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Abstract

The behavior of an artificial agent performing in a natural environment is influenced by many
different pressures and needs coming from both external world and internal factors, which
sometimes drive the agent to reach conflicting goals. At the same time, the interaction
between an artificial agent and the environment is deeply affected by uncertainty due to the
imprecision in the description of the world, and the unpredictability of the effects of the
agent’s actions. Such an agent needs meta-cognition in terms of both self-awareness and con-
trol. Self-awareness is related to the internal conditions that may possibly influence the com-
pletion of the task, while control is oriented to performing actions that maintain the internal
model of the world and the perceptions aligned. In this work, a general meta-cognitive archi-
tecture is presented, which is aimed at overcoming these problems. The proposed architecture
describes an artificial agent, which is capable to combine cognition and meta-cognition to solve
problems in an uncertain world, while reconciling opposing requirements and goals. While exe-
cuting a plan, such an agent reflects upon its actions and how they can be affected by its inter-
nal conditions, and starts a new goal setting process to cope with unforeseen changes. The work
defines the concept of ‘‘believability’’ as a generic uncertain quantity, the operators to man-
age believability, and provides the reader with the u-MDP that is a novel MDP able to deal with
uncertain quantities expressed as possibility, probability, and fuzziness. A couple u-MDPs are
used to implement the agent’s cognitive and meta-cognitive module. The last one is used to
perceive both the physical resources of the agent’s embodiment and the actions performed
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by the cognitive module in order to issue goal setting and re-planning actions.

ª 2013 The Authors. Published by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

The effects of the actions performed by an artificial agent
like an autonomous robot, interacting with a natural envi-
ronment cannot be predicted exactly, due to both internal
and external factors. Autonomous robots operating outdoor,
and engaged in rescue or equipment repairing tasks are a
good example of such a scenario.

Natural environments are prone to sudden changes of the
operating conditions (i.e. weather conditions, earthquakes,
accidents, and so on). Moreover, the robot may experience
imprecise perceptions from the environment itself. Finally,
the internal representation of the world may be not well de-
fined; so the agent plans its actions erroneously.

On the other side of the agent’s boundary, the internal
status of the robot can influence its performance severely.
The agent may experience partial failures or a decrease in
power supply; so new goals arise that are aimed at repairing
malfunctions, and can be in conflict with the task at hand.

A robot aimed at coping with all the issues mentioned
above, has to be self-aware to plan its behavior properly.
Moreover, the robot has control because it performs ac-
tions, which maintain its uncertain model of the world and
its uncertain perceptions aligned; as a consequence the
agent can judge if it is performing properly. In a few words,
such a robot must exhibit meta-cognitive abilities while
planning in uncertain environments.

Classical robotics deals with uncertainty in both percep-
tion and the model of the world, while neglecting the rest of
the problem. A classical solution is offered by the Probabil-
ity Theory. The concept of ‘‘uncertainty’’ has been investi-
gated over the years, and new definitions have been
formulated to capture other aspects of the meaning. Possi-
bility Theory and Fuzzy Logic represent some of the result of
such studies (Zadeh, 1999). On the contrary, meta-cognition
in artificial agents is a crucial topic in the BICA literature
(Chella, Cossentino, Gaglio, & Seidita, 2012; Samsonovich,
2012). This work presents a novel architecture that recon-
ciles planning in uncertain conditions and meta-cognition
expressed in terms of self-awareness and control on the
coherence between the model of the world and the outer
environment.

Some of the authors investigated the problems related
to the interaction of an artificial agent with uncertain
environment. In particular natural language interaction
between humans and the agent was investigated. The
problem arose when designing TutorJ (Pirrone, Cannella,
& Russo, 2008) an architectural framework for building
ITSs that are able to support a student in the learning
process by supplying learning material customized to her
cognitive needs, skills, and goals. The architecture is in-
spired to the Human Information Processor Model (HIPM)
(Todorovski, Bridewell, Shiran, & Langley, 2005) where
perceptual, cognitive and sensor-motor modules can be
devised. Understanding natural language is an uncertain
process, which makes not sure the meaning of the user’s
sentences. At first, the problem was faced up by adopting
a planner agent that is able to manage uncertainty ex-
pressed through probability: the Partially Observable Mar-
kov Decision Process (POMDP) (Cannella & Pirrone, 2009).
The agent’s actions are a wide range of communication
acts, aimed at coping with the learner’s cognitive
processes.

