence relations used to de�ne the observational semantics of

our language must take into consideration the observational power of an ex-

ternal user. To this aim, two classical notions of equivalence will be rephrased

in this asynchronous communication model, i.e. a trace equivalence and a weak

bisimulation equivalence.

38

Aldini

As far as the security context is concerned, the tuplespace is divided into
a high-level part containing high-security tuples, which are emitted (and can

be consumed) by high-level users, and a low-level part containing unclassi�ed,
public messages, which are generated (and can be consumed) by low-level

users. To make it clear the relationship between such an asynchronous com-
munication model and the related security issues, some noninterference prop-
erties are de�ned in the same line of [4]. One goal consists of studying the kind

of information ow that can be revealed in a Linda-like coordination model,
where users deal with an explicit communication interface, the tuplespace,

instead of directly interacting with the system, and a low-level observer can

infer the behavior of high-level users by manipulating the public portion of the

tuplespace only. On the other hand, another result we present is a comparison

of the resulting taxonomy with the classi�cation of the corresponding prop-
erties of [4]. The emphasis is on the inuence of the described coordination

model upon the security analysis of concurrent computer systems.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
process algebra and the formal framework necessary to conduct the nonin-

terference analysis. Then, in Sect. 3 we propose in this asynchronous setting
some security properties of [4] and, through several examples, we study their

expressive power, by emphasizing similarities and di�erences with respect to
the synchronous setting of [4]. Finally, in Sect. 4 we report on related work

and some conclusions.

2 Security Asynchronous Language

With respect to synchronous languages, where the constituent elements are

actions representing system activities, the basic elements of the asynchronous
calculus are messages, which can be put in (removed from) the tuplespace.

Formally, we denote by M, ranged over by a; b; : : :, the set of message names.

As usual in security models, we distinguish between high-level message names,
denoted by setMH , and low-level message names, denoted by setML, so that

MH and ML are two disjoint sets that form a covering of M.

The security asynchronous language, here called SAL, is a slight variant
of LINPA [3], which in turn is an asynchronous version of CCS [12]. In par-

ticular, SAL is equipped with the input, output, and read operations, and

enriched with the hiding operator, which is needed for the de�nition of secu-

rity properties. Indeed, abstraction is used to specify the observational power
of each external observer, depending on the security level of such an observer.

The set of process terms is generated by the grammar:

C ::= 0 j �:C j CjC j C + C j Cna j C=a j Z

where 0 is the empty process (we usually omit it when it is clear from the
context), and j ; + ; na; =a denote the usual parallel, choice, restriction,

and hiding operators. Moreover, for each constant Z we have a corresponding

39

Aldini

de�nition Z
def
= C, where C is guarded on constants [12]. The possible pre�xes

� are:

� ::= � j in(a) j out(a) j rd(a)

where � is the internal, unobservable action, and in(a) and out(a) express

the usual input and output primitives of Linda, respectively. More precisely,

out(a) produces, in one internal step, a new tuple hai (containing message a)

that is put in the tuplespace. Hence, an output operation is non-blocking as it

allows the system to proceed just after performing the rendering of the tuple.

Instead, in(a) removes, if present, the tuple hai from the tuplespace. Note

that if such a tuple is not present in the tuplespace, then the input operation

is blocked. Similarly, rd(a) denotes the blocking reading of any message a

without removing it from the tuplespace. Tuples are not considered in the

syntax of processes; instead, they are described as states, which are de�ned as

terms generated by the syntax:

P ::= hai j C j P jP j Pna j P=a:

In practice, states model the parallel composition of tuples that are present

in the tuplespace and processes that handle the tuplespace. We call A the set

of possible agents generated by the grammar above, ranged over by P;Q; : : :.

The operational semantics of SAL is de�ned through the structural congru-

ence �, which is de�ned as the smallest congruence that satis�es the axioms

of Table 1. In axioms (x) and (xi), function fn(P) denotes the set of free

names of P and is de�ned as follows:

fn(0) = ;

fn(hai) = fag

fn(P jQ) = fn(P +Q) = fn(P) [fn(Q)

fn(Pna) = fn(P=a) = fn(P)nfag

fn(in(a):P) = fn(out(a):P) = fn(rd(a):P) = fag [fn(P)

fn(Z) = fn(P) if Z
def
= P:

