
Electronic Notes in Theoretical Computer Science 39 No. 3 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume39.html 27 pages

Exploiting Partial Symmetries for Markov
Chain Aggregation

L. Capra a C. Dutheillet b G. Franceschinis c,1 J-M. Ilié b

a Dip. di Informatica, Universitá di Torino, Italy, lorenzoc@di.unito.it
b LIP6, Université Paris VI, France, Claude.Dutheillet@lip6.fr

c DISTA, Univ. del Piemonte Orientale, Alessandria, Italy,
giuliana@di.unito.it

Abstract

The technique presented in this paper allows the automatic construction of a lumped
Markov chain for almost symmetrical Stochastic Well-formed Net (SWN) models.
The starting point is the Extended Symbolic Reachability Graph (ESRG), which
is a reduced representation of a SWN model reachability graph (RG), based on
the aggregation of states into classes. These classes may be used as aggregates for
lumping the Continuous Time Markov Chain (CTMC) isomorphic to the model
RG: however it is not always true that the lumpability condition is verified by this
partition of states. In the paper we propose an algorithm that progressively refines
the ESRG classes until a lumped Markov chain is obtained.

Key words: Lumpable Markov Chains, Extended Symbolic
Reachability Graph, High-level Petri Nets, Symmetries.

1 Introduction

Very few analysis techniques make it possible to obtain detailed information
on the behaviour of a system without representing its state transition graph.
As the complexity of systems increases, fighting the combinatorial explosion
of the state space becomes more and more critical.

A possible approach to attack this problem is the exploitation of be-
havioural symmetries, from which quotient graphs can be computed. Such
graphs offer a compact representation of the state space as their nodes are no
longer states but classes of states of the system. They can be used both for

1 This work was partially supported by the Italian MURST 60% and by the EEC project
n. 28620 TIRAN.

c©2000 Published by Elsevier Science B. V.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

L. Capra et al.

quantitative (e.g. performance evaluation [3]) and qualitative (e.g., as a basis
for model checking [6]) evaluation of systems.

Well-formed Nets (WN) are a Petri net based formalism from which a
quotient graph, called Symbolic Reachability Graph (SRG), can be computed
automatically. The SRG nodes are sets of equivalent (ordinary) markings. The
SRG has proved useful for analysing basic qualitative properties of the system,
e.g. deadlock-freeness or reversibility [4], and temporal logic properties [7].

The presence of behavioural symmetry in a model can be exploited also
for performance evaluation purposes: in particular the performance analysis of
Stochastic Well-formed Net (SWN) models can be performed by generating a
Markov chain of the same size as the Reachability Graph (RG) of the model.
However a lumped CTMC can be directly derived from the SRG, and any
performance result that could be obtained by solving the (usually much larger)
complete CTMC can also be obtained from the lumped one [5].

Unfortunately, the gain can be relevant only if the models are highly sym-
metric. In practice it is often the case that a system behaves in a symmetric
way in most situations, while in exceptional situations asymmetries arise. The
SRG approach to symmetry exploitation is such that an exceptional asymme-
try may destroy any possibility of exploiting symmetries. For this reason an
extension of the SRG technique (Extended SRG -ESRG) was proposed in [8].

The ESRG allows to exploit the symmetries whenever possible, and to deal
with asymmetries only when they arise. This approach can lead to remarkably
better results (in terms of state space reduction) than the SRG approach,
especially in those models where the asymmetric behaviour is not so frequent.

The drawback of the proposed technique, in its original formulation, is a
loss of information that in some cases makes it impossible to prove some prop-
erties and to directly build a lumped Markov chain for performance analysis
purposes. In [2] we made a first step to overcome the problem of using the
ESRG for performance analysis purposes: in fact we presented an incremental
approach to the refinement of the information contained in the ESRG to check
the ergodicity of the underlying stochastic process. In this paper we make one
step further by showing how a lumped MC can be derived from the ESRG,
avoiding as much as possible its refinement.

The paper is organized as follows. Section 2 is a primer on the symbolic
reachability graph and Section 3 introduces through an example the basic con-
cepts of the extended symbolic reachability graph. The main definitions and
properties related to the derivation of a lumped Markov chain from the SRG
are presented in Section 4. The extension of some of these properties to the
ESRG is also given in this section. The algorithm proposed in Section 5 trans-
forms the ESRG by recursively splitting some extended symbolic markings,
so as to ensure that the new aggregates will satisfy the lumpability condition.
Section 6 explains how to compute the rates of the lumped Markov chain ob-
tained with our algorithm. Section 7 concludes and gives some perspectives
to this work.

2

L. Capra et al.

2 A primer on the symbolic reachability graph

Stochastic Well-formed Nets (SWN) belong to the class of high-level (stochas-
tic) Petri nets, where tokens carry information taken from a finite set of
colours. In SWN, colour domains and colour functions must respect a simple,
rigorous syntax, in order to give the possibility of directly building a Symbolic
Reachability Graph (SRG).

The Appendix briefly presents the SWN formalism for the readers’ conve-
nience; refer to [3,4] for the complete definition of SWNs and of the Symbolic
Reachability Graph algorithm.

SWN tokens carry a composite information expressed as a tuple of colours
(called objects), taken from possibly ordered basic colour classes.

Each colour class represents system components of a given kind (e.g. the
process class, the processor class,. . .), and can be partitioned into static sub-
classes: objects in the same static subclass represent entities that always be-
have in a symmetric (homogeneous) way, while colours belonging to differ-
ent static subclasses may occasionally exhibit a different behaviour. A colour
class partitioned into static subclasses is called distinguished class, and a SWN
model with distinguished classes is said partially symmetrical.

The SRG approach is based on the systematic and automatic exploitation
of symmetries, which consists in lifting the detail level of the state description
(ordinary marking) to a more abstract one, called symbolic marking (SM). For
the sake of presentation simplicity, let us imagine that there is a unique basic
colour class C.

Intuitively, in a SM representation, objects are replaced with symbols which
stand for any object in class C: the resulting representation can be interpreted
as a pattern common to all ordinary markings represented by that SM. If C is
partitioned into static subclasses, each symbol appearing in the SM represen-
tation must be assigned to a static subclass (Ci) of C, and it will represent an
arbitrarily chosen object of Ci. Different symbols represent different objects.

For efficiency, when a set of k different symbols appear with the same
multiplicity in all places of a given SM, they can be substituted by a new
symbol, denoted Zj, characterized by its cardinality (k). For example let
us consider the symbolic representation p1(x1 + x2 + x3 + 2 x4 + 2 x5) +
p2(3x1 + 3 x2 + 3 x3): we can substitute set {x1, x2, x3} with the new symbol
Z1, such that |Z1| = 3, and set {x4, x5} with the new symbol Z2, such that
|Z2| = 2, so that the new, more compact SM representation is p1(Z1+2 Z2)+
p2(3 Z1). The symbol Zj just introduced is called dynamic subclass, and
stands for any subset of |Zj| objects in C. Again if C is partitioned into
static subclasses each dynamic subclass Zj must be explicitly associated with
a static subclass Ci (through a function d()), and in this case it represents
an arbitrarily chosen subset of Ci of cardinality |Zj|. Obviously it must hold
∀Ci :

∑
Zj :d(Zj)=Ci

|Zj| = |Ci|.
SMs represent in a very compact manner sets of equivalent ordinary mark-

3

L. Capra et al.

ings, where equivalent means that they can be obtained from each other by
permutations on colour classes preserving static subclasses. Another impor-
tant feature of SMs is that all ordinary markings grouped in the same SM
enable equivalent sets of transition instances. Moreover, if we fire equivalent
transition instances from equivalent markings, the reached markings are still
equivalent: this leads to the notion of symbolic transition instance, which is a
symbolic representation of equivalent instances.

Since in SMs symbols replace objects, then a symbolic instance enabled
in SMs will associate symbols to the transition variables, instead of objects.
Through a structured symbolic firing rule [3], it is thus possible to directly
build the SRG, starting from a symbolic initial marking.

Since the aggregation performed by SMs must preserve static subclasses,
the effectiveness of the SRG may be dramatically reduced for partially sym-
metrical models. In the extreme case of basic classes all partitioned into cardi-
nality one static subclasses, the SRG corresponds to the ordinary reachability
graph (RG), as explained in the Appendix.

So it was proposed to ignore the partition into static subclasses when not
necessary, allowing a new symbolic representation, called Extended Symbolic
Marking (ESM), even more abstract than the one provided by the SM defini-
tion. A ESM groups together similar SMs, namely SMs which have the same
representation, when the partition into static subclasses is ignored. Of course
the extension is not straightforward because if class C is split into static sub-
classes it is likely that sooner or later (perhaps seldom) this distinction will
be needed to infer the possible model behaviour.

The basic concepts and notations of the ESRG [8] are presented in the next
section and illustrated on a SWN model representing a distributed critical
section algorithm.

3 The distributed critical section example

In this section we informally introduce the ESRG through an example. We
also point out its possible use for performance evaluation purposes.