Next, the authors moved to modeling meta-cognition in
such an agent. The artificial tutor mentioned above has to
reflect on questions like ‘‘how well I understood the user?’’
or ‘‘how well the user understood my sentence?’’ in order to
refine its next dialogue move. The agent has to access to its
internal state, and to change it through proper actions. In a
few words it needs meta-cognition. We used the classical
definition of meta-cognition as cognition about cognition
(Metcalfe, Shimamura, Metcalfe, & Shimamura, 1994) so
the original POMDP is analyzed by the agent itself, whose
internal reasoner was modeled by another POMDP that is a
meta-cognitive module inserted in a two-level structure
(Cannella, Pipitone, Russo, & Pirrone, 2010). The second
POMDP has its own perceptions both from the external
world (the dialogue flow) and from the actions issued by
the cognitive POMDP. Cognitive actions are the actions in
the previous version of the system. Meta-cognitive actions
are communication acts aimed both to evaluate self regu-
lated skills in the learner and to stimulate her to reflect
on her meta-cognitive state in order to pursue a self-regu-
lated learning.

In subsequent works (Cannella, Pirrone, & Chella, 2012)
the authors investigated a unified management of uncer-
tainty in Markov Decision Processes (MDPs), and presented
a planner model able to manage different kinds of uncer-
tainty together, expressed as probability, possibility, and
fuzzy logics. We called this model ‘‘uncertainty based
MDP’’ (u-MDP). The present work is a synthesis of the re-
search activity described above. We present a meta-cogni-
tive architecture for mobile robots engaged in tasks in
natural environments. Such an architecture is based on a
couple of u-MDPs where the cognitive MDP is devoted to
deal explicitly with the external environment, while the
meta-cognitive one governs the meta-cognitive abilities of
the robots in terms of self-awareness and control. Choosing
an implementation based on MDP instead of POMDP is not a
limitation. In the outlined scenario, the autonomous robot
can be supposed to work in a ‘‘observable’’ even if uncer-
tain world. We’re not dealing here with issues related to
understandability of percepts. Moreover, we’re currently
investigating the extension of the presented architecture
to the use of POMDP.

The rest of the paper is arranged as follows. Section 2
provides the reader with some theoretical background
about the research on unified models of uncertainty. Sec-
tion 3 presents our model for dealing with uncertainty and
details the u-MDP. Section 4 presents the meta-cognitive
architecture. Finally, in Section 5 conclusions are reported
and future work is outlined.
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2. Theoretical background

This section reports a discussion about modeling uncertainty
in the literature. Uncertainty was first defined in terms of
the Probability Theory, but such a concept has been wid-
ened over the years to include also possibility. In what fol-
lows, the relation between probability and possibility will
be deepened first, and then the notion of epistemic belief
will be faced.

2.1. Relation between possibility and probability

Many researchers have investigated relationships between
possibility and probability, formulating different solutions.
In the section, a brief introduction of these formulations
will be supplied. The original theoretical background used
to define possibility was fuzzy logic, which originated the
Possibility Theory. This term (Zadeh, 1999) was used for
the first time by Zadeh to express the intrinsic fuzziness
of natural languages as well as uncertainty information. In
this way the possibility was related to fuzzy sets. In his sem-
inal paper, Zadeh stated the possibility–probability consis-
tency principle, according to which a high (low) probability
implies a high (low) possibility. The Zadeh’s possibility–
probability consistency principle affirms that if possibilities
P ¼ ðp1; . . . ; pnÞ and probabilities P ¼ ðp1; . . . ; pnÞ are as-
signed to a same event expressed by a variable X, the de-
gree of consistency c of these values is given by:

c ¼
Xn

i¼1
pi � pi ð1Þ

The following theorem holds:

Theorem 1. maximizing the degree of consistency implies
the following conditions

PosðAÞ < 1) NecðAÞ ¼ 0 ð2Þ
NecðAÞ > 0) PosðAÞ ¼ 1 ð3Þ

Dubois and Prade (2003), Dubois and Prade (1983), Du-
bois, Prade, and Sandri (1993), Dubois, Prade, and Smets
(2001), Dubois, Foulloy, Mauris, and Prade (2004) defined
a transformation from probabilities to possibilities and vice
versa, which is based on the so-called probability possibility
consistency and preference preservation principles. These
principles can be synthetically expressed by

pðuiÞ > pðujÞ () pðuiÞ > pðujÞ ð4Þ

This transformation satisfies consistency and preference
but it is not the only possible one, as shown in (Yamada,
2001).