With abuse of notation, in axiom (xii), which is �{conversion, we use P [b=a]

to denote the term obtained by renaming all the free occurrences of the name

a in P with the fresh name b. Then, we de�ne the operational semantics of

SAL as the labelled transition system (A;Act ;!), where (i) the states are

agents of the language; (ii) Act is a set of transition labels (ranged over by

�; �0; : : :) de�ned as Act = f�g [O [I [R, where O = f�a j a 2 Mg is the

set of labels expressing o�er of tuples of the tuplespace to the environment,

I =M is the set of labels denoting consumption of tuples from the tuplespace,

and R = fa j a 2 Mg is the set of labels denoting reading of tuples of the

tuplespace; (iii) the transition relation !� A � Act � A is de�ned as the

least relation satisfying the axioms and the rules in Table 2. In the following,

40

Aldini

(i) P j0 � P

(ii) P jQ � QjP

(iii) (P jQ)jR � P j(QjR)

(iv) P + 0 � P

(v) P + P � P

(vi) P +Q � Q+ P

(vii) (P +Q) +R � P + (Q +R)

(viii) 0 op a � 0

(ix) (Pop a)op b � (Pop b)op a

(x) (P +Q)op a � P + (Qop a) a 62 fn(P)

(xi) (P jQ)op a � P j(Qop a) a 62 fn(P)

(xii) Pop a � P [b=a]op b b fresh

(xiii) Z � P Z
def
= P

op 2 fn; =g

Table 1

Structural congruence for SAL

we assume that set L = O[I [R is ranged over by �; �0; : : :. Since the set of
message names is partitioned into high-level names and low-level ones, we also
partition L into high-level labels and low-level ones, denoted by sets ActH and
ActL, respectively, such that � 2 fa; �a; ag belongs to ActH (ActL) i� a 2 MH

(a 2 ML).

When de�ning security properties, it will be useful to employ a restriction
operator PnIa, which limits its scope to input transition labels only, whose
semantics is de�ned as follows:

P
�
! P 0

PnIa
�
! P 0nIa

� 6= a:

Similarly, it is possible to de�ne the operator PnO a, which prevents the exe-
cution of �a labelled transitions only, and, in the same line, the operator P=O a,
which hides �a labelled transitions only.

41

Aldini

(pre�x) �:P
�

! P out(a):P
�

! haijP

in(a):P
a

! P rd(a):P
a

! P

(tuple) hai
�a

! 0

(sum)
P

�

! P
0

P +Q
�

! P
0

(par)
P

�

! P
0

P jQ
�

! P
0jQ

P
a

! P
0
Q

�a

!Q
0

P jQ
�

! P
0jQ0

P
a

! P
0
Q

�a

!Q
0

P jQ
�

! P
0jQ

(res)
P

�

! P
0

Pna
�

! P
0na

� 62 fa; �a; ag

(hid)
P

�

! P
0

P=a
�

! P
0
=a

� 2 fa; �a; ag
P

�

! P
0

P=a
�

! P
0
=a

� 62 fa; �a; ag

(congr)
P � Q Q

�

!Q
0
P

0 � Q
0

P
�

! P
0

Table 2

Operational semantics of SAL

2.1 Equivalences

Since the analysis of security properties is based on equivalence checking and
focuses on the observable interactions between the environment and the system
at hand, we need an equivalence relation that abstracts away from invisible �
actions. Moreover, in the setting of an asynchronous language, we also must
pay attention on what the external observer is allowed to see. As empha-
sized in [3], an observer can see and manipulate the tuplespace, while he has
no means for inferring whether or not the system is executing input (read)
operations (this intuition leads, e.g., to the de�nition of a barbed bisimula-
tion [1]). Based on these considerations, we de�ne two adequate equivalences
for SAL, i.e. a trace equivalence and a weak bisimulation equivalence (which
extends the strong rd -bisimulation of [3]), which can be used to express secu-
rity properties. In essence, we join the requirements expressed in [3], which
take into consideration the observational power of the external user, with the
usual de�nitions employed in [4,6].

42

Aldini

De�nition 2.1 The expression P
�

)P 0 stands for P (
�

!)�P1
�

! P2(
�

!)�P 0,

where (
�

!)� denotes a possibly empty sequence of � labelled transitions. De-

noted with = �1; : : : ; �n 2 L
� a sequence of visible actions, the expression

P

)P 0 stands for P
�1
)P1

�2
) : : :

�n�1

) Pn�1
�n
)P 0. If is the empty sequence

hi, then P
hi
)P 0 stands for P (

�

!)�P 0. We say that P 0 is reachable from P ,

denoted P)P 0, if 9 : P

)P 0.

