
Electronic Notes in Theoretical Computer Science 70 No. 2 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 20 pages

Ambient Calculus and its Logic
in the Calculus of Inductive Constructions

Ivan Scagnetto, Marino Miculan

Dipartimento di Matematica e Informatica, Università di Udine, Italy
scagnett@dimi.uniud.it,miculan@dimi. uniud.it

Abstract

The Ambient Calculus has been recently proposed as a model of mobility of agents
in a dynamically changing hierarchy of domains. In this paper, we describe the im-
plementation of the theory and metatheory of Ambient Calculus and its modal logic
in the Calculus of Inductive Constructions. We take full advantage of Higher-Order
Abstract Syntax, using the Theory of Contexts as a fundamental tool for developing
formally the metatheory of the object system. Among others, we have successfully
proved a set of fresh renamings properties, and formalized the connection between
the Theory of Contexts and Gabbay-Pitts’ “new” quantifier. As a feedback, we
introduce a new definition of satisfaction for the Ambients logic and derive some of
the properties originally assumed as axioms in the Theory of Contexts.

Introduction

A Logical Framework (LF) is a generic logic specification language where we
can represent (encode) all the relevant notions of an object system: syntactic
categories, terms, assertions, axiom and rule schemata, tactics, etc. Since the
’80’s, higher order intuitionistic type theories have been successfully experi-
mented as Logical Frameworks. The basic idea is the “judgements-as-types,
λ-terms-as-proofs” paradigm. A key technique commonly adopted for build-
ing adequate encodings is the higher order abstract syntax (HOAS), whereby
binding operators are represented by constructors of higher order type [8,6,13].
Encoding the binders of the object language by means of the λ-abstraction
operator of type-theoretic metalanguages frees the user from the burden of
encoding the related machinery (i.e, α-conversion and capture avoiding sub-
stitution), since it is automatically provided by the LF itself.

However, it is well known that the HOAS-based encoding approach presents
some drawbacks. For instance, object level variables cannot be encoded by
means of an inductive type; otherwise, being equated to metalanguage vari-
ables, exotic terms arise [6, 13]. A second issue is related to the difficulty of

� Work supported by italian MIUR COFIN 2001013518 CoMeta and UE WG 29001 Types.

c©2002 Published by Elsevier Science B. V.

76

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Scagnetto and Miculan

reasoning by induction and using recursion over contexts, since they are ren-
dered as functional terms. Finally, one looses the possibility of handling and
proving properties over the mechanisms delegated to the metalanguage.

In order to overcome these drawbacks, in [11,10,22] a general methodology
for reasoning on systems in HOAS is presented, based on an axiomatic syn-
tactic standpoint. The gist is to extend the framework with a set of axioms,
called the Theory of Contexts, capturing some basic and natural properties of
names and contexts. According to our experience, these axioms allow for a
smooth handling of schemata in HOAS. In fact, we feel that one of the main
advantages of the axiomatic approach of the Theory of Contexts, is that it
requires a very low mathematical and logical overhead.

Along this line of research, in this paper we present an encoding of the
Ambient Calculus [2] and its modal logic as presented in [4] in the Calculus of
Inductive Constructions (CIC), using the proof environment Coq [12]. We then
use this implementation for formally derive several lemmata of [4], especially
related to the notion of freshness of names and Gabbay-Pitts’ “new” quantifier.

The present work is important both from the point of view of Logical
Frameworks and of process algebras under many respects.

First, the encoding in a Logical Framework forces to spell out in full de-
tail all aspects of an object system. This enlights problematic issues which are
“swept under rug” on the paper, giving the possibility to identify and fix pecu-
liar idiosyncrasies. This is particularly useful in the case of Ambient Calculus,
which is a fairly new process algebra, still under development. In this setting,
the LF perspective may suggest alternative (and cleaner) definitions of many
fundamental concepts. For instance, the encoding of formulas sheds some light
on the (inessential) difference between names and variables, and we introduce
an alternative proof system in Natural Deduction style for satisfaction.

Moreover, many features of Ambients are still under discussion, and several
variants (Safe, Boxed, . . .) are being proposed. The encoding of these different
variants in a general metalanguage allows for a comparison of their features on
a common ground. The work presented in this paper can be seen as the basis
for further developments in several directions (e.g., new constructors, typing
systems, different semantics, . . .).