Klir (1995), Klir and Folger (1988), Novák (2003) proposed
a transformation approach based on the principle of uncer-
tainty and information invariance, and also derived by
Jumarie (1994) and developed by Wonneberger (1994).
Yamada (2001) has proposed three different transforma-
tions inspired to the so-called Evidence Theory (or Demp-
ster–Shafer Theory).
2.2. Epistemic belief

Zadeh stated that the association of an uncertain quantity
to a fuzzy set induces a possibility distribution for this
quantity. This distribution represents the information re-
lated to the values assumed by this quantity. After this
first formulation, the so-called Evidence Theory or Demp-
ster–Shafer Theory that is the theory dealing with ‘‘belief
functions’’, was proposed to express uncertainty as a gen-
eralization of the Bayesian theory of subjective probabil-
ity. Evidence Theory combines empirical evidences to
build a coherent picture of reality (Glenn & Princeton,
1976). The Spohn’s theory of epistemic beliefs (EBs) (Giang
& Shenoy, 2000) is known also as kappa calculus, and is
considered as a qualitative counterpart of Bayesian proba-
bility theory. This calculus has been designed to represent
and reason with plain human beliefs, and to describe a for-
malism for describing both plain EBs and procedures aimed
at revising beliefs when new information is obtained. An
epistemic state is represented by the so-called disbelief
function, which can be revised through ad hoc rules when
new information is obtained. A disbelief function is very
similar to a probability distribution function, and it is spec-
ified by the values it takes for each possible subset of the
variable’s space. After the introduction of possibility,
agents dealing with uncertainty have been modeled
accordingly. In general, the new models were possibilistic
or fuzzy extensions of their probabilistic counterparts.
Examples of fuzzy or possibilistic (PO)MDPs can be found
in (Pardo & Fuente, 2008) and in (Sabbadin, Fargier, &
Lang, 1998) where an extended MDP manages the different
uncertainty models in a unified framework, and plans are
computed using a reformulation of the backward induction
algorithm.

3. A unified approach to manage uncertainty

In the past, many researchers remarked that all the uncer-
tainty descriptions share many features, and several unify-
ing approaches have been proposed. Authors proposed the
believability (Cannella et al., 2012), which is defined as
the generic uncertain quantity u. Such a value can be unified
with either probability, possibility, or EB. Moreover, it can
be referred to as a fuzzy value a 2 A. Believability can be
joined to a believability distribution u(a), defined similarly
as a probability/possibility distribution. Some definitions
are reported in the following.

Definition 1. The conditional believability distribution
uðbjaÞ (Gwét, 1997) for all fuzzy values a 2 A and b 2 B is
defined as the extent to which b 2 B appears to be certain
provided that a is true.

Definition 2. a and b are independent if and only if
uðbjaÞ ¼ uðbÞ.

Definition 3. The joint believability distribution u(a,b) for
all fuzzy values a 2 A and b 2 B is the extent to which it is
certain that the element a 2 A and b 2 B are both true.
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These functions are manipulated through a set of ab-
stract operators, which can be unified to whatever uncer-
tainty definition. In the following, such operators are
detailed, and some useful definition are given to detail
the model.

Definition 4. Given a set of believability values U ¼ uf g,
the believability accumulation operator, �b : U � U) U
sums the effects of new information to the previous
knowledge.

Definition 5. Given a set of believability values U ¼ uf g,
the believability combination operator, �b : U � U) U rep-
resents how new pieces of informations interact together.

Given a set of fuzzy values A ¼ fa1; � � � ; ang, we introduce
a compact form of �b :

�b
a2A

uðaÞ ¼ uða1Þ�b � � � �buðanÞ ð5Þ

Given the joint believability distribution u(a ,b), the mar-
ginal believability distribution over A is defined by

u1ðaÞ ¼ �b
b2B

uða; bÞ8a 2 A ð6Þ

At the same time, the marginal believability distribution
over B is given by

u2ðbÞ ¼ �b
a2A

uða; bÞ8b 2 B ð7Þ

To solve a MDP based on believability, we must be able to
manage the uncertainty of the expected reward from a pol-
icy. Reward can be managed in a similar way as
believability.