The SWN model in Fig. 1 represents a distributed critical section algo-
rithm. Idle processes may independently issue requests for the critical section
CS (firing of t1). As soon as a process enters the state (place GS) where a
selection among issued requests is performed (firing of t2), the authorizations
for issuing other requests (place PR) are temporary removed from all processes
that are still in idle state (firing of immediate transition t6), until a request
has been served. If several requests have been sent, a selection is performed
depending on the identities of the processes: all the requests, except the one
with greatest sender identity, are discarded (firing of t4). Forbidden and dis-
carded requests are collected in place FDR. A process can enter the critical
section (place CS), once place FDR contains the identities of all remaining

4

L. Capra et al.

FDR

t6

ID

C

RQ GS CS

PR

t2t1 t3 t5

t4 [p>q]

<q>
<p> <p>

<p+q>

<p>

<p><p><p><p><p><p><p>

<q>

<p>

<p>

<q> <q>

S - <p>
S

S

S

C

C
C

CC

Fig. 1. Petri net model of the Distributed Critical Section algorithm.

processes (firing of t3). After some time, the process leaves CS (firing of t5).

In the example a single class is used, the class of processes C = {pr1, pr2, pr3}.
Let us consider the guard of transition t4, which actually is not a standard

SWN guard. As the order defined on SWN colour classes is circular, it cannot
be used for totally ordering the elements of C. For that, we need to partition
the class in three static subclasses of cardinality one, namely C1 = {pr1}, C2 =
{pr2}, C3 = {pr3}. Using the SWN syntax, the guard p > q becomes:

(p ∈ C2 and q ∈ C1) or (p ∈ C3 and (q ∈ C1 or q ∈ C2))

Here, all static subclasses have cardinality one. Hence we are in the situ-
ation where the SRG does not reduce the RG, since each SM corresponds to
an ordinary marking.

However, only the firing/enabling of transition t4 depends on static sub-
classes. This kind of transitions are called asymmetrical. As long as t4 is
not enabled, the net behaves as if class C had not been split, and it is not
necessary to relate dynamic subclasses to static subclasses.

For instance, the ESM symbolic representation ID(Z1) + RQ(Z2), where
|Z1| = 2, |Z2| = 1, represents the class of markings with two (arbitrarily
chosen) processes in place ID, and the other in RQ, e.g. m = ID(pr1+pr3)+

RQ(pr2). We use ̂̂mk to denote ESMs, while the standard SM representation
is denoted m̂k.

When the refinement of state description becomes unavoidable, typically
because a transition becomes enabled whose behaviour is static subclass de-
pendent, then the ESM representation is developed, i.e., the set of SMs grouped
into that ESM is generated: these SMs are called eventualities of the ESM
and are obtained by instantiating dynamic subclasses with static subclasses.

In our examples, eventualities are represented by a new, more refined defi-
nition of dynamic subclasses to ensure that each dynamic subclass represents

5

L. Capra et al.

ID(Z)1

| Z | = 31

ID(Z) + RQ(Z)1 2

| Z | = 21 | Z | = 12

ID(Z) + RQ(Z)1 2

| Z | = 11 | Z | = 22

RQ(Z)1

| Z | = 31

m

〉 〉

3

(t5, 〈 Z 〉)2
m

〉〉

0

m

〉 〉

1

m

〉〉

2

ID(Z) + CS(Z)1 2

| Z | = 21 | Z | = 12

m

〉〉

11

ID(Z) + GS(Z)1 2

| Z | = 21 | Z | = 12

GS(Z)1

| Z | = 31

RQ(Z) + GS(Z)1 2

| Z | = 21 | Z | = 12

ID(Z) + RQ(Z) + GS(Z)1 2 3

| Z | = | Z | = | Z | = 11 2 3

ID(Z) + GS(Z)1 2

| Z | = 11 | Z | = 22

Z = Z Z = Z ∪ Z1 2e1 : 1
C1

1
C2

1
C3

Z = Z Z = Z ∪ Z1 2e2 : 1
C2

1
C1

1
C3

Z = Z Z = Z ∪ Z1 2e3 : 1
C3

1
C1

1
C2

RQ(Z) + GS(Z)1 2

| Z | = 11 | Z | = 22

Z = Z Z = Z ∪ Z1 2e1 : 1
C1

1
C2

1
C3

Z = Z Z = Z ∪ Z1 2e2 : 1
C2

1
C1

1
C3

Z = Z Z = Z ∪ Z1 2e3 : 1
C3

1
C1

1
C2

m

〉 〉

10

m

〉〉

12

m

〉〉

13
m

〉〉

4

m

〉〉

8

m

〉〉

9

m

〉〉

5 t6

m

〉〉

6

m

〉〉

7

t6t6

(t1, 〈 Z 〉)1

(t1, 〈 Z 〉)1

(t1, 〈 Z 〉)1

(t2, 〈 Z 〉)2

(t2, 〈 Z 〉)2

(t2, 〈 Z 〉)2

(t2, 〈 Z 〉)1

(t2, 〈 Z 〉)1

(t2, 〈 Z 〉)1

C1
(t4, 〈 Z , Z 〉)1

C2
1

C3

C1
(t4, 〈 Z , Z 〉)1

C1
1

C2

C1(t4, 〈 Z , Z 〉)1
C1
1

C3

C1
(t4, 〈 Z , Z 〉)1

C1
1

C2

C1(t4, 〈 Z , Z 〉)1
C1
1

C3

C1
(t4, 〈 Z , Z 〉)1

C2
1

C3

C1
(t4, 〈 Z , Z 〉)1

C1
1

C3

C1
(t4, 〈 Z , Z 〉)1

C1
1

C2

C1(t4, 〈 Z , Z 〉)1
C2
1

C3

(t3, 〈 Z 〉)2

Fig. 2. ESRG of the Petri net model of the DCS algorithm.

only elements of one static subclass. The new dynamic subclasses shall be
denoted Zk

Ci
where Ci indicates the static subclass of the elements of Zk

Ci
.

Hereafter we shall use function d() defined as d(Zk
Ci
) = Ci to associate each

dynamic subclass with a static subclass. The eventuality representation is in
the form: Zk = Zh

Ci
∪ Zm

Cl
∪ . . . which shows how the dynamic subclasses Zk

appearing in the non-refined symbolic representation are refined into dynamic
subclasses Zj

Ci
which take into account the partition into static subclasses.

The ESRG of the distributed CS model is depicted in Fig. 2. Vanishing
markings are shadowed, and their representation is not reported for space
reasons (anyway they do not correspond to any state in the CTMC). The
dynamic subclass distribution in places PR and FDR is omitted, since it can
be derived from that of other places: if CS is marked, PR and FDR are
empty. If GS is marked, PR is empty and FDR has the same marking as ID.
If both GS and CS are empty, FDR is empty and PR has the same marking
as ID.

In this ESRG, eventualities are not represented until a class of markings
is reached, where t4 is enabled. At this point, eventualities may induce differ-

ent behaviours, hence they must be considered separately. For instance, ̂̂m10

contains three explicit eventualities, while the six eventualities of ̂̂m9 are not
represented.

The ESRG generation algorithm, explicitly represents eventualities only in
two cases : if the ESM enables an asymmetrical transition or if some eventu-
alities do not correspond to reachable SMs. In all the other cases, equivalent

6

L. Capra et al.

transition instances are enabled in every eventuality and the set of reach-
able eventualities is the set of possible instantiations of dynamic subclasses by
static subclasses.

As we already mentioned, a possible consequence of asymmetry is that
some eventualities of an ESM may not correspond to reachable SMs. An ESM̂̂mk is thus completely defined by a couple 〈SRk, Ek〉, where SRk stands for
the ESM symbolic representation and Ek for the set of reachable eventualities
of the ESM. A formal definition of ESMs is given in Appendix.

A specific reachable eventuality of ̂̂mk is denoted 〈SRk, el〉, or simply el,
when the ESM is clearly identified by the context. With the same notation we
will also indicate the corresponding SM, which is easily obtained by instanti-
ating SRk dynamic subclasses as defined by el.

ESMs whose eventualities all correspond to reachable SMs are called sat-
urated. All the ESMs in Fig. 2 are saturated. Saturated ESMs with only one

eventuality, e.g. ̂̂m0, are called uniform. ESMs that enable only symmetric

transitions (all the ESMs in Fig. 2 but ̂̂m10 and ̂̂m12) are called symmetric.

When dealing with the ESRG, two levels of detail have to be handled:
the level of the ESMs and the level of the eventualities. This also leads to
different types of transition instances: we can have generic ones (denoted
by thick arcs), which refer to the more abstract symbolic ESM representation,
and the instantiated ones (denoted by thin arcs), which refer to the detail level
of the eventualities. Both types of ESRG transition instances are performed
using a symbolic firing rule directly derived from the one used for building the
SRG. We postpone in Section 4.1 a more detailed description of ESRG firings.

The ESRG in Fig. 2 verifies one of the sufficient conditions for the ergod-
icity (of the underlying SRG) defined in [2], hence it can be used for steady
state performance analysis.

We anticipate that, if all instances of transition t4 (in the CS model)
have the same firing rate, and the strong lumpability condition is considered
(all the states in any aggregate must have the same output rates towards
other aggregates), the obtained lumped CTMC is isomorphic to the ESRG
(considering the ESMs as the nodes of the graph). If instead transition t4 is
asymmetrical also from a quantitative point of view, i.e. its firing instances

have different rates, the states (SMs) in ESM ̂̂m10 do not have the same output
rates, hence the stochastic behaviour of the system cannot be studied taking
the ESM as an aggregate.