With abuse of notation, we say that � 2 = �1; : : : ; �n if � = �i for some

1 � i � n. We de�ne the set A

of reading operations occurring in as A

=

f� 2 j 9a 2 M : � = ag. Given a sequence , where A

= fa

1
; : : : ; a

m
g,

we de�ne S as the set of sequences obtained from by replacing each a
i

(1 � i � m) within with (a
i
)�. Note that 2 S and S = fg if A

= ;.

The trace equivalence for SAL is de�ned as follows:

De�nition 2.2 Given P 2 A, the set T (P) of traces associated with P is

de�ned as T (P) = f 2 L� j 9P 0 : P

)P 0g.

Given P;Q 2 A, we say that P and Q are rd -trace equivalent, denoted

P �T
rd

Q, if and only if for each 2 T (P) there exists Æ 2 T (Q) such that

Æ 2 S(), and vice versa.

In the following, the expression P
�̂

)P 0 stands for P
�

)P 0 if � 6= � , and

for P (
�

!)�P 0 if � = � . Note that (
�

!)� stands for zero or more internal

transitions, while
�

) requires at least one internal transition.

The weak bisimulation equivalence for SAL is de�ned as follows:

De�nition 2.3 An equivalence relation R on A is a weak rd -bisimulation if

(P;Q) 2 R implies:

� if P
�

! P 0, with � 6= a, then 9Q0 such that Q
�̂

)Q0 and (P 0; Q0) 2 R;

� if P
a

! P 0 then 9Q0 such that Q((
�

!)�(
a

!)�)�Q0 and (P 0; Q0) 2 R.

Two agents P and Q are weakly rd -bisimilar, written P �B
rd

Q, if there

exists a weak rd -bisimulation R such that (P;Q) 2 R.

Based on the de�nitions above, an a labelled transition can be simulated

with a mixed (possibly empty) sequence of � and a labelled transitions. The

intuition, which is the weak version of the idea reported in [3], is that since a

read operation does not alter the content of the tuplespace, from the external

observer standpoint the behavior of rd(a) is the same as that expressed by a

possibly empty sequence of unobservable actions and read operations. On the

other hand, a � labelled transition cannot be simulated with a mixed sequence

of � and a labelled transitions. This is because the behavior of rd(a) is more

restrictive than the behavior of an internal � action, since the execution of

rd(a) implies that a tuple hai is in the tuplespace.

43

Aldini

3 Noninterference Properties

In this section, we formalize some noninterference properties based on the two

equivalence relations introduced in the previous section. The de�nitions we

present are based on the classi�cation of security properties described in [4,6]

for a synchronous communication model. In the setting of an asynchronous

communication model, the goal of such de�nitions is to verify whether or not

a low-level user can infer the behavior of the high-level user by observing the

tuplespace during the agent execution.

For the sake of readability, we assume that if L = fa1; : : : ; ang � M, then

the abbreviation P op L stands for P op a1 : : : op an, with op 2 fn; =g.

3.1 Trace-based Properties

The de�nition of noninterference states that there is no observable distinction

(by the low-level user) between the behavior of the system when it accepts

high-level inputs and the behavior of the same system when it does not inter-

act with the high-level environment. In the setting of SAL, this means that

the low-level content of the tuplespace is not a�ected by high-level input oper-

ations. More precisely, a low-level user should not be able to guess the content

of the high-level portion of the tuplespace by interacting with the low-level

part of the tuplespace. We rephrase the related property, called Nondetermin-

istic Noninterference (NNI) [4], in the context of SAL, by de�ning the rd -trace

based NNI (rd -NNI).

De�nition 3.1 (rd -NNI) P 2 rd -NNI , P=MH �T
rd

(PnIMH)=MH:

In synchronous communication models, NNI is not adequate to reveal inter-

ferences due to high-level outputs. Therefore, it is necessary to strengthen such

a property by symmetrically treating input actions and output actions. This

leads to the de�nition of Strong Nondeterministic Noninterference (SNNI),

which states that both high-level inputs and high-level outputs should not

a�ect the low-level behavior of the system. However, in an asynchronous

setting, such an extension is not needed, as we now formally show in the con-

text of SAL. In particular, since output is asynchronous, the high-level user

cannot prevent the system from executing an out(a) operation or, in other

words, there is no relation between the emission of a message performed by

the system and the behavior of the high-level user. As a consequence, such a

kind of operation cannot help the low-level user to deduce the behavior of the

high-level user.