Definition 6. Given the reward set R, the gain accumulation
operator �g : R� R) R, sums the effects of new gain to the
previous one.

The expected reward over all next states s 2 S can be ex-
pressed as a weighted combination of their believabilities
u(s).

The following operator is introduced to manage reward:

Definition 7. Given the set of possible reward values
R ¼ rf g, and the believability set U ¼ uf g, the gain combi-
nation operator �g : R� U) R combines the reward of a
state with its believability.

Finally, the expected reward ER in a state s is defined as:

ER ¼ �g
s2S
½�gðrðs; aÞ; uðsÞÞ� ð8Þ
Table 1 Operators defined for different kinds of uncer-
tainties: probability (first row), possibility (second row), and
Spohn’s epistemic belief (third row).

�b �b �g �g

+ * + *
max min min maxð1	 believability; gainÞ
min + + +
where S is the state space and rðs; aÞ is the reward
obtained if the agent performs the action a when being in
the state s.

In (Dubois & Prade, 1995) the operators defined above
have been identified for each kind of uncertainty i.e. prob-
ability, possibility, and epistemic beliefs. Table 1 shows the
most common ones.

Mixed operators could allow to combine two or more
kinds of uncertainty together. In particular, possibility has
been deeply investigated in the past, exploiting the relation
that exist between possibility, probability, and fuzzy logic.
Many approaches and criteria to convert probability into
possibility and vice versa have been defined (Dubois &
Prade, 1983; Jumarie, 1994; Klir & Parviz, 1992; Wonneber-
ger, 1994; Yamada, 2001; Zadeh, 1999).

3.1. The uncertainty based MDP

The definitions provided in the previous section enable the
design of a general MDP that is able to deal with believabil-
ities in a wide sense. We called this model uncertainty
based MDP (u-MDP).

Definition 8. A u-MDP is defined as a tuple
fS;A;BT ; r;�b;�b;�g;�gg where:

� S represents a finite set of states
� A represents a finite set of actions
� BT : S � A� S ) PðSÞ is the state transition function

where BT ðs0js; aÞ is the conditional believability of
moving to state s’ when the action a has been exe-
cuted in the state s.

� r : S � A) R is the reward function and r(s,a) is the
expected reward for taking an action a when the
agent is in the state s.

� �b;�b;�g;�g: the operators used to manage the
uncertainty and reward.

Each state s 2 S is described by an array of Fs fuzzy fea-
tures A1;A2; . . . ;AFs , whose membership functions are liðAiÞ.
Computing believabilities in each state relies on the follow-
ing definitions.

Definition 9. The uncertain belief state Ub ¼ ½uðs1Þ; . . . ;
uðsjSjÞ�T is the believability distribution on the state space
S ¼ s1; . . . sjSj

� �
.

Definition 10. Uba ¼ ½uaðs1Þ; . . . ; uaðsjSjÞ�T represents the
believability distribution obtained after performing the
action a. In particular uaðsiÞ is the believability of reaching
state si after performing the action a.

At each step, the uncertain belief state is updated using
the equation:

Uba ¼ �b
s2S
½�bðBTðs0js; aÞ;UbÞ� 8s0 2 S ð9Þ

Planning is based on the reward function. After having per-
formed an action, the agent updates the amount of the total
gain by adding the new gain to the previous one. The back-
ward induction algorithm is used to compute the plan. The
algorithm is described in the Procedure 1.
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Procedure 1. Calculate an optimal policy

Input: S; BT ;Ub;�b;�b;�g;�g

pol = []; {the policy is an array of actions}
for alls 2 S do

V�Nþ1ðsÞ ¼ 0; {initialize the Bellman value function for each
state}
end for

for t ¼ N! 1do
for all s 2 S do

V�t ðsÞ ¼
maxa2A�g½rðs; aÞ;�g

s02S
½�gðuaðsÞ;V�tþ1ðs0ÞÞ��; {at each step,

the partial reward is maximized through the Bellman
equation computed over all the states and actions, while
belief state is updated through Eq. 9}
a�t ðsÞ ¼
arg max

a2A
�g½rðs; aÞ;�g

s02S
½�gðuaðsÞ;V�tþ1ðs0ÞÞ��; {at each step,

the best action a�t ðsÞ in the state s maximizes the partial
reward.}
end for

pol.append(a�t ðsÞ);
end for

Output: pol, V�
Fig. 1 A fragment of the knowledge network of the model.
4. The proposed architecture

In this section the detailed description of the meta-cogni-
tive architecture based on a couple of u-MDPs is reported.
We’ll deep the processes related to planning and goal set-
ting at first, putting into evidence how meta-cognition
arises when the robot selects its goal. Then the design issues
will be discussed.