The technique that we present allows a lumped CTMC to be derived from
an ergodic ESRG, which in the worst case coincides with the lumped CTMC
isomorphic to the SRG. It is based on the analysis of the ESRG arcs to check
the lumpability condition, considering ESMs as the initial aggregates of states
(SMs). A splitting of the aggregates is carried out whenever the lumpability
condition does not hold.

7

L. Capra et al.

4 Definitions, Terminology and Notation

4.1 Basic definitions

Let us recall some basic definitions, concerning the construction of the SRG,
and the isomorphic lumped CTMC, that are needed to understand the tech-
nique for deriving a lumped CTMC from the ESRG.

In a symbolic firing instance, dynamic subclasses are assigned to the tran-
sition variables instead of objects. The meaning is that any object in the
dynamic subclass can be assigned to the variable. When several type Ci vari-
ables are instantiated in the same dynamic subclass Zj

i (representing a set of
objects arbitrarily chosen within the static subclass of Ci of index d(Zj

i)), we
also need to specify whether the variables are instantiated to the same object
or to different objects of Zj

i .

Let V ar(t) = {x, y, . . .}, denote the set of variables inscribing the arcs
adjacent to t; we denote type(x) the basic colour class (type) of x.

Definition 4.1 [Symbolic instance]
A symbolic instance of t in SM m̂, denoted (t, ĉ), is a function associating to
each x ∈ V ar(t), where type(x) = Ci, a pair of integers 〈j, k〉, such that:

• 1 ≤ j ≤ ndi, where ndi is the number of dynamic subclasses of Ci in m̂,

• 1 ≤ k ≤ |Zj
i |,

• ∀0 < l < k, ∃y ∈ V ar(t) : type(y) = Ci and (t, ĉ)(y) = 〈j, l〉.

More intuitively, the instance of x ∈ V ar(t) is specified by a dynamic sub-
class Zj,k

i , meaning that the variable represents the k-th (arbitrarily chosen)
element of Zj

i in m̂.

The notion of symbolic instance does not change when considering the
ESRG. The only difference is that it may apply to either one of two different
levels: the eventuality level or the more abstract ESM (symbolic represen-
tation) level. In our examples, where one basic colour class C is used (Ck

denotes the k-th static subclass of C), symbolic instances are denoted by
pairs (t, 〈Zj,k

Cn
, Zm,l

Cs
, . . .〉), or (t, 〈Zj,k, Zm,l, . . .〉), depending on whether the re-

lationship between dynamic and static subclasses is indicated or not (see also
Sect. 4.2). The notation (t, ˆ̂c) will be also used to indicate an instance of the
second type.

Indices k, l . . ., denoting an element in a dynamic subclass, are omitted
when the dynamic subclass cardinality is one. Indices j,m . . . are omitted if
there is only one dynamic subclass.

The cardinality of a symbolic instance, denoted |m̂ (t,ĉ)−→|, is the number of
ordinary firings from each ordinary marking belonging to m̂ represented by
the symbolic firing. Denoting with Ẑ(ĉ) the set of dynamic subclasses of m̂
which are assigned to some variable in ĉ, and with instji (≥ 0) the number of

8

L. Capra et al.

different elements of dynamic subclass Zj
i associated with some variable in ĉ:

|m̂ (t,ĉ)−→| =
∏

Zj
i ∈Ẑ(ĉ)

|Zj
i |!

(|Zj
i | − instji)!

The cardinality of a symbolic instance enabled in a symbolic ESM repre-

sentation SR, denoted |SR (t,ˆ̂c)−→|, is computed in the same way, considering the
dynamic subclasses appearing in SR.

Let w[t](c)(m) denote the SWN rate/weight function. The symmetry prop-
erty of SWNs implies that ∀m1,m2 ∈ m̂, ∀ instances (t, c1), (t, c2) represented
by the same symbolic instance (t, ĉ): w[t](c1)(m1) = w[t](c2)(m2). Hence, the
function can be extended to symbolic instances in a straightforward way:

w[t](ĉ)(m̂) = w[t](c)(mk), where mk ∈ m̂ and (t, c) is any instance repre-
sented by (t, ĉ).

If we assume that the rate/weight function only depends on the assign-
ment of transition variables to static subclasses, we can use the notation
w[t](static(ĉ)), where static(ĉ) defines the static subclasses to which dynamic
subclasses involved in the firing belong.

The transition rate of symbolic instance (t, ĉ) (in m̂) is thus defined by:

Definition 4.2 [Rate of a Symbolic Instance]

µ(t, ĉ) = |m̂ (t,ĉ)−→| w[t](static(ĉ)).

Let us now recall the strong lumpability condition.

Definition 4.3 Let {A1, . . . , An} be a partition of the state space of a CTMC
M . The strong lumpability condition holds for any Ai of A iff

∀Aj, j �= i,∀sk, sm ∈ Ai : rate[sk, Aj] = rate[sm, Aj]

where rate[sk, Aj] =
∑

sl∈Aj
rate[sk, sl].

If the strong lumpability condition holds for all Ai of A, then a CTMC M ′

can be obtained fromM replacing each set of states sk ∈ Ai with a single state
(aggregate), denoted Ai, and setting ∀Aj, j �= i : rate[Ai, Aj] = rate[sk, Aj].
Then, denoting with π and π′ the stationary probability functions of M and
M ′, the following property holds:

∑
sk∈Ai

π(sk) = π
′(Ai)

It has been proven [3] that the strong lumpability condition holds for the
CTMC isomorphic to the RG of any SWN, with respect to the aggregation
of ordinary markings into symbolic markings. The output rate from m̂i to

9

L. Capra et al.

m̂j (the element [i, j] of the infinitesimal generator Q, of size |SRG|), may be
directly computed on the SRG:

rate[m̂i, m̂j] =
∑

(t,ĉ): bmi
(t,ĉ)−→bmj

µ(t, ĉ).

4.2 ESRG arcs classification

An important concept in the ESRG is the distinction between asymmetric
and symmetric firings. It is possible to syntactically recognize the symmetric
transitions, i.e. those transitions whose enabling condition and firing rate does
not depend on static subclasses (all transitions of SWN in Fig.1, but t4) from
asymmetric transitions (e.g. t4 in the same SWN).

Definition 4.4 [Symmetric transition]
t is symmetric if:

a) no static subclass, and no clause of type d(x) = d(y) or its negation appears
in t inscriptions or predicate (structural condition).

b) ∀ ̂̂m = 〈SR,E〉, ∀(t, ĉ1), (t, ĉ2) represented by (t, ˆ̂c) in SR:

w[t](ĉ1) = w[t](ĉ2) (firing rate condition).

If t is symmetric, the rate/weight of a symbolic instance, w[t](ˆ̂c), is set
equal to w[t](ĉ1), where (t, ĉ1) is any instance of (t, ˆ̂c).

In the ESRG there are two types of arcs (transition firings), that are clas-
sified as follows:

generic arc : it corresponds to the firing of a symbolic instance of a sym-
metric transition from the symbolic representation SRi of a saturated ESM,
to the symbolic representation SRj of an ESM (which as a consequence is
also saturated [2]).

instantiated arc : it corresponds to the firing of a symbolic instance of a
transition from an eventuality of the source ESM. Very often instantiated
arcs correspond to asymmetric transition firings, however if the source ESM
is not saturated, the transition may be symmetric. The term instantiated
means that the symbolic instance takes into consideration the partitions of
classes into static subclasses. The destination may be the symbolic repre-
sentation of a saturated symmetric ESM, or an eventuality.

For instance, in the ESRG of Fig. 2, the arcs corresponding to the firings
of asymmetric transition t4 are instantiated. All remaining arcs are generic.

4.3 Properties of the ESRG and lumpability

We state some properties of the ESRG which will be employed in different
steps of the algorithm we are going to present, which allows a lumped CTMC

10

L. Capra et al.

to be derived from an ergodic ESRG. It is based on extracting information
from the ESRG arcs, which is exploited to check the lumpability condition,
considering ESMs as the initial aggregates of states (SMs).

Property 1 The strong lumpability condition holds for all the ESMs with only
one eventuality (called elementary).

The next property relates the cardinality of the ESRG generic arcs to the
cardinality of the SRG arcs they represent.

Property 2 Let t be a symmetric transition. Let ̂̂m1 = 〈SR1, E1〉, ̂̂m2 =
〈SR2, E2〉. Then, ∀ek ∈ E1 :∑

ĉ,em: 〈SR1,ek〉
(t,ĉ)−→〈SR2,em〉

|〈SR1, ek〉 (t,ĉ)−→| = ∑
ˆ̂c: SR1

(t,ˆ̂c)−→SR2

|SR1
(t,ˆ̂c)−→|.

where the symbolic instances (t, ĉ) appearing in the left summation are those
represented by the generic transition instance(s) (t, ˆ̂c) appearing in the sum-
mation on the right.

A first direct consequence of Property 2 is that the lumpability condition
is initially satisfied by symmetric ESMs since only symmetric firings (either
generic or instantiated) depart from them: in fact each eventuality of a sym-
metric ESM reaches the destination ESM with the same rate, which is equal
to the sum of rates of the generic firings connecting the two ESMs. A sec-
ond direct consequence is that the rates of generic firings may be computed
without the need of developing all the SRG arcs represented by them.