De�nition 3.2 (rd -SNNI) P 2 rd -SNNI , P=MH �T
rd

PnMH:

In order to prove the proposition stating that rd -NNI and rd -SNNI are

equivalent in the context of SAL, we need the following lemma. As far as the

notation is concerned, we employ the function low : L� ! Act
�

L
, which takes

44

Aldini

a trace and removes all the high-level actions from it (i.e., returns the low-

level subsequence of), and the function highinput : L� ! (ActH \ I)
�
, which

extracts from a trace the subsequence composed of all its high-level inputs.

Lemma 3.3 The following hold:

(i) P 2 rd-NNI , 8 2 T (P), 9Æ 2 T (P) such that low(Æ) 2 S(low()) ^

highinput(Æ) = hi.

(ii) P 2 rd -SNNI , 8 2 T (P), 9Æ 2 T (P) such that Æ 2 S(low()).

Proof.

(i)

()) 8 2 T (P), low() 2 T (P=MH). Then, by hypothesis 9
0 2 T ((PnIMH)

=MH) such that
0 2 S(low()) and highinput(0

) = hi. The result follows

from the fact that 9Æ 2 T (P) such that
0
= low(Æ) and highinput(Æ) = hi.

(() It is trivial to see that 8 2 T ((PnIMH)=MH); 9Æ 2 T (P=MH) such

that Æ 2 S(), since T ((PnIMH)=MH) � T (P=MH). On the other hand,

8 2 T (P=MH); 9
0 2 T (P) such that low(

0
) = . By hypothesis, 9Æ 2

T (P) such that low(Æ) 2 S(low(0
)) and highinput(Æ) = hi. Therefore, it

follows Æ 2 T (PnIMH) and low(Æ) 2 T ((PnIMH)=MH). The result derives

from low(Æ) 2 S(low(0

)) = S().

(ii)

()) 8 2 T (P), low() 2 T (P=MH). Then, by hypothesis 9Æ 2 T (PnMH)

such that Æ 2 S(low()), from which we immediately derive the result, since

Æ 2 T (P).

(() It is trivial to see that 8 2 T (PnMH); 9Æ 2 T (P=MH) such that

Æ 2 S(), since T (PnMH) � T (P=MH). On the other hand, 8 2 T (P=MH),

90 2 T (P) such that low(0
) = . By hypothesis, 9Æ 2 T (P) such that

Æ 2 S(low(0

)), from which we derive the result, since Æ 2 T (PnMH). 2

Proposition 3.4 P 2 rd-NNI , P 2 rd -SNNI.

Proof.

(() We start by observing that T (PnMH) � T ((PnIMH)=MH) and

T ((PnIMH)=MH) � T (P=MH). By hypothesis, if 2 T (P=MH), then

9Æ 2 T (PnMH) (and, as a consequence, Æ 2 T ((PnIMH)=MH)) such that

Æ 2 S(). On the other hand, if 2 T ((PnIMH)=MH), then 2 T (P=MH)

and, by hypothesis, 9Æ 2 T (PnMH) (and, as a consequence, Æ 2 T (P=MH))

such that Æ 2 S().

()) By hypothesis and by Lemma 3.3(i), 8 2 T (P), 9Æ 2 T (P) such that

highinput(Æ) = hi and low(Æ) 2 S(low()). Since highinput(Æ) = hi and since

output is non-blocking, there exists Æ
0 2 T (P) such that Æ

0

= low(Æ). Hence,

by Lemma 3.3(ii), we derive the result. 2

To make it clear the intuition behind the asynchronous communication

assumption, we propose a comparison with the synchronous case through some

examples.

45

Aldini

Example 3.5 Consider the agent in(h):out(l):0, with h 2 MH and l 2 ML.

A low-security observer can easily distinguish between the situation in which

the high-level user does not interact with the agent and that in which the

agent consumes a tuple hhi previously emitted by the high-level user. Indeed,

by verifying the presence of the tuple hli in the tuplespace, a low-level observer

can infer the high-level user behavior, even if the presence of hhi cannot be

directly checked by the low-level user. Formally, we have that the agent is

not rd -NNI secure (see Fig. 1). Similarly, in the synchronous setting of [4],

the corresponding agent is not NNI secure, as the low-level output is blocked

until the execution of the low-level input, which is entirely guided by the

high-security user. Such an example shows that NNI and rd -NNI capture the

same kind of interferences. This is because the synchronous and asynchronous

models of communication consider inputs as blocking operations.

< l >< h >
TS

H

S

H

high
level

low
level

high
level

low
level

agent

l
h h

agent

Fig. 1. Agent in(h):out (l):0 { the tuplespace from the low-level viewpoint.