On the LF side, we have the possibility to test the Theory of Contexts and
its methodology over peculiar issues which have not been faced in previous case
studies [11,14]; e.g., a modal logic, the presence of a sort of variables ranging
over names, and the “new” quantifier “ ” by Gabbay and Pitts [7]. Since
both Nominal Logic and the Theory of Contexts aim to provide a framework
for reasoning on nominal calculi, it is interesting to see how the Theory of
Contexts allows for rendering the quantifier and its properties.

From a more fundamental standpoint, an important result of this work
regards the independence of the axioms of the Theory of Contexts. We have
proved that some properties originally introduced as axioms in [11] can be
actually derived from the others, using suitable inductions over sizes of terms.

77

Scagnetto and Miculan

M ::= Capabilities

n name

in M can enter into M

out M can exit out of M

open M can open M

ε null

M.M ′ path

P,Q,R ::= Processes

(νn)P restriction

0 void

P |Q composition

!P replication

M [P] ambient

M.P capability action

(n).P input action

〈M〉 output action

Fig. 1. Syntax of capabilities and processes.

Synopsis. A short remind of the object system is provided in Section 1. The
HOAS-based encoding of Ambient Calculus and its logic is presented in Sec-
tion 2. In Section 3 we present and discuss some developments of the metathe-
ory of Ambient Calculus using the Theory of Contexts. Final conclusions, with
related and future work, are in Section 4. Appendix A gives a brief account
of the Calculus of Inductive Constructions and its implementation, Coq.

1 The Ambient Calculus and its Modal Logic

In this section we briefly recall the syntax and operational semantics of the
Ambient Calculus and the syntax and satisfaction relation of the modal logic
introduced in [4]. For notation and an informal description of the intended
meaning of ambient processes and formulas, see [2, 4].

Processes, Structural Congruence, Reduction System

The basic syntactic categories of the Ambient Calculus are names, capa-
bilities and processes (or agents), defined as in Figure 1. There are no binders
among the capability constructors, while processes provide the usual binders,
i.e., restriction and input action. Free names of capabilities and processes are
defined as usual. Processes are identified up to α-conversion. We will denote
by P{n ← M}, the capture avoiding substitution of the capability M for
the free occurrences of n into P . Following the notation adopted in [4] we
will denote by Λ the sort of names, and by ζ,Π the syntactic categories of
capabilities and processes, respectively.

The operational semantics of processes is given in terms of a reduction
system; processes are identified up to some minor (spatial) rearrangements
specified by a structural congruence relation (Figure 2).

Formulas, Satisfaction

Logical formulas are defined by the grammar in Figure 3, where η can be a
name n or a variable x. The sets of free names fn(A) and free variables fv(A)

78

Scagnetto and Miculan

−
P ≡ P

(S Refl)
P ≡ Q

Q ≡ P
(S Symm)

P ≡ Q, Q ≡ R

P ≡ R
(S Trans)

P ≡ Q

(νn)P ≡ (νn)Q
(S Res)

P ≡ Q

P |R ≡ Q|R (S Par)

P ≡ Q

!P ≡!Q (S Repl)

P ≡ Q

n[P] ≡ n[Q]
(S Amb)

P ≡ Q

M.P ≡ M.Q
(S Action)

P ≡ Q

(n).P ≡ (n).Q (S Input)

−
ε.P ≡ P

(S ε)
−

(M.M ′).P ≡ M.M ′.P
(S .)

−
(νn)(νm)P ≡ (νm)(νn)P

(S Res Res)

−
(νn)0 ≡ 0

(S Res Zero)

n �∈ fn(P)
(νn)(P |Q) ≡ P |(νn)Q

(S Res Par)

n �= m

(νn)(m[P]) ≡ m[(νn)P]
(S Res Amb)

−
P |0 ≡ P

(S Par Zero)

−
P |Q ≡ Q|P (S Par Comm)

−
(P |Q)|R ≡ P |(Q|R) (S Par Assoc)

−
!0 ≡ 0

(S Repl Zero)
−

!(P |Q) ≡!P |!Q (S Repl Par)

−
!P ≡ P |!P (S Repl Copy)

−
!P ≡!!P (S Repl Repl)

−
n[in m.P |Q]|m[R]→ m[n[P |Q]|R] (Red In)

P → Q

(νn)P → (νn)Q
(Red Res)

−
m[n[out m.P |Q]|R]→ n[P |Q]|m[R] (Red Out)

P → Q

P |R → Q|R (Red Par)

P ′ ≡ P, P → Q, Q ≡ Q′

P ′ → Q′ (Red ≡) P → Q

n[P]→ n[Q]
(Red Amb)

−
(n).P |〈M〉 → P{n ← M} (Red Comm)

−
open n.P |n[Q]→ P |Q (Red Open)

Fig. 2. Structural Congruence and Reduction System.