A similar property does not hold instead for non symmetric ESMs. For
this reason an algorithm is needed that refines the partition into aggregates,
by splitting those aggregates that do not satisfy the lumpability condition.
This may start a domino effect of aggregates splitting. The following property
will be used during the refinement process.

Property 3 Let ag1−→ag2 satisfy the lumpability condition. Then each arc
resulting from a splitting of source ag1 still satisfies the condition.

In the last properties, we have used the term lumpability condition with
respect to single (symmetric) arcs: this forces a little bit the meaning of
lumpability condition, however the justification is that in our algorithm we
shall check the global lumpability by checking the condition locally for each
pair 〈agi, agj〉 of connected aggregates, moreover for a given pair of aggregates
we shall perform the local check avoiding to analyse those symmetric arcs
that surely cannot cause an unbalance in the rate from the elements of the
source aggregate and the destination aggregate. Note that instead if ag1−→ag2
and ag2 gets split into k smaller aggregates ag2,1, . . . , ag2,k, the lumpability
condition may not hold any more for the k pairs ag1 − ag2,j.

11

L. Capra et al.

ID(p2 + p3) + RQ(p1)

ID(p1 + p3) + RQ(p2)

ID(p1 + p2) + RQ(p3) ID(p1) + RQ(p2 + p3)

ID(p2) + RQ(p1 + p3)

ID(p3) + RQ(p1 + p2)
1 2ID(p3)+ RQ(p)+ GS(p)

ID(p3)+ RQ(p2)+ GS(p1)

ID(p1) + RQ(p2) +GS(p3)

ID(p1) + RQ(p3)+ GS(p2)

ID(p2) + RQ(p1) +GS(p3)

ID(p2) + RQ(p3)+ GS(p1)

ID(p3) + PR(p3)+ RQ(p1) + GS(p2)

ID(p3) + PR(p3)+ RQ(p2) + GS(p1)

ID(p2) + PR(p2)+ RQ(p1) + GS(p3)

ID(p2) + PR(p2)+ RQ(p3) + GS(p1)

ID(p1) + PR(p1)+ RQ(p2) + GS(p3)

ID(p1) + PR(p1)+ RQ(p3) + GS(p2)

ID(p3) + GS(p1+ p2)

ID(p2) + GS(p1+ p3)

ID(p1) + GS(p2+ p3)

ID(Z1)

Z1 = 3

RQ(Z1)

Z1 = 3
GS(Z1)

Z1 = 3

ID(Z1)+ GS(Z 2)

Z1 = 2 Z2 = 1
RQ(p1) +GS(p2 + p3)

RQ(p2) +GS(p1 + p3)

RQ(p3) + GS(p1 + p2)

RQ(p1 + p3) + GS(p2)

RQ(p2 + p3) + GS(p1)

RQ(p1 + p2) + GS(p3)

1_1ag

1_2ag 2_2ag

2_1ag

0ag 3ag

4_1ag

4_2ag

5_2ag

5_1ag

8ag

13ag

9_1ag

9_2ag

10_2ag

10_1ag

12_1ag

12_2ag

Fig. 3. Aggregates modified by the application of the lumpability algorithm

5 The algorithm for lumpability check

In this section we first sketch the algorithm for lumpability check, then we
state it more formally.

The input to the algorithm is an initial partition of SMs into aggregates
corresponding to ESMs. The goal of the algorithm is to check whether the
aggregates satisfy the lumpability condition, and in case the condition is not
satisfied, partition the aggregates in smaller ones that satisfy the condition.

The part of the ESRG of the DCS example that is modified by the algo-
rithm is illustrated in Fig. 3: this refinement of aggregates refers to the case of
a static subclass dependent rate for transition t4 (which may take one of two
possible values, qA4 or qB4). For the sake of clarity, in Fig. 3 the symbolic
representations SR of ESMs are not reported (only aggregations of eventual-
ities are highlighted). The meaning of the notation is as follows : agi is the

aggregate corresponding to ESM ̂̂mi, agi j is the j
th subaggregate of ESM ̂̂mi

in case it gets split.

The task of checking lumpability and of refining the aggregates so that the
condition holds has been already dealt with in the literature (see for example
[10,9]). The novelty of the proposed algorithm is the fact that it works using
the information contained in the ESRG, so that the CTMC to be checked for
lumpability is not explicitly given.

The objects manipulated by the algorithm are mainly the aggregates, but
we also use the ESRG information and structure. In particular, the ESM
eventualities correspond to the SMs which belong to an aggregate. A delicate
point is that the arcs between aggregates are never explicitly represented, in-
stead they are derived from the ESRG structure. When an ESM contains the
explicit representation of its eventualities, and all the arcs departing from it
are instantiated, the arcs connecting aggregates can be easily derived from the
instantiated arcs departing from eventualities. On the other hand, a generic
arc between two ESMs which have been refined by the algorithm, can repre-
sent a set of arcs connecting the subaggregates of the source ESM to some

12

L. Capra et al.

subaggregates (not necessarily all) of the destination ESM: as we shall see,
when this happens the generic arcs of the ESRG are unfolded into the instan-
tiated arcs they represent, to allow a correct information on the connection
between aggregates. A simpler case arises when the generic arc connects two
ESMs and only the source ESM has been refined into subaggregates. In this
situation, each subaggregate of the source ESM surely reaches the destination
ESM, moreover the lumpability condition surely holds with respect to this arc,
whatever the partition of the source ESM is (see Properties 2 and 3), hence
this arc does not need to be unfolded.

During the execution of the algorithm, the connections between aggregates
will be classified as checked or to-be-checked with respect to a local checking of
the lumpability condition. In particular, set TBC denotes the pairs 〈ag, ag′〉)
of to-be-checked connections.

The algorithm initialization step marks as to-be-checked all the connections
for which the lumpability condition does not trivially hold, i.e., the pairs
〈ag, ag′〉 connected by an asymmetric connection (this happens when the ESM
corresponding to ag and ag′ are linked by an asymmetric firing). An exception
to this rule arises when ag contains only one eventuality, since a source ESM
with one eventuality trivially satisfies the lumpability condition. For instance,
if we consider the ESRG of our DCS example, the initialization step yields

TBC = {〈ag12, ag8〉, 〈ag10, ag9〉} (a direct correspondence to set { 〈 ̂̂m12, ̂̂m8〉,
〈 ̂̂m10, ̂̂m9〉 }). Observe that the connection 〈ag13, ag12〉 is not to-be-checked

even if ̂̂m13 and ̂̂m12 are connected through asymmetric arcs (firing of t4),
because ag13 is uniform (it has only one eventuality). Moreover, the connection
〈ag10, ag13〉 is not in TBC, because it corresponds to a generic arc between̂̂m10 and ̂̂m13.

If the lumpability condition is discovered not to hold for some pair 〈ag, ag′〉
in TBC, then ag must be refined (i.e., split) into finer grain aggregates. The
splitting of an aggregate ag may break the lumpability condition for the pre-
decessors of ag (i.e., for the aggregates that reach ag). As a consequence
the algorithm must add into TBC a pair 〈ag′, ag〉 for each predecessor ag′ of
ag. On the other hand, after the splitting all the connections 〈ag, .〉 must be
removed from TBC.

Turning to our example, when the lumpability check is performed for ag-

gregate ag12, comprising the three eventualities of ̂̂m12 each one enabling an
instance of t4, if t4 has a static subclass independent rate then the lumpability
condition is satisfied and there is no need to split ag12. If instead t4 has a
static subclass dependent rate, and in particular if we assume the following
firing rates, qA4 for the instance departing from eventuality e3 and qB4 for
the other two instances, then, ag12 must be split into subaggregates ag12 1 and
ag12 2 (see Fig. 3). This splitting may invalidate the lumpability condition for
the predecessors of ag12, hence the pairs 〈ag9, ag12 1〉, 〈ag9, ag12 2〉 are added
into TBC. After the above operations, 〈ag12, ag8〉 is removed from TBC.

13

L. Capra et al.

Reachability Graph Symbolic
Reachability Graph

Extended Symbolic
Reachability Graph≥ ≥

CTMC 1 CTMC 2 CTMC 3
automatic lumping

of CTMC 1

isomorphism
refinement
algorithmisomorphism

≥ ≥

≥==

Fig. 4. Comparison of the CTMCs obtained from a SWN model.

The procedure described above must be reiterated until set TBC be-
comes empty. For the sake of efficiency, all the pairs which relate to the
same source aggregate are analysed together. This is the case for example
for pairs 〈ag9, ag12 1〉 and 〈ag9, ag12 2〉, added to TBC upon splitting of ag12.

Observe that the lumpability check from ag9 (̂̂m9) requires not only to de-

velop ̂̂m9 in eventualities but also to unfold the generic arc ̂̂m9
〈t2,Z2〉−→ ̂̂m12 into

the instantiated arcs connecting the eventualities of ̂̂m9 to the eventualities

of ̂̂m12. After the unfolding, it becomes apparent that ag9 must be split in
two subaggregates ag9 1 and ag9 2. There are also ESMs that are not split
by the algorithm: this is the case for aggregates ag13, ag3 and ag0 which all

correspond to uniform ESMs, and for aggregate ag11 (̂̂m11) since it reaches
only ag0 through a generic arc. Furthermore, the algorithm does not always
require the unfolding of generic arcs. For improving the readability of Fig. 3,
generic arcs connecting split aggregates, are explicitly represented, while the
algorithm derives them from the ESRG arcs (e.g. see the generic arcs exiting

from aggregate ag3 (̂̂m3)).