Now, replace the input operation in the agent above by a corresponding

output operation, thus obtaining the new agent out(h):out(l):0. By observing

the low-security part of the tuplespace, the low-level user cannot deduce any-

thing about the behavior of the high-level user. Indeed, the presence of the

tuple hli is not enough to establish whether or not the emitted tuple hhi has

been consumed by the high-level user. Formally, the agent is rd -SNNI secure

(see Fig. 2). On the contrary, in the synchronous setting of [4], the corre-

sponding agent is NNI secure, but not SNNI secure, as the output operation

is blocking, i.e. the execution of the low-level output reveals that a high-class

user accepted the high-level output.

TS < h > < l >

high
level

low
level

?

H
agent

h l

Fig. 2. Agent out(h):out (l):0 { the tuplespace from the low-level viewpoint.

46

Aldini

3.2 Bisimulation-based Properties

Similarly as seen in the previous section, we can de�ne the noninterference

property and its strong version on the basis of the weak rd -bisimulation equiv-

alence de�ned in Sect. 2, thus obtaining the rd -Bisimulation NNI (rd -BNNI)

and the rd -Bisimulation SNNI (rd -BSNNI).

De�nition 3.6 (rd -BNNI, rd -BSNNI)

� P 2 rd -BNNI , P=MH �B
rd

(PnIMH)=MH:

� P 2 rd -BSNNI , P=MH �B
rd

PnMH:

We �rst observe that, as it is easy to verify, P �B
rd

Q implies P �T
rd

Q.

Indeed, every trace of Q must be a trace also for P since P can simulate the

behavior of Q, and vice versa. Hence, we have that rd -BNNI � rd -NNI and

rd -BSNNI � rd -SNNI. However, with respect to the trace-based scenario, the

equivalence relation between rd -BNNI and rd -BSNNI does not hold. This is

because the weak rd -bisimulation equivalence is able to detect deadlocks and

to discriminate agents also according to the nondeterministic structure of their

labelled transition systems.

Example 3.7 Let us consider agent P
def
= out(h):in(h):out(l) (with h 2 MH

and l 2 ML) and verify the rd -BSNNI property. On the one hand, the seman-

tics of PnMH is given by PnMH

�
! (hhi j in(h):out(l))nMH

�
! out(l)nMH

�
!

hlinMH

�l
! 0. Intuitively, if the high-level environment does not interact with

the tuplespace, then the low-level user can read/consume the tuple hli emit-

ted by the agent. On the other hand, it can be veri�ed that P=MH leads

to the same result. The intuition is that since each high-level operation is

hidden, then the agent evolves, through a number of internal steps, into state

hli. Therefore, P 2 rd -BSNNI. However, if the high-level user consumes the

tuple hhi emitted by P , thus preventing the execution of the input operation

in(h), then the agent reaches a deadlock state without emitting the tuple

hli. Such a behavior is captured by the rd -BNNI property. Indeed, agent

((hhi j in(h):out(l))nIMH)=MH, which is reachable from (PnIMH)=MH, en-

ables a � labelled transition obtained by hiding the action �h, representing the

output of tuple hhi. This transition leads to agent ((in(h):out(l))nIMH)=MH,

where the execution of the input operation is prevented. The e�ect of such a

behavior is that P 62 rd -BNNI. The problem revealed by the rd -BNNI property

would be solved by requiring h to be a local name of agent P that cannot be

consumed by any high-level user. For instance, we have that Pnh 2 rd -BNNI,

rd -BSNNI. On the contrary, in the synchronous setting of [4], P is neither

BNNI nor BSNNI.

Example 3.8 Let us consider the following slight modi�cation of the agent

of Example 3.7:

Q
def
= out(h):in(h):out(l) + in(h):

47

Aldini

On the one hand, we have Q 2 rd -BNNI. Indeed, both (QnIMH)=MH and

Q=MH are weakly rd -bisimulation equivalent to process � + �:out(l). In-

tuitively, Q=MH can either evolve into a deadlock state by performing the

right-hand term of the alternative choice operator, or execute a process that,

as seen in Example 3.7, leads to the emission of tuple hli. Moreover, agent

(QnIMH)=MH behaves as agent (PnIMH)=MH of Example 3.7, i.e. it can

either deadlock without emitting the message l or output the tuple hli. On the

other hand, it can be veri�ed that Q 62 rd -BSNNI. In particular, the seman-

tics of QnMH is the same as that of PnMH of Example 3.7, which cannot be

equivalent to �+�:out(l), as PnMH is forced to emit the tuple hli. Di�erently

from Example 3.7, in this case rd -BNNI is not able to reveal a covert chan-

nel. Similarly as seen in Example 3.7, note that Qnh 2 rd -BNNI, rd -BSNNI.