A,B, C ::= T true η[A] location ηA revelation

¬A negation A@η location adjunct ✧A somewhere

A∨ B disjunction A � η revelation adjunct modality

0 inaction A � B composition adjunct ✸A sometime

A|B composition ∀xA universal quantifier modality

Fig. 3. Syntax of formulas.

of a formula A are defined as usual (Notice that there are no name binders).
A formula A is closed if fv(A) = ∅, while A{η ← µ} denotes the substitution
of a name or variable µ for another name or variable η (variables can range
only over names). Formulas are identified up to α-conversion. We will denote
by ϑ the sort of variables and by Φ the syntactic category of formulas.

79

Scagnetto and Miculan

P |= T P |= 0 ⇐⇒ P ≡ 0

P |= ¬A ⇐⇒ not P |= A P |= A ∨ B ⇐⇒ P |= A or P |= B
P |= A � n ⇐⇒ (νn)P |= A P |= A@n ⇐⇒ n[P] |= A
P |= A|B ⇐⇒ there exist P ′, P ′′ ∈ Π s.t. P ≡ P ′|P ′′, P ′ |= A and P ′′ |= B

P |= A � B ⇐⇒ for all P ′ ∈ Π, P ′ |= A implies P |P ′ |= B
P |= n[A] ⇐⇒ there exists P ′ ∈ Π such that P ≡ n[P ′] and P ′ |= A
P |= nA ⇐⇒ there exists P ′ ∈ Π such that P ≡ (νn)P ′ and P ′ |= A
P |= ✸A ⇐⇒ there exists P ′ ∈ Π such that P →∗ P ′ and P ′ |= A
P |= ✧A ⇐⇒ there exists P ′ ∈ Π such that P ↓∗ P ′ and P ′ |= A
P |= ∀xA ⇐⇒ for all m ∈ Λ, P |= A{x← m}

Fig. 4. Satisfaction.

The relation between processes and closed formulas is established by the
satisfaction relation: P |= A means that the process P satisfies the closed
formula A as specified by the rules in Figure 4. In particular, the satisfaction
for the temporal modality is defined by means of the reduction relation (→∗ is
the reflexive and transitive closure of →). As to the spatial modality instead,
its satisfaction is given by means of the nesting relation ↓: we have P ↓ P ′ if
and only if there exists a name n and a process P ′′ such that P ≡ n[P ′]|P ′′.
The relation ↓∗ is then defined as the reflexive and transitive closure of ↓.

2 Encoding Ambients in Coq

In this section, we describe the HOAS-based encoding of the Ambient Calculus
and its logic. For the full signature, see [21].

2.1 Names, Capabilities, Processes
Parameter name: Set.

Inductive cap: Set :=

name2cap : name -> cap

| in_cap : cap -> cap

| out_cap : cap -> cap

| open : cap -> cap

| eps : cap

| path : cap->cap->cap.

Names of the Ambient Calculus will be rep-
resented by variables of Coq of type name;
hence, the first constant in our signature ΣA

represents the sort of names. Capabilities
are easily encoded by the plain (i.e., first or-
der) inductive definition aside.

In the following, for N � {n1, . . . , nk} ⊂
Λ finite, we will denote by ζN the set {M ∈

ζ | fn(M) ⊆ N}. Moreover, we will denote by ΓN the Coq typing environment
{n1 : name, . . . , nk : name}∪{dij :~(ni = nj) | 1 ≤ i < j ≤ k}. 1 Finally capN

will represent the canonical forms M (i.e. βη-head normal forms) of type cap

such that ΓN �ΣA
M : cap. The following proposition stating the adequacy of

the encoding is proved by usual inductions.

1 This can be declared, e.g., by Parameter n1,...,nk:name followed by the statements
Axiom dij:~(ni=nj) for 1 ≤ i < j ≤ k.

80

Scagnetto and Miculan

Proposition 2.1 For each N ⊂ Λ finite, there is a compositional bijection
εζN (with inverse δζ

N) between ζN and capN .