Let us discuss the relation between the sizes of the CTMCs that can be ob-
tained from a SWN model, summarized in Fig. 4. The CTMC obtained from
the SRG has the same size as the SRG and is actually an automatic lumping
of the CTMC obtained from the RG. It may happen that CTMC2 is identical
to CTMC1, i.e., CTMC1 is not lumpable, and this is exactly what happens
when all the basic colour classes are split into static subclasses of cardinality
one: this condition however can be automatically detected from the structure
of the model. In general it is not possible to derive a CTMC isomorphic to
the ESRG. The refinement algorithm proposed in this paper, allows to auto-
matically derive a Markov chain CTMC3 from the ESRG, which is a lumping
of CTMC2 and which in general will have a number of states greater than
the number of ESMs in the ESRG. The alternative to the proposed approach
would be to blindly apply a partitioning algorithm to CTMC2 (or even worse,
to CTMC1), but this approach in general would be less efficient because it
would not take into account the information on the potential for aggregation
contained into the ESRG (and the SRG), moreover it would require to first
build completely CTMC2 (or even worse CTMC1), while we directly build
the lumped Markov chain CTMC3.

14

L. Capra et al.

Let us compare the sizes of the SRG, of the ESRG and of the lumped
CTMC of our running example in two cases: in the first case transition t4 has
a rate which does not depend on the colour, while in the second it has a static
subclass dependent rate.

The SRG (which in this case is of the same size as the RG) has 30 tangible
and 15 vanishing SMs, the ESRG has 11 tangible and 3 vanishing ESMs. In
the less favourable case, the final lumped CTMC is reduced by a factor 2 with
respect to the SRG size, thanks to our technique. The reduction grows to
a factor 3 when the rate of t4 does not depend on the static subclasses: in
fact in this case all the ESMs satisfy the lumpability condition (observe that
in any case the reduction due to the ESRG algorithm cannot be more than
|Proc|! = 6). In general, the reduction factor is hard to estimate, as it
depends both on the degree of asymmetry of the net and the structure of the
graph.

5.1 Formal description of the algorithm

In this section, we formally express how the aggregates are managed by the
algorithm. A technical aspect which deserves some explanation concerns the
management of aggregate representation: this is not trivial since aggregates
are created and split dynamically; as a consequence the grouping of eventu-
alities into aggregates must be systematically updated in such a way that it
is always easy to retrieve the association between an aggregate identifier ag
and the eventualities it comprises, even if ag has been refined into finer grain
subaggregates at some point. In order to solve this problem, the algorithm
uses two structures, besides the input data structure representing the ESRG:

• AGGREG is a set of tree structures, comprising one tree for each ESM of
the ESRG; it is needed to represent all the aggregates generated by the
algorithm, and the relation between (subaggregates of) aggregates, due to
the splitting of aggregates performed during the algorithm. For the sake of
simplicity in the presentation, each aggregate has a unique identifier within
this structure.

• TBC is a set of pairs of aggregate identifiers (from AGGREG). As antici-
pated in the informal presentation, each pair 〈ag, agdest〉 in TBC indicates
that aggregate ag should be checked for lumpability, and in particular the
pairs 〈ag,−〉 in TBC indicate which connections departing from ag may
not satisfy the condition.

Let us now describe in detail these structures and the functions handling

them. In AGGREG there is one tree for each ESM ̂̂m: the leaves of these tree
represent the current partition in subaggregates of ̂̂m (each leaf corresponds

to a subset of eventualities of ̂̂m). Each branching node in the tree instead

represents a subaggregate of ̂̂m, created at some step of the algorithm: its suc-
cessor nodes are the subaggregates that were directly created from it by the

15

L. Capra et al.

algorithm, which may in turn have been split at successive steps. To deal with
the hierarchical structure of AGGREG, the subAg(ag) function is introduced:
given an aggregate identifier ag, this function returns the set of aggregate
identifiers corresponding to the leaves of the subtree in AGGREG, whose root
is ag. The splitting of a leaf node is performed by function splitAg(ag,AG):
parameter AG is the new partition of the eventualities of the leaf node iden-
tified by ag. The splitAg(ag,AG) function modifies the AGGREG structure
so that node ag becomes a branching node and its immediate successors (new
leaves) are created as required by the splitting operation represented by AG.
Moreover, it returns the identifiers of the newly created nodes.

Finally function createAGGREG(̂̂m) is used to initialize AGGREG as fol-

lows: for each ESM ̂̂m, a tree is created made of a single (root-leaf) node

corresponding to all the reachable eventualities of ̂̂m.
In order to keep track of the ESRG information and structure during

the algorithm, we introduce the following notations, which refer to a given̂̂m = 〈SR,E〉 of the ESRG and to a given node ag in the tree of AGGREG

associated with ̂̂m: ̂̂m.AG is the set of nodes of AGGREG associated with ̂̂m.
Moreover, ag.ESM denotes the symbolic representation SR of ̂̂m and ag.EV

denotes the subset of eventualities of ̂̂m corresponding to ag.

We now define the connections between two nodes ag and agd of AGGREG.
∃ag → agd iff one of the following conditions holds true :

• ∃e ∈ ag.EV, e′ ∈ agd.EV, e→ e′

• ∃e ∈ ag.EV, e→ agd.ESM (instantiated arcs)

• ∃ag.ESM → agd.ESM (generic arc)

At this point, it is worth noticing that when ESMs are refined according
to the lumpability condition, the ESRG structure is updated: the eventuali-
ties of the split ESMs are developed and the generic arcs departing from the
ESM are unfolded into the corresponding instantiated ones if needed. The
labels attached to the arcs linking aggregates are inherited from the transition

relation between ESMs, in particular ag
(t,ˆ̂c)−→agd (ag

(t,ĉ)−→agd) means that one
arc from aggregate ag to agd is due to the firing of the generic (instantiated)

transition firing (t, ˆ̂c)((t, ĉ)). We shall also use the notation ag
(a)−→agd mean-

ing that (some eventuality in) ag is connected to (some eventuality in) agd

through an instantiated asymmetric arc. Finally, 〈., ag〉 denotes the set of
pairs of connected aggregates with destination ag.

Set TBC is the key structure of the algorithm since it is used to keep
track of the elements to be checked for lumpability. Any pair 〈ag, agdest〉 in
TBC means that aggregate ag may be not lumpable because of its connections
ag → agdest. Using the information contained in the ESRG, one can derive
the arcs ag.ESM → agdest.ESM which may be a problem with respect to
the lumpability condition, namely: (1) all instantiated asymmetric arcs from
ag.EV to agdest.EV are to be checked; (2) all symmetric arcs from ag.EV

16

L. Capra et al.

to agdest.EV (instantiated) and from ag.SR to agdest.SR (generic) are to be
checked whenever the ESM agdest.ESM is split (| agdest.ESM.AG |> 1).

Set TBC is initialized with pairs of ESMs connected through asymmetric
firings. The following set called TBCasym captures both qualitative and quan-
titative aspects of asymmetries, in the initial partition into aggregates:

TBCasym = {〈ag, agdest〉 | ∃ag (a)−→agdest}∪
{〈ag, agdest〉 | ∃ag t−→agdest s.t. w[t] depends on st.subcl. }.

For any element tbc = 〈ag, agd〉 of TBC, we introduce the following nota-
tions: tbc.src = ag and tbc.dest = agd. Moreover, 〈ag,−〉 ∈ TBC denotes the
subsets of pairs of TBC, the first component of which is ag. The algorithm
which derives a lumpable structure from the ESRG is the following:

Algorithm 1 (Computation of a lumpable structure)

foreach ̂̂m ∈ ESRG do createAGGREG(̂̂m);
TBC = TBCAsym \ {〈ag, agdest〉 s.t. | ag.EV |= 1};
while((tbc = TBCchoose ()) != nil) do

begin
TBCC = {agd | 〈ag, ag′〉 ∈ TBC ∧ agd ∈ subAg(ag′)};
AG := localLump(tbc.src, TBCC);
if (| AG |> 1) then

begin
AGR := splitAg(tbc.src, AG);
TBC = TBC\〈tbc.src,−〉; TBC = TBC ∪ {〈., ag〉, ag ∈ AGR};
end

end
endalgorithm

So, after the initialization of AGGREG and TBC, the algorithm iterates,
selecting at each step a pair tbc of TBC by means of function TBCchoose().

For the subset 〈tbc.src,−〉 found in TBC, the algorithm computes the set
of TBC destination leaf nodes, namely TBCC. At this point, one may observe
that, although a pair 〈ag, agdest〉 concerns leaf nodes when it is added to TBC,
it may be possible that agdest is split further later, hence agdest could represent
a branching node of AGGREG (this is why we need to use function subAg()
when building set TBCC) . In contrast, tbc.src is always a reference to a ”leaf
node” since the algorithm deals with all pairs of 〈tbc.src,−〉 simultaneously,
checks tbc.src for lumpability, then removes 〈tbc.src,−〉 globally.