4.1. Planning and goal setting

For the purpose of keeping the planning process as general
as possible, we can assume that the whole state of the robot
(i.e. both internal and external aspects) is arranged in fac-
ets. Each facet is a collection of fuzzy features, so a vecto-
rial description of the whole state is possible for u-MDP
computing purposes that is the array of all the features
independently of the facet they belong to. A state as a
whole is described by the values taken by all facets. The
goal state is reached when some specific state’s facets at-
tain the desired value. Moreover, different facets can be re-
lated to one another.

A good model for the state is a graph. Each facet is rep-
resented by a node. Arcs reflect the constraints between
the state’s facets along with their degree of uncertainty.
Both probabilistic and possibilistic uncertainty is allowed
in the presented model. Each arc is directed according:
the destination facet of the arc is precondition for the
source one. Acyclic graphs are used to avoid loops. We
called such a model the knowledge network of the agent.
As mentioned above, a goal can be made by some nodes
of the graph only. The agent is not always interested to
all the aspects of the state. During the plan execution con-
trasting goals can arise, which are made by either different
collections of nodes or different values in the features of
the same node. In this case, arcs represent the constraints
of the overall state on the goal configuration.

Each time the agent wants to reach a specific goal, it has
to make true each single facet of the goal. This task can be
executed step by step. After having processed a facet, the
agent goes on with the subsequent connected ones. Plan-
ning in the knowledge network consists in moving from a
state configuration (that is the whole arrangement of the
knowledge network at a given time instant) to the next
one using Procedure 1. In the following the process is de-
tailed with a toy example.

The whole process is divided into two main parts. In the
first one, the system explores the graph to assess which
parts of the graph do not match with the goal state. In
the second part, the system executes a series of actions
aimed at reaching the goal by making the unmatched fea-
tures true.

Fig. 1 shows a little fragment of the state described as a
graph. The image shows six nodes. Three nodes contain only
one feature, respectively hAi; hFi, and hLi. We’ll call them
‘‘simple’’ nodes. Three ‘‘composite’’ nodes are present,
which contain respectively the hB;Ki; hK;Ci, and hB;C;Ki
groups of features. Each generic feature f can be investi-
gated through a test Tf, and executing a test can have a cost
Cf. Test and corresponding costs are depicted in the figure
near the features. The total cost of a node is equal to the
sum of the costs of the tests for each feature in the node.
As already explained, arcs are directed in a way that a node
at the beginning of an arc (start-node) depends on the node
at the end of he same arc (end-node). An uncertainty de-
gree is associated to each arc. This value represents how
much the dependency is uncertain. The start-node can be
reached by the agent only when the end-node has been just
reached. When the end-node is a composite one, the start-
node depends on all its features.

In our example, the agent must reach the goal consisting
in making true the node hAi (see Fig. 2). This node depends
on B, K, and C but in different ways. hAi depends at the
same time on hB;Ki; hK;Ci, and hB;C;Ki. This is stated by
the arcs starting from the node.

The agents chooses to try the node hK;Ci. The agent exe-
cutes the test TK, with cost CK (see Fig. 3).



Fig. 2 The system tries to make A true.

Fig. 3 K tested. Confirmation found.

Fig. 5 B tested. Partial confirmation found. Now the hB; Ki
node has to be confirmed as a whole.

Fig. 6 F tested. Final confirmation found.
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Then the test TC is executed. The obtained results sup-
port hAi sufficiently (see Fig. 4).

Now the agent explores another path, and tries the node
hB;Ki. Since K has just been tested, the system tests B,
which in turn does not support the goal (see Fig. 5). The
whole node hB;Ki depends on hFi. If it will come out that
F is true, the agent will perform an action for modifying B.

Finally, the agent tests F, which results true (see Fig. 6).
The second part of the process starts. The agent acts to
modify B, and eventually A to reach the goal. The result is
Fig. 4 C tested. Confirmation found.
the combination of a backward planning process, and a cor-
responding forward acting process.