Finally, we also point out that, in the synchronous setting of [4], Q is neither

BNNI nor BSNNI.

As we have seen in the examples above, rd -BNNI and rd -BSNNI do not

match whenever the agent can consume the tuples that it o�ers to the en-

vironment. Indeed, in this case the interleaving between the high-level user

operations and the agent activities interferes with the low-level view of the tu-

plespace. We can avoid such a kind of interference if we assume that the agent

distinguishes between tuples o�ered to the environment (which, therefore, can-

not be consumed by the agent itself) and tuples that the agent employs for

its internal calculations (which must be modeled through local names).

De�nition 3.9 An agent P 2 A is said to be a non-consuming producer (ncp,

for short) if 8P 0: P)P 0, P 0
�a
! implies that P 0 does not enable a � labelled

transition that derives from a synchronization involving label �a.

For instance, process P of Example 3.7 is not a ncp agent. Indeed, as we

have seen, P can �rst emit a tuple hhi, and then can either o�er it to the

environment or consume it via a corresponding input operation. On the other

hand, process Pnh is a ncp agent, since, di�erently from P , it cannot o�er the

tuple hhi to the environment just after emitting it. We can argue similarly for

the agent Q described in Example 3.8.

De�nition 3.9 allows rd -BNNI and rd -BSNNI to be related, as stated by

the following proposition. Instead, we recall that in the synchronous commu-

nication setting BNNI 6� BSNNI and BSNNI 6� BNNI [4].

Proposition 3.10 If P 2 A is a non-consuming producer, then

P 2 rd-BNNI, P 2 rd-BSNNI:

Proof. Let P be an agent and R be a relation de�ned as follows:

((P 0nIMH)=MH; P
0nMH) 2 R, 8P 0: P)P 0.

We now prove that R is a weak rd-bisimulation up to �B
rd

3 . By inspection

3 The de�nition is a straightforward extension of that of [14].

48

Aldini

of possible cases, it follows:

� if P 0nMH

�
! P 00nMH then (P 0nIMH)=MH

�
! (P 00nIMH)=MH, since the

transitions enabled in P 0nMH are a subset of the transitions enabled in

(P 0nIMH)=MH ;

� if (P 0nIMH)=MH

�
! (P 00nIMH)=MH , where � is either a visible action or

a � action that is not obtained by hiding a �h labelled transition enabled

in P 0nIMH , then P 0nMH

�
! P 00nMH , since � models an event of term P 0

that is not restricted in P 0nMH.

� if P 0 = hhijP 00 and ((hhijP 00)nIMH)=MH

�
! (P 00nIMH)=MH , then, since

P is a ncp agent, we have that (hhijP 00)nMH � (0jP 00)nMH � P 00nMH .

Therefore, R is a weak rd-bisimulation up to�B
rd

and PnMH �B
rd

(PnIMH)=

MH, from which we immediately derive the result. 2

An expected result is given by the following lemma, which con�rms that

the high-level outputs do not interfere with the observable behavior of a ncp

agent.

Lemma 3.11 If P 2 A is a non-consuming producer, then

P=OMH �B
rd

PnOMH :

Proof. A straightforward application of the proof of Proposition 3.10. 2

We point out that the restriction to non-consuming producers is reason-

able in an asynchronous setting, since in practice such an assumption states

that once a signal (output communication) is emitted by the agent, then the

environment can eventually consume it.

In general, we can summarize the presentation of the noninterference prop-

erties by emphasizing the following results, as also graphically reported in

Fig. 3.

� In a synchronous setting SNNI is stricter than NNI, while BSNNI and BNNI

do not satisfy any inclusion relation. In an asynchronous setting rd-NNI and

rd-SNNI turn out to have the same expressive power. Such an equivalence

holds also when passing to the weak rd-bisimulation equivalence, provided

that we restrict ourselves to the set of non-consuming producers.

� NNI and rd-NNI have the same expressive power in the sense that they

capture the same illegal interferences, i.e. those that are caused by high-

level inputs. This is because in both communication models input is a

blocking operation.

� As a consequence of the considerations above, SNNI is stricter than rd-SNNI.

This is because the asynchronous assumption prevents the high-level user

from setting up a covert channel based on output operations.

49

Aldini

NNI

SNNI

BNNI

BSNNI

NNIrd− SNNIrd−=

BNNIrd− = BSNNIrd−*

*
for non−consuming producers only.

Fig. 3. Relation among properties in synchronous/asynchronous models.