Then, the algorithm computes a partition AG of eventualities from tbc.src
by a call to function localLump(tbc.src,TBCC). This function analyzes the
lumpability condition, locally to the aggregate named tbc.src and with re-
spect to all destination aggregates contained in TBCC. It starts by develop-
ing the eventualities of the ESM corresponding to tbc.src (if needed). Also
some generic arcs departing from this ESM may need to be unfolded into the

17

L. Capra et al.

corresponding instantiated arcs: they correspond to those reaching the ESMs
ag.ESM , where ag ∈ TBCC. After the instantiation (which actually modifies
the ESRG structure), a matrix of rates is computed whose rows correspond to
the eventualities evj of the aggregate named tbc.src, and whose columns cor-
respond to all aggregates referred in TBCC. Then rate[evj, agi] is generated:
the elements of this matrix are computed by simply applying the rate com-
putation used for deriving a CTMC from the SRG. Actually, the eventualities
are symbolic markings, and the arcs we are considering correspond to instan-
tiated firings. Observe that the computation of matrix rate does not involve
symmetric arcs such that the destination is not split since they contribute with
equal rate values for all the source aggregates. After the rate matrix has been
computed, if all its rows are equal, then the aggregate named tbc.src satisfies
the lumpability condition and does not need further splitting (it is returned
as a singleton of set AG). If instead not all the rows of rate are equal, then
we must partition the eventualities referred by tbc.src in new (sub)aggregates,
corresponding to the equivalence classes of eventualities obtained by using
the following equivalence relation: evi ∼ evj iff rate[evi, .] = rate[evj, .]. In
other words, the eventualities corresponding to equal rows in rate are grouped
together in a new (sub)aggregate.

The correctness of the algorithm is strongly related to the fact that at
each step, set TBCC represents all to-be-checked destination aggregates w.r.t.
some aggregate. This is initially true due to the initialization of TBC from
(a convenient subset of) TBCasym, then at each step of the algorithm TBC is
updated, (1) by removing all the elements of 〈ag,−〉 , and (2) by adding all
the aggregates of 〈., ag〉 if ag is split. The termination is ensured by the fact
that the number of splittings is bounded by the number of eventualities of the
ESM.

The efficiency of the algorithm depends on the order in which aggregates
are considered: function TBCchoose() is responsible for this. We want to
avoid reconsidering the same aggregate over and over again due to successive
splitting of the aggregates it reaches. Some heuristics can help in this sense,
for example the aggregates enabling some asymmetric transitions should be
considered first since they most probably will be split. Moreover, if ag1 reaches
ag2 and the two aggregates are both to-be-checked (i.e., TBC contains both
some pairs 〈ag1, .〉 and some pairs 〈ag2, .〉), then ag2 should be considered first.

6 Generation of the Markov chain

In this section we define the rules for the lumped Markov chain generation
given the (possibly refined) ESRG and the partition into aggregates computed
by the algorithm presented in the previous section.

• Rule a: the arcs to which this rule applies correspond to instantiated
firings departing from eventualities, i.e., from SMs. Therefore, the rate
computation rule recalled in Definition 4.2 can be used again.

18

L. Capra et al.

1_1ag

1_2ag 2_2ag

2_1ag

0ag

11ag

3ag

4_1ag

4_2ag

8ag
13ag

9_1ag

9_2ag

10_2ag

10_1ag

12_1ag

12_2ag

q1

2*q1

q2

q2

q1

q1

2*q1

q1

q1

q2

2*q2

q2

q2

2*q2

2*q2

q2

q2

2*q2

q2

q2

qA 4

qB 4

qB 4

qA 4

qA + 2*qB4 4

q3q5

Fig. 5. complete CTMC of the DCS example

• Rule b1: the arcs to which this rule applies correspond to generic sym-
metric arcs departing from aggregates and reaching non split (saturated)
ESMs. Again the usual rate computation rule can be applied taking care of
the fact that the symbolic firing refers to the dynamic subclasses defined in
the symbolic representation of the ESM. This is why we need to keep track
of this representation also for the split subaggregates. Observe also that in
this case the transition rate cannot depend on the static subclasses of the
objects involved in the firing.

• Rule b2: the last rule applies to generic arcs connecting a uniform (source)
ESM agu and the subaggregates agd j of a split aggregate agd. Notice that
the split aggregate surely originated from a saturated ESM (because satu-
ration propagates through generic symmetric firings). Let n1 be the cardi-
nality (number of eventualities) of agd, the ESM from which a subaggregate
agd j, originated, and let n2 be the cardinality (number of eventualities)
of agd j. The rate from agu to agd j is obtained by computing the rate
corresponding to the generic symmetric firing (using the usual rule of rate
computation for symbolic firings) and multiplying it by the factor n2

n1
.

It is easy to show that the above three rules cover all possible types of arcs
connecting aggregates.

Fig. 5 shows the complete CTMC derived for our running example in the
hypothesis that t4 has a colour dependent rate (as in the examples of Sec-
tion 5). In this specific example, the eventualities correspond to ordinary
markings, due to the fact that the static subclasses of class C have all cardi-
nality one, so that the instantiated firings boil down to ordinary firings and
their rate computation is trivial. The symbolic firing rate computation rule
(case b1) can instead be applied to all the generic symmetric firings: e.g.,

the arc connecting ̂̂m8 to ̂̂m11 corresponds to firing the symbolic transition in-

stance (t3, Z2). Since in ̂̂m8 the cardinality of Z2 is 1, the rate of this transition
instance is the (static subclass independent) rate q3 of transition t3. Another
example of application of this rule is the computation of the rates from ag10 i

19

L. Capra et al.

to ag13 (= ̂̂m13): observe that both arcs have necessarily the same rate given
by the (static subclass independent) rate q2 of t2 multiplied by the cardinality
of the symbolic arc that in this case is 1 because the unique dynamic subclass
involved (Z1) has cardinality 1.

Let us consider now the rate computation rule b2 that appears two times

in our running example. The two generic arcs connecting ̂̂m0 to ag1 i have
a global rate of 3q1 where q1 is the (static subclass independent) rate of t1
while the factor 3 is computed as: |Z1|!

(|Z1|−1)
(in ̂̂m0, |Z1| = 3). Now we have

to compute which portion of this rate is directed towards each ag1 i: this is
directly related with the cardinality of the two aggregates, so that 2

3
of it goes

towards ag1 1 and
1
3
of it goes towards ag1 2.

7 Conclusions

In this paper, we have introduced a general method for deriving a lumped
Markov chain from the SWN representation of a partially symmetrical sys-
tem. The advantage of using SWN as a modelling formalism is that partial
symmetries are obtained from the structure of the model, thus avoiding to
compute them a-posteriori, and they can be automatically exploited during
the state space construction. The algorithm that we propose exploits the
ESRG both for deriving the structure of the Markov chain and for optimizing
the computation of rates between states. In some cases, the size of the lumped
Markov chain is close to the one obtained from a totally symmetrical model,
despite the asymmetries.

A possible alternative to the strong lumpability condition that has been
presented in this paper would be to look for other lumpability conditions, as
for example the exact lumpability[1]. Choosing which one should be applied
mainly depends on the performance criteria that must be computed. If proba-
bilities of individual (symbolic) markings are needed, then strong lumpability
cannot be used as it only gives the probabilities of aggregates. If instead
performance criteria can be expressed at the level of aggregates, then both
approaches can be used. Unfortunately, we do not have yet a criteria for
deciding which method will give the smallest CTMC for a given SWN model.

The fact that for some systems the ESRG yields a too abstract view of the
state space (which implies that the refinement algorithm has to go through
several iterations to generate the final CTMC) leads us now to work on the
state space construction algorithm. Our future work aims at finding a unifying
framework for different approaches which deal with partial symmetries, among
which the recent works of [6] and [7], without forgetting the need to extend
the associated performance evaluation techniques accordingly.

20

L. Capra et al.

References

[1] Buchholz, P., Exact and ordinary lumpability in finite Markov chains, Journal of
Appl. Prob., 31(1994), 59–75.

[2] Capra, L., C. Dutheillet, G. Franceschinis and J.M. Ilie, Towards Performance
Analysis with Partially Symmetrical SWN, In Proc. 7th International Symposium
on Modeling, Analysis and Simulation, College Park, MD, USA, October 1999.

[3] Chiola, G., C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-
formed coloured nets for symmetric modelling applications, IEEE Transactions
on Computers, 42/11(1993), 1343–1360.

[4] Chiola, G., C. Dutheillet, G. Franceschinis, and S. Haddad, A Symbolic
Reachability Graph for Coloured Petri Nets, Theoretical Computer Science B
(Logic, semantics and theory of programming), 176, n. 1&2(1997), 39–65.

[5] Chiola, G., G. Franceschinis, R. Gaeta, and M. Ribaudo, GreatSPN 1.7:
Graphical Editor and Analyzer for Timed and Stochastic Petri Nets, Performance
Evaluation, special issue on Performance Model ing Tools, 24/1&2(1995), 47–68.

[6] Emerson, E.A., and R.J. Trefler, From Asymmetry to Full Symmetry: New
Techniques For Symmetry Reduction in Model Checking, In Proc of CHARME’99,
Bad Herrenalb, Germany, Sept. 1999, 142–156.

[7] Haddad, S., J-M. Ilie, and K. Ajami, A Model Checking Method for Partially
Symmetric Systems, In Proc. of of FORTE XIII, Pisa, Italy, October 2000.

[8] Haddad, S., J-M. Ilie, M. Taghelit, and B. Zouari, Symbolic marking graph and
partial symmetries, In Proc. of 16th Int. Conference on Application and Theory
of Petri Nets, ICATPN ’95, Torino, Italy, June 1995, 238–257.