If we move to goal setting, the knowledge network
comes out to be a useful model again. In this respect, the
knowledge network can be regarded as a graph
G ¼ fSG;DLg, where SG ¼ fsg1; sg2; . . . ; sgng is the set of
all the sub-goals the agent can reach (i.e. the nodes), while
DL is the set of arcs that link nodes and represent prerequi-
site conditions. Either positive or negative prerequisites can
be devised, so arcs will be labeled as either ‘‘positive’’ or
‘‘negative’’. When a positive arc links a node A to a node
B, B must be made true before for making true A. On the
contrary, a negative arc implies that B must be false for
making true A.

A generic goal g is a set of sub-goals g 
 SG because
reaching a goal implies making true more than one facet
at a time. Two goals g1 and g2 are distinct if g1 \ g2 ¼ ;
otherwise the two goals are partially superimposed. Two
goals can be incompatible. Fig. 7 shows four nodes linked
in the graph. Node A is true if node B is true, and node C
is false. On the other hand, if the agent wants to make
the node D true, C should be false. As a consequence, A
and D represent conflicting goals, and the agent has to
choose between them. Goal setting in our architecture re-
lies on manipulating goals with respect to the labels of their
sub-goals.



Fig. 7 Sub-goals can be in conflict with each other.
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More formally, each goal can be modeled as an array of n
labels each of them being associated with a node in the
graph (i.e. a sub-goal). Each label can have one of the three
values: 0, +, 	. Label + means that the related sub-goal sup-
ports the final goal, label 	 has the opposite meaning, and
label 0 means that the sub-goal does not influence the goal.
Let us consider the example shown in Fig. 7. In this case the
goal associated to A can be described by the array [+, +, 	,
0], while B is described by [0, 0, +, +].

Now let us introduce a comparison operator comp(Æ, Æ)
that analyzes two goals element by element, and is defined
by the following Table 2

The When one of the values is equal to 0, the element
does not affect the goal, so the result of the comparison
is not important (NI). In the other cases, if the compared
values are equal, the goals are not conflicting (OK). On
the contrary, conflicting goals cannot be reached together
(KO). In the proposed example compðA;BÞ ¼ ½NI;NI;KO;NI�.
In this case, the presence of the value KO means that the
two goals are conflicting.

The following definitions are given:

Definition 11. A group of goals GG is a set of not mutually
conflicting goals.

A goal gi, can belong to more then one set at the same
time GGðiÞk ; k ¼ 1; 2; . . .. When the agent makes a goal true,
it makes also partially true all the goals gj such that
gj 2 GGðiÞk ; j–i; k ¼ 1; 2; . . ..

Definition 12. Given a set of goals G and a single goal
gi;MGGðiÞ is the maximum groups of goals associated to gi
that is the set of all goals gj 2 G not conflicting with both gi
and each other.

The MGGðiÞ can contain one or more sets GGðiÞk because gi
could belong to more group of goals at the same time, while
some elements belonging to distinct GGðiÞk are mutually
conflicting.
Table 2 definition of the comparison operator.

comp 0 + 	
0 NI NI NI
+ NI OK KO
	 NI KO OK
Definition 13. Given a set of goals G, a no-conflict partition
NCP is the set of all possible maximum groups of goals
generated for all the goals belonging to G that is
NCP ¼ fMGGðiÞg 8gi 2 G.

Goal setting proceeds as follows. The agent keeps a pri-
ority queue for satisfying the goals because each goal has a
proper relevance value, which derives from the nature of
task at hand. Goals in the queue are arranged in the
MGGðiÞ sets as obtained when building the NCP. Each
MGGðiÞ is ranked according to the maximum value of the rel-
evance of its goals. The agent executes the more important
goal of the first MGGðiÞ in the queue. By reaching this goal,
the agent reaches partially the other goals of the group.

Goal setting can be regarded as an action at the meta-
cognitive level of the architecture. Actually, meta-cogni-
tion in the agent implies changing the relevance of some
of the goals and a consequent re-ranking of the MGGðiÞ sets.

4.2. Design of the architecture

The structure of the agent is made by two u-MDP layers: the
‘‘cognitive u-MDP’’, and the ‘‘meta-cognitive u-MDP’’ that
is laid upon the previous one. Fig. 8 shows the conceptual
design of this architecture.

The cognitive u-MDP can be regarded as a single instance
of the theoretical model presented in Section 3.1. At this le-
vel, perceptions are obtained from the external environ-
ment, while the state describe the agent’s model of the
world and its modifications by means of the actions per-
formed on it.