The syntactic category of processes features two binders, namely, restric-
tion and input action: in this case we take a higher-order encoding approach.

Inductive proc: Set :=

nu :(name -> proc) -> proc

| nil : proc

| par : proc -> proc -> proc

| bang : proc -> proc

| ambient : cap -> proc -> proc

| cap_act : cap -> proc -> proc

| in_act :(name -> proc) -> proc

| out_act : cap -> proc.

Since the arguments of nu and
in act are functions, α-conversion
and capture avoiding substitution
of names are automatically dele-
gated to the metalanguage.

As in the case of the capabil-
ities encoding, for N ⊂ Λ finite,
we will denote by ΠN the set {P |
P ∈ Π, fn(P) ⊆ N}, and procN

will represent the canonical forms
P of type proc such that ΓN �ΣA

P : proc. Then:

Proposition 2.2 For each N ⊂ Λ finite, there is a compositional bijection
εΠN (with inverse δΠ

N) between ΠN and procN .

Correctly, this correspondence covers also “non-well-formed”, meaningless
terms, like in (out a).0, which still do belong to the syntax of the original
calculus (Figure 1). These “wrong” terms can be ruled out by means of a type
system, like e.g. exchange types [1]. Although we could address this problem
in the present paper, we feel that the treatment of the theory and metatheory
(e.g. subject reductions) of type systems for Ambients is interesting on its own
and deserves an in-depth discussion, which we leave as future work.

Notice that, although capabilities can be exchanged in communications,
we cannot take in_act:(cap -> proc) -> proc because this would give
rise to exotic terms (see Appendix A). Thus we cannot delegate to the
metalanguage the (capture-avoiding) substitution of capabilites for names,
but only α-conversion and substitution of names for names. Substitution
of capabilities for names in capabilities and processes must be encoded ex-
plicitly by means of two relations subst cap:cap->(name->cap)->cap and
subst proc:cap->(name->proc)->proc. For instance, the intuitive meaning
of (subst proc M P P’) is that P’ is the result of “filling the hole” in P with
M. We show only two cases of the definition of subst proc:

Inductive subst_proc [M:cap]: (name->proc) -> proc -> Prop :=

subst_proc_nu : (P:name->name->proc)(P’:name->proc)

((y:name)(subst_proc M [x:name](P x y) (P’ y))) ->

(subst_proc M [x:name](nu (P x)) (nu P’)) ...

| subst_proc_par : (P,Q:name->proc)(P’,Q’:proc)

(subst_proc M P P’) -> (subst_proc M Q Q’) ->

(subst_proc M [x:name](par (P x) (Q x)) (par P’ Q’))

Proposition 2.3 (Adequacy of substitution) Let L ⊂ Λ finite, M,N ′ ∈

81

Scagnetto and Miculan

ζL, N ∈ ζL�{n}, P ′ ∈ ΠL, P ∈ ΠL�{n}, then:

• N{n← M} = N ′ iff ΓL �ΣA
: (subst cap εζL(M) [n : name]εζL,n(N) εζL(N ′)),

• P{n← M} = P ′ iff ΓL �ΣA
: (subst proc εζL(M) [n : name]εΠL,n(P) εΠL(P ′)).

2.2 Formulas

The original syntax of formulas (Figure 3) introduces an additional sort of
variables in order to have a universal quantifier and reasoning about open
formulas. However, näıvely introducing an explicit type var for representing
variables would yield several problems. First of all, one would need to dupli-
cate the constructors [·], @, and � since one of their arguments may be
either a name or a variable. Even worse, the universal quantifier would be
represented by a constructor of type (var->form)->form; then we could not
encode substitution of names for variables by means of the functional appli-
cation of the metalanguage. Indeed, it would be impossible to apply a term
of type var->form to a term of type name. Hence, we could delegate to the
metalanguage only α-conversion of formulas.

The solution we adopt is to encode variables of the object language by
means of Coq variables of type name, following a full HOAS paradigm like,
e.g., for First Order Logic in LF [8]. Recall that the only λ-terms inhabiting
name are metalanguage (Coq) variables. The difference between variables rep-
resenting names and those representing object language variables is that no
inequality assumptions are taken on the latter. Indeed, a variable is only a
placeholder waiting to be replaced by a name, whence we cannot make a priori
any assumptions on the nature of the name that will eventually replace it. On
the other hand, metalanguage variables representing names come equipped
with inequality judgments that allow to think of them as constants. In fact, a
name is just a variable whose value is different from all others—what exactly
this value is, it does not matter (see the notion of equivariance in [19]). Thus,
the inductive type representing formulas is given as follows.