[9] Hermanns, H., “Interactive Markov Chains”, PhD Thesis, Erlangen-Nurnberg
Friedrich-Alexander University, 1999.

[10] Paige, P., and R. Tarjan. Three Partition Refinement Algorithms, SIAM Journal
of Computing, 16/6(1987), 973–989.

Appendix

Among the different proposals of high level extensions of Generalized Stochastic
Petri Nets (GSPNs) available in the literature, Stochastic Well-formed Nets
(SWNs) offer the advantage of an automatic detection of the model symmetries,
and of their exploitation in the model solution, through the concept of symbolic
marking. In addition to the usual Coloured Petri Net (CPN) structure and
annotations, SWN adopt a particular syntax to specify colour domains, arc
functions and predicates. Nevertheless, SWNs and CPNs possess the same
expressive power.

In Section A we give a description of the SWN formalism, and its semantics. In
Section B we give some basic definitions of the (E)SRG approach.

21

L. Capra et al.

A SWN definition

The starting point in the structured definition of the SWN colour syntax is the set
of basic colour classes {C1, . . . , Cn}. A basic colour class Ci is a nonempty, finite
(possibly circularly ordered) set of colours; intuitively, a basic colour class can be
defined as a set of colours identifying objects of the same nature. A basic colour
class C is ordered if a successor function is defined on its elements (actually it
is a successor modulo |C|), such that it induces a circular ordering on the class
elements. Examples are the class of processors, the class of memories, the class of
busses, etc. An example of ordered class is the class of processors connected in a
ring topology. Basic colour classes are disjoint (i.e., ∀i, j : i �= j, Ci ∩ Cj = ∅),
moreover, a class may be partitioned into several static subclasses (Ci = Ci1∪. . .∪
Cinsi∀j, k : j �= k,Cij ∩ Cik = ∅): colours belonging to different static subclasses
represent objects of the same type but with different behaviour, for example the
basic colour class of processors could be partitioned into two (disjoint) static
subclasses, one containing the fast processors and the other containing the slow
ones. In the example of Fig. 1 there is only one class, C, representing process
identifiers. This class has cardinality three and is split into three static subclasses
of cardinality one.

The place colour domains are defined by composition through the Cartesian
product operator of basic colour classes. The colour domain of a place is similar
to a C-language structure declaration, i.e., the information associated with tokens
comprises one or more fields, each field in turn has a type selected from the set
of basic colour classes {C1, . . . , Cn}. The identification of the fields is positional
(there is no name associated with a field). The colour domains of the places in
Fig. 1 are very simple: all of them are simply C.

The transition colour domains are used to define the variables of transitions and
their type; each variable has a type selected from the basic colour classes, moreover
restrictions can be defined on the possible colour instances of a transition (i.e.,
on the possible values assigned to variables) by means of a transition predicate,
or guard. Therefore, the definition of a transition colour domain comprises two
parts: a list of typed variables, and the guard, defined as a Boolean expression of (a
restricted set of) basic predicates on the variables. The variables of a transition are
all the variables appearing in the arc functions of the input, output and inhibitor
arcs of the transition 2 . We shall denote V ari(t) the subset of transition t variables
of type Ci, and V ar(t) the whole set of transition t variables. Most transitions
in the example of Fig. 1 have only one variable p of type C, and have a guard
which is always true (in this case the guard just does not appear in the picture).
Transitions t6 and t4 have two variables, p and q, both of type C, moreover t4 has
a guard which allows to select the admissible instances of t4.

Definition A.1 [Standard Predicates] A standard predicate (or guard) associated

2 Observe that the scope of a variable appearing on a given arc is the corresponding
transition: instances of the same variable appearing on arcs of the same transition actually
represent the same object, while different instances of the same variable associated with
different transitions are independent.

22

L. Capra et al.

with a transition t is a boolean expression of basic predicates. The allowed basic
predicates are: x = y, x =!y, d(x) = Cij , d(x) = d(y), where x, y ∈ V ari(t) are
variables of t of the same type, !y denotes the successor of y (assuming that the
type of y is an ordered class), and d(x) denotes the static subclass x belongs to.

As mentioned before, in our running example only one transition has a guard,
namely t4. Actually the syntax [p > q] is not allowed in SWNs, instead the correct
syntax for this guard, using SWN standard predicates is:

(p ∈ C2 and q ∈ C1) or (p ∈ C3 and (q ∈ C1 or q ∈ C2))

where Ci is the static subclass of C containing only element pri.

Arc functions are defined as weighted (and possibly guarded) sums of tuples,
the elements composing the tuples are in turn weighted sums of basic functions,
defined on basic colour classes and returning multisets of colours in the same class.
Given this definition, it is more appropriate to refer to the arc inscriptions as arc
expressions instead of arc functions.

Definition A.2 [Arc expressions] An arc expression associated with an arc
connecting place p and transition t has the following form:∑

k

δk.[predk]Fk

where δk is a positive integer, Fk is a function and [predk] is a standard predicate.
The value of function “[pred]f” is given by:

[pred]f(c) = If pred(c) then f(c) else 0.

Each Fk : cd(t) → Bag(cd(p)) is a function of the form

F =
⊗

Ci∈ C

⊗
j=1,...,ei

f j
i = 〈f1

1 , . . . , f
e1
1 , . . . , f1

n, . . . , f
en
n 〉

with ei representing the number of occurrences of class Ci in colour domain of
place p, i.e.,
cd(p) =

⊗
Ci∈C

⊗
j=1,...,ei

Ci =
⊗

Ci∈C Ci
ei .

Each function f j
i in turn is defined as:

fi =
nsi∑
q=1

αi,q.SCiq +
∑

x∈V ari(t)

(βx.x+ γx.!x)

where SCiq , x and !x are basic functions (defined hereafter), αi,q, βx and γx are
natural numbers.

The multiset returned by a tuple of basic functions is obtained by Cartesian
product composition of the multisets returned by the tuple elements. As it
can be observed in the formal definition of arc expressions, there are three
types of basic functions: the projection function, the successor function and the
diffusion/synchronization function. The syntax used for the projection function
is x, where x is one of the transition variables (it is called projection because it

23

L. Capra et al.

selects one element from the tuple of variable values defining the transition colour
instance), the syntax used for the successor function is !x where x is again one of
the transition variables, it applies only to ordered classes and returns the successor
of the colour assigned to x in the transition colour instance. Finally, the syntax for
the diffusion/synchronization function is SCi (or SCij): it is a constant function
that returns the whole set of colours of class Ci (of static subclass Cij ⊂ Ci). It is
called synchronization when used on a transition input arc because it implements
a synchronization among a set of coloured tokens contained into a place, while it
is called diffusion when used on a transition output arc because it puts several
tokens of different colours into a place.

Most arc functions in our running example are very simple (1-tuples using only
the projection function, e.g. 〈p〉). The function 〈p + q〉 on the arc from GS to t4
returns a set with two elements of C (the values assigned to variables p and q
by the considered instance of t4). Function 〈S − p〉 on the arc from FDR to t3
returns a set of cardinality |C| − 1 comprising all the elements of C except the
one assigned to variable p by the considered instance of t3.

Definition A.3 [Stochastic Well-formed Nets]

A Stochastic Well-formed Net is a nine-tuple:

N = 〈P, T,Pre,Post, Inh,pri, C, cd ,w〉
where:

(i) P and T are disjoint finite non empty sets (the places and transitions of N),
(ii) C = {C1, . . . , Cn} is the finite set of finite basic colour classes, (we use the

convention that classes with index up to h are not ordered, while classes with
higher index are ordered),

(iii) cd is a function defining the colour domain of each place and transition; for
places it is expressed as Cartesian product of classes of C (repetitions of the
same class are allowed), for transitions it is expressed as a pair 〈 variable
types, guard 〉 defining the possible values that can be assigned to transition
variables in a transition instance; guards must be expressed in the form of
standard predicates,

(iv) Pre[p, t],Post[p, t] : cd(t) → Bag(cd(p)) are the pre- and post- incidence
matrices, expressed in the form of arc expressions,

(v) Inh[p, t] : cd(t) → Bag(cd(p)) is the matrix defining the inhibitor arcs and
associated arc expressions,

(vi) pri : T → N is the priority function,
(vii) w is a T indexed vector of functions that assigns rates and weights to

transitions: w[t] : cd(t) × (
⊗

p∈P Bag(cd(p))) → R
+

Although the weight function w can be both colour and marking dependent, in
practice the definition of w is often simplified so that the rate of a given instance
depends only on the static subclass to which the elements assigned to the variables
belong.

An ordinary marking m is a function mapping each place p into a multiset (bag)
on cd(p) (denoted as a weighted sum). Hence a place can contain more than one

24

L. Capra et al.

token of a given colour. The initial marking is denoted as m0. Tokens are denoted
by tuples of objects. In our running example the initial marking is ID(pr1 +pr2 +
pr3) + PR(pr1 + pr2 + pr3).

Given a marking m and a transition t, we call instance of t in m a binding c of
the variables of V ar(t) to objects in the appropriate colour class. A transition
instance is denoted (t, c).