The meta-cognitive u-MDP has its own nodes for percep-
tions, states, and actions. Its state reflects the meta-cogni-
tive state of the agent, and results from its own
perceptions. In this case, perceptions can be related to
self-awareness of the internal conditions of the robot or
to the need of controlling the alignment between the inter-
nal model of the world and external perception. As a conse-
quence, the agent needs to assess the state of the evolution
of the plan being executed. For this reason while some per-
ception nodes of the metacognitive u-MDP are connected to
the environment, the other ones are connected to the out-
puts and the states of the cognitive u-MDP. In particular, the
output nodes of a u-MDP return the next actions of the
Fig. 8 The cognitive and the meta-cognitive u-MDPs.
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agent. The cognitive u-MDP includes new action nodes to
pass new perceptual stimuli to the meta-cognitive u-MDP.

Perceptions at the meta-cognitive level can condition
the ranking of the agent’s goals. Changing the order of
the goals’ priorities and forcing the re-computation of the
cognitive MDP are possible actions of the metacognitive u-
MDP. At the same time, some simple actions to manage
the internal state of the agent can be devoted to the cogni-
tive u-MDP. In fact, the cognitive u-MDP is devoted to man-
aging the interactions between the agent and the external
environment. Actions like the re-arranging memories to
get more free space can be managed at the cognitive level.
Similarly, when component in the robot works no longer,
and it has redundant copies in the system, the metacogni-
tive u-MDP can autonomously switch from the faulty ele-
ment to the functioning one. In this sense, the agent
reflects upon itself, and acts on itself too.

From an implementation perspective, the distinction be-
tween the cognitive and the meta-cognitive modules is a
mere conceptualization. The two u-MDP have a very tight
coupling. The meta-cognitive u-MDP has been designed to
perceive not only the mental state of the agent represented
by its decisions but its physical parts too:

� The charge of cells (in percentage terms);
� Performance of actuators (a binary variable repre-

senting if the actuator is working or not);
� CPU usage (in percentage terms);
� RAM usage (in percentage terms);
� Storage usage (in percentage terms).

At the same time, even if not directly perceived, the
agent has a model of the actuators’ wear, which modeled
as a failure rate described by a negative exponential
distribution.

The previous considerations point out that the two layers
share many perceptual nodes, so a mere two-stage imple-
mentation would result in duplicate computations. As a con-
sequence, cognitive and meta-cognitive nodes have been
connected to each other: they belong to a unique graph,
and work in a unique u-MDP. Even if they have different
semantic and functional roles, they share the same mathe-
matical nature. Obviously transitions between nodes per-
taining to different part of the state (i.e. cognitive and
meta-cognitive state nodes) are not allowed and the corre-
sponding values for BT are forced to 0.

5. Conclusions and future work

A novel meta-cognitive architecture for autonomous robots
acting in uncertain environments has been presented. In this
context, uncertainty is to be considered in relation to both
sudden changes in the environment that are not encom-
passed by the agent’s world model and imprecise percep-
tions coming from sensors. Another source of uncertainty
is related to the internal conditions of the robot that may
experience malfunctioning and/or diminishing availability
of its resources. Such problems, in turn may generate new
goals which are partially or totally conflicting with the task
at hand. Meta-cognitive abilities are needed in this respect
as regards both self-awareness of the internal condition of
the robot and control of the actions to maintain the internal
model of the world and the external perceptions aligned.

The presented solution derives deals with both these as-
pects that is uncertainty and meta-cognition. The architec-
ture is able to deal with different uncertainty sources
deriving from either inadequate perception of the environ-
ment or imprecise actuators independently of their models:
probability, possibility, and fuzzy logic. The architecture re-
lies on the u-MDP that is an extended version of the classical
MDP and can be instantiated seamlessly using all different
kinds of transition uncertainties together.

A two-stage architecture has been developed, which is
based on a cognitive u-MDP devoted to the classical percep-
tion-action cycle with the external world, and a meta-cog-
nitive u-MDP which perceives the internal conditions of
the robot as well as the state of the cognitive module,
and acts on goal setting and re-planning. The two u-MDPs
have been implemented in a unique graph for increasing
performances.

In the proposed formulation the agent accesses the envi-
ronment without errors. Future work will be devoted to
overcome this limitation, and to propose POMDP based ver-
sion of the architecture to cope with the uncertainty re-
lated to perception of the physical environment.
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