3.3 The Access Monitor Example

In this section, we consider as a simple case study an access monitor (similarly

as done in [6]) and we show (i) the kind of information ow that can be revealed

in the asynchronous setting, and (ii) the main di�erences with respect to an

approach based on a synchronous communication model.

Let us consider system Sys of Table 3 representing an access monitor that

handles read and write requests on a low-level binary variable enforcing the

multi-level security policy [2]. We recall that such a policy says that a process

at �-security level may only (i) write variables at the same level or above

(write up), and (ii) read variables at the same level or below (read down).

Agent Monitor accepts all the user requests and has direct access to agent

Low Bit , which in turn handles the binary variable, whose initial value is 0

(see tuple hb0i). Moreover, the interactions between Monitor and Low Bit and

the operations internally performed by Low Bit are local (i.e., any user cannot

o�er/consume the related tuples, as imposed by the restriction operators in

agent Sys). Agent Monitor interacts with the environment by consuming the

messages low r , denoting a low-level read request, high r , denoting a high-

level read request, low w0 and low w1, denoting low-level write requests, and

by emitting the high- (low-) level messages hi (li), for i 2 f0; 1g, denoting that
the value i is communicated to the environment. Note that, according to the

multi-level security policy, high-level write requests (high w0; high w1) are not

satis�ed, since a high-class user cannot write a low-security variable.

In the following, we assume that a single low-level user interacts with the

system and we show what such a user can learn about the high-security op-

erations by manipulating the low-level variable. The noninterference analysis

reveals that Sys 2 rd-BSNNI. Moreover, we point out that Sys is a ncp agent.

Therefore, it satis�es also the rd-BNNI property. However, if we allow agent

Monitor to satisfy high-level write requests, then the write up condition is

violated. Formally, if we add to the algebraic speci�cation the alternative

behaviors

in(high w0):out(w0):in(ack):Monitor +

in(high w1):out(w1):in(ack):Monitor

50

Aldini

Low Bit
def
=

in(r):(rd(b0):out(r0):Low Bit + rd(b1):out(r1):Low Bit)+

in(w0):(rd(b0):out(ack):Low Bit + in(b1):out(b0):out(ack):Low Bit)+

in(w1):(rd(b1):out(ack):Low Bit + in(b0):out(b1):out(ack):Low Bit)

Monitor
def
=

in(low r):out(r):(in(r0):out(l0):Monitor + in(r1):out(l1):Monitor)+

in(high r):out(r):(in(r0):out(h0):Monitor + in(r1):out(h1):Monitor)+

in(low w0):out(w0):in(ack):Monitor +

in(low w1):out(w1):in(ack):Monitor +

in(high w0):Monitor + in(high w1):Monitor

Sys
def
= (Monitor j (Low Bit j hb0i)nfb0; b1g)nfr; r0; r1; w0; w1; ackg

Table 3

Access monitor example

then neither rd-BSNNI nor rd-SNNI are satis�ed. For both properties, the

equivalence checking captures the fact that, e.g., the low-level user perceives

the high-level interference by �rst reading l0 and then reading l1 in two con-

secutive read operations.

The same example, based on a synchronous communication model, is pre-

sented in [6], where it is shown that the corresponding properties hold under

the same conditions.

Now, assume that a high-level output is added to inform the high-security

user that a low-level write operation occurred. This can be modeled by adding

the high-level output out(written i), for i 2 f0; 1g, to agent Monitor as fol-

lows:

in(low w0):out(w0):in(ack):out(written 0):Monitor +

in(low w1):out(w1):in(ack):out(written 1):Monitor :

In the synchronous setting such a version of the monitor does not satisfy

the SNNI property [6], since the high-security user can refuse the feedback

concerning the low-level write operation. Hence, two consecutive low-level

write operations can be exploited to inform the low-security user that the

high-class user is still active. Such a behavior is more than enough to set up a

1-bit covert channel from high level to low level. In our asynchronous setting,

it can be veri�ed that such a version of the access monitor is still secure. This

51

Aldini

is because the high-level user cannot block or delay the output o�ered by the

monitor, which is interpreted as an independent activity (a signal) instead of

a synchronous, direct interaction with the high-level user.