An instance (t, c) such that:
• pred(t)(c) holds true;
• ∀p: Pre(p, t)(c) ≤ m(p);
• ∀p : Inh(p, t)(c) = 0 or Inh(p, t)(c) > m(p).

is said to have concession in m. An instance is enabled in m iff it does not exist
any instance of a higher priority transition having concession in m.

An enabled instance (t, c) may fire, producing a new marking m′ (m[t, c > m′)
such that for each place p, m′(p) = m(p)−Pre(p, t)(c)+Post(p, t)(c). A path is a
sequence m1

(t1,c1)−→ m2
(t2,c2)−→ m3 . . .mn

(tn,cn)−→ mn+1. The set of all markings reachable
form m is denoted by [m〉 ([m0〉 is called reachability set).
In the initial marking of the SWN in Fig. 1 there are three enabled instances
of t1, characterized by the assignment p = pri, i = 1, 2, 3. After firing instance
(t, 〈pri〉), a token of colour pri is withdrawn from places ID and PR, and a token
of the same colour is put into RQ, so that the instance (t2, 〈pri〉) becomes enabled.

The interest in SWN is due to the Symbolic Marking (SM) and Symbolic Firing
notions that allow to build a reduced representation of the RG called Symbolic
RG (SRG).

A symbolic marking (SM) representation m̂ comprises two parts: a part
representing the distribution of coloured tokens into places, and a part specifying
the so called dynamic subclasses (Zk

Cij
). Section 2 contains an informal

introduction to the symbolic marking concept: let us show here an example of
symbolic marking applied to our running example; in particular we would like to
demonstrate the effect of the partition into static subclasses on the aggregation
of ordinary markings into symbolic markings, which is also a bridge towards the
Extended Symbolic Marking concept. Let us consider a variation of our running
example in which t4 has no guard and C is not partitioned into static subclasses.
The initial marking of this SWN model can be represented in a symbolic form as
follows: m̂0 = ID(Z1

C) +PR(Z1
C), |Z1

C | = 3. The dynamic subclass Z1 represents
(any) three objects (its cardinality is 3) of basic colour class C. Since |C| = 3,
there is only one way of assigning three objects of C to Z1

C , so that this symbolic
marking represents only one ordinary marking. The three objects represented by
Z1 are present in place ID and in place PR.

Let us now consider the following symbolic marking, reachable from the initial one
by firing transition t1: m̂1 = ID(Z1

C) + PR(Z1
C) + RQ(Z2

C), |Z1
C | = 2, |Z2

C | = 1.
It represents three ordinary markings, corresponding to the possible assignment
of the objects of C to the two dynamic subclasses (1: Z1

C = {pr1, pr2}, Z2
C =

{pr3}, 2: Z1
C = {pr1, pr3}, Z2

C = {pr2}, 3: Z1
C = {pr2, pr3}, Z2

C = {pr1}).
It can be interpreted as a pattern for a marking in which one of the three
processes of C (represented by the symbol Z2

C) has issued a request (RQ(Z2
C)),

25

L. Capra et al.

while the remaining two processes (represented by the symbol Z1
C) are idle

(ID(Z1
C) + PR(Z1

C)). Observe that the three ordinary markings represented by
this symbolic marking can be obtained from each other by applying a permutation
on the elements of C.

Let us now discuss the symbolic firing rule, allowing us to build the symbolic
reachability graph starting from a symbolic initial marking.

A symbolic instance of a transition t is defined by specifying an assignment of
dynamic subclasses to the transition variables. For example, we may consider
the following symbolic instance enabled in the initial symbolic marking of our
running example: (t1, 〈Z1

C〉). The assignment of a dynamic subclass to a transition
variable corresponds to the assignment of any element of that dynamic subclass
to the variable so that this symbolic firing represents the three ordinary firings:
(t, 〈pri〉), i = 1, 2, 3. The restricted set of basic functions defined in the SWN
formalism can be easily extended to work on dynamic subclasses, so that the
state change can be defined at the symbolic marking level. So it is possible to
automatically obtain the symbolic marking m̂1 from m̂0 applying the symbolic
firing rule (see [3] for the details).

Let us discuss what happens when |C| is split into three static subclasses (this
is needed to be able to express the guard associated with t4). Since the elements
grouped into a given dynamic subclass must belong to a unique static subclass,
when C is split all symbolic markings will have exactly three dynamic subclasses,
Z1

Ci
, |Z1

Ci
| = 1, i = 1, 2, 3. The new representation of the initial marking will be:

m̂′
0 = ID(Z1

C1
+Z1

C2
+Z1

C3
)+PR(Z1

C1
+Z1

C2
+Z1

C3
), |Z1

C1
| = 1, |Z1

C2
| = 1, |Z1

C3
| = 1

In this situation, there are three enabled symbolic transition instances, namely
(t1, 〈Z1

C1
〉), (t1, 〈Z1

C2
〉), (t1, 〈Z1

C3
〉). The symbolic markings reached by firing these

symbolic instances are:

m̂′
1 = ID(Z1

C1
+Z1

C2
)+PR(Z1

C1
+Z1

C2
)+RQ(Z1

C3
), |Z1

C1
| = 1, |Z1

C2
| = 1, |Z1

C3
| = 1

m̂′′
1 = ID(Z1

C1
+Z1

C3
)+PR(Z1

C1
+Z1

C3
)+RQ(Z1

C2
), |Z1

C1
| = 1, |Z1

C2
| = 1, |Z1

C3
| = 1

m̂′′′
1 = ID(Z1

C2
+Z1

C3
)+PR(Z1

C2
+Z1

C3
)+RQ(Z1

C1
), |Z1

C1
| = 1, |Z1

C2
| = 1, |Z1

C3
| = 1

Observe that when C was not split into static subclasses these markings were
represented by only one symbolic marking: m̂1. Actually, when all classes are
split into cardinality one static subclasses, each symbolic marking represents only
one ordinary marking and the SRG coincides with the RG. The reason is that
the ordinary markings grouped into a symbolic marking must be obtained from
each other by applying a permutation on the objects of basic colour classes that
preserves the partition into static subclasses. Clearly if all static subclasses have
cardinality one, the only admissible permutation is the identity.

B The Extended Symbolic RG

The ESRG marking idea consists of disregarding the partition into static subclasses
unless it is really needed, thus allowing to further aggregate the state space.

26

L. Capra et al.

Definition B.1 (Extended Symbolic Marking)
An ESM ̂̂m is a pair 〈SR,E〉 : Component SR (called symbolic representation of̂̂m) is a standard symbolic marking, except for the fact that dynamic subclasses are
defined disregarding the partition of distinguished classes into static subclasses;
Component E is a set of reachable eventualities: each eventuality defines a
refinement of SR dynamic subclasses with respect to the static subclass partition :
e ∈ E is a family of functions, {e(i) : ˆ̂

Ci → Bag({1, . . . , nsi})}, where Ci ∈ CD

(CD is the subset of C corresponding to the classes with several static subclasses,

called distinguished classes), ˆ̂
Ci is the set of type Ci dynamic subclasses in SR,

and nsi is the number of static subclasses of Ci, such that:

∀Zj
i ∈ ˆ̂

Ci : |e(i)(Zj
i)| = |Zj

i |,
∀1 ≤ k ≤ nsi :

∑
Zj

i ∈ ˆ̂
Ci
e(i)(Zj

i)(k) ≤ |Cik|.

e(i)(Zj
i)(k) (the multiplicity of element k in Bag e(i)(Zj

i)) represents the number
of (arbitrarily chosen) objects of Zj

i that are assigned (instantiated) to static
subclass Cik.

Turning to our running example, even if C is split into three static subclasses,
the three symbolic markings m̂′

1, m̂
′′
1 and m̂′′′

1 are now grouped into a single ESM
̂̂m1, whose symbolic representation coincides with that of symbolic marking m̂1

defined in the previous section (before splitting of C). The symbolic markings
m̂′

1, m̂
′′
1 and m̂′′′

1 are now the eventualities of ̂̂m1. Actually these eventualities are
not explicitly represented in the ESRG of Fig. 2 because no asymmetric transition
is enabled in this ESM.

As an example of the representation of eventualities, let us consider the ESM̂̂m12 = ID(Z1) +GS(Z2), |Z1| = 1, |Z2| = 2 in Fig. 2. The first eventuality of this
ESM is characterized as follows: the unique element of dynamic subclass Z1 is
assigned to static subclass C1, one of the two elements of Z2 is assigned to static
subclass C2 and the other element of Z2 is assigned to static subclass C3. The
notation used is the following: the dynamic subclasses of 〈SR12, e1〉 are Z1

C1
, Z1

C2

and Z1
C3

, all of cardinality 1, and they are a refinement of the SR dynamic
subclasses: Z1 = Z1

C1
, Z2 = Z1

C2
∪ Z1

C3
. The representation of the symbolic

marking corresponding to 〈SR12, e1〉 is obtained from SR12 by substituting the
dynamic subclasses according to the above refinement definition.

The transitions instances in the ESRG can be either generic or instantiated.
They are generic when they refer to the SR dynamic subclasses, while they
are instantiated when they refer to the instantiated dynamic subclasses of the
eventualities. For example transition instance (t5, 〈Z2〉) enabled in ̂̂m11 is generic
symmetric. Instead the instance (t4, 〈Z1

C2
, Z1

C1
〉), enabled in eventuality ̂̂m10.e3, is

instantiated since it refers to the dynamic subclasses of the eventuality.

27