4 Related Work and Conclusion

In this paper, we presented two semantics for the formalization of noninterfer-

ence properties in the context of a process algebra with asynchronous commu-

nication based on Linda-like coordination primitives. The security properties,

borrowed from [4], are based on both a trace semantics and a bisimulation

semantics. To the best of our knowledge, this work represents the �rst ef-

fort to combine the noninterference approach to information ow theory and

the Linda coordination model. Along these lines of investigation, a work on

asynchronous communication in process algebras and a variety of security

properties has been recently done by Hennessy and Riely in [9]. In particular,

they de�ne an extension of the asynchronous �-calculus in which resource ac-

cess control and secure information ow can be veri�ed using types. The type

system that is proposed for establishing noninterference works if the notion of

process behavior, necessary to formalize a noninterference result, is restricted

to a may testing equivalence.

As a future work, interesting results might be obtained by employing well-

established equational theories developed for asynchronous calculi (see, e.g.,

[10,1,11]). Moreover, as far as the noninterference analysis is concerned, the

classi�cation of security properties of [4] includes many more de�nitions that

express a slightly di�erent intuition of what noninterference means. Among

them we cite Nondeducibility on Composition (NDC), which states that an ac-

tive high-level agent interacting with the system has not to alter the low-level

behavior of the system. In such a framework, the active agent is formalized

as a process that performs high-level actions only and is put in parallel with

the system. Because of the synchronous nature of the communication model,

the active agent decides which input/output operations of the system will be

chosen for execution and which ones, instead, will never occur. However, in

a Linda-like communication model, the only interesting interactions between

the system and the active agent concern the high-level input operations that

the system is allowed to perform. Such observations lead us to consider the

Nondeducibility on Strategies property (NDS) of [15], whose main di�erence

with respect to NDC is given by the synchronous nature of the output op-

eration adopted in [4]. In particular, a strategy is a function that, looking

at previous high-level inputs and outputs, decides the new high-level input.

Then, the NDS basic idea is that the system, when composed to any strategy,

has not to alter its behavior as observed by a low-level observer. On the basis

of such a principle, we plan to rede�ne in our setting a NDC-like property

that expresses the same intuition as that behind the notion of NDS.

52

Aldini

References

[1] Amadio, R., I. Castellani, and D. Sangiorgi, On Bisimulations for the

Asynchronous �{Calculus, Theoretical Computer Science 195(2) (1998), 291{
324.

[2] Bell, D. E., and L. J. La Padula, \Secure Computer Systems: Uni�ed Exposition
and Multics Interpretation", Technical Report ESD-TR-75-306 (1976), The
MITRE Corp., Bedford (MA).

[3] Busi, N., R. Gorrieri, and G. Zavattaro, A Process Algebraic View of Linda

Coordination Primitives, Theoretical Computer Science 192(2) (1998), 167{
199.

[4] Focardi, R., and R. Gorrieri, A Classi�cation of Security Properties, Journal of
Computer Security 3(1) (1995), 5{33.

[5] \Foundations of Security Analysis and Design - Tutorial Lectures", R. Focardi
and R. Gorrieri (Eds.), Springer LNCS 2171 (2001), 396 pp.

[6] Focardi, R., and R. Gorrieri, Classi�cation of Security Properties (Part I:

Information Flow), in [5], 331{396.

[7] Goguen, J. A., and J. Meseguer, Security Policy and Security Models, Proc.
IEEE Symp. on Security and Privacy (1982), 11{20.

[8] Guttman, J., and M. Nadel, What Needs Securing?, Proc. 1st Computer
Security Foundation Workshop (1988), 34{57.

[9] Hennessy, M., and J. Riely, Information Flow vs. Resource Access in the

Asynchronous pi-calculus, ACM Transactions on Programming Languages and
Systems 24(5) (2002), ACM Press, 566{591.

[10] Honda, K., and M. Tokoro, On Asynchronous Communication Semantics, Proc.
ECOOP'91: Workshop on Object-Based Concurrent Computing, Springer-
Verlag vol. 612 (1992), 21{51.

[11] Merro, M., and D. Sangiorgi, On Asynchrony in Name-passing Calculi, Proc.
25th Int. Colloquium on Automata, Languages, and Programming (ICALP'98),
Springer LNCS 1443 (1998), 856{867.

[12] Milner, R., \Communication and Concurrency", Prentice Hall, 1989.

[13] Roscoe, A. W., CSP and Determinism in Security Modelling, Proc. IEEE Symp.
on Security and Privacy (1995), 114{127.

[14] Sangiorgi, D., and R. Milner, The Problem of Weak Bisimulation up to, Proc.
3rd Int. Conf. on Concurrency Theory (CONCUR'92), Springer LNCS 630

(1992), 32{46.

[15] Wittbold, J. T., and D. M. Johnson, Information Flow in Nondeterministic

Systems, Proc. Symposium on Research in Security and Privacy, IEEE CS Press
(1990), 144{161.

53