Inductive form: Set := T : form

| neg : form -> form

| Or : form -> form -> form

| zero : form

| comp : form -> form -> form

| comp_adj : form -> form -> form

| loc : name -> form -> form

| loc_adj : form -> name -> form

| rev : name -> form -> form

| rev_adj : form -> name -> form

| sometime : form -> form

| somewhere : form -> form

| forall : (name->form) -> form.

Given a finite set of variables
X � {x1, . . . , xn} ⊂ ϑ, in the
rest of this section we will de-
note by ΓX the typing environ-
ment {x1 : name, . . . , xn : name}.
Canonical forms t of type form

such that ΓN ,ΓX �ΣA
t : form

are denoted by formN,X . Then:

Proposition 2.4 For each N ⊂
Λ finite, X ⊂ ϑ, there is a com-
positional bijection εΦN,X (with
inverse δΦ

N,X) between ΦN,X and
formN,X .

82

Scagnetto and Miculan

2.3 Encoding freshness

Following the general pattern given in [10], we render the notion of freshness
in our encoding (i.e., the fact that a given name does not occur free in a
capability, process or formula) by means of three inductive predicates:

(i) (notin cap x M) holds iff the name x does not occur in M;

(ii) (notin proc x P) holds iff the name x does not occur in P;

(iii) (notin form x A) holds iff the name x does not occur in A.

We report here only the (partial) definition of notin proc:

Inductive notin_proc [m:name]: proc -> Prop :=

notin_proc_nu : (P:name->proc)

((n:name)~m=n -> (notin_proc m (P n))) ->

(notin_proc m (nu P))

...

| notin_proc_par : (P,Q:proc)

(notin_proc m P) -> (notin_proc m Q) ->

(notin_proc m (par P Q))

...

2.4 Encoding of Structural Congruence and Reductions

The encoding of the structural congruence relation and of the reduction system
is carried out in a straightforward way by two inductively defined predicates:
struct eq and red, respectively. Both definitions provide a distinct construc-
tor for each rule defining the corresponding relation of the object language;
hence we have 22 introduction rules for struct eq and 8 introduction rules
for red. We cannot report the whole definitions, but only two cases:

Inductive struct_eq: proc -> proc -> Prop := ...

| struct_res_par : (P:proc)(Q:name->proc)

(struct_eq (nu [n:name](par P (Q n))) (par P (nu Q)))

...

Notice how the non-occurrence condition on n in (S Res Par) is automatically
dealt with by the metalanguage.

Inductive red: proc -> proc -> Prop := ...

| red_comm : (P:name->proc)(M:cap)(P’:proc)(subst_proc M P P’) ->

(red (par (in_act P) (out_act M)) P’)

...

The adequacy of the encodings introduced in this section are stated by the
following results, proved by standard structural inductions:

Proposition 2.5 (Adequacy of struct eq) Let N ⊂ Λ finite, P,Q ∈ ΠN ;

(i) (Soundness) if ΓN �ΣA
: (struct eq P Q), then δΠ

N (P) ≡ δΠ
N(Q);

(ii) (Completeness) if P ≡ Q, then ΓN �ΣA
: (struct eq εΠN (P) εΠN(Q)).

83

Scagnetto and Miculan

Proposition 2.6 (Adequacy of red) Let N ⊂ Λ finite, P,Q ∈ ΠN :

(i) (Soundness) if ΓN �ΣA
: (red P Q), then δΠ

N(P) → δΠ
N(Q).

(ii) (Completeness) if P → Q, then ΓN �ΣA
: (red εΠN(P) εΠN(Q)).

We skip the encoding of the nesting relation, which is a trivial Coq Definition
using struct eq (hence, the adequacy directly follows from Proposition 2.5).

2.5 Encoding of Satisfaction

In encoding the satisfaction relation, we cannot use directly an inductive def-
inition since the introduction rules for ¬ and � do not satisfy the positivity
constraints imposed by the Coq type system on inductive constructors. Indeed,
the encoding would look like the following:

Inductive sat: proc -> form -> Prop := ...

| sat_neg : (P:proc)(A:form)~(sat P A) -> (sat P (neg A))

| sat_comp_adj : (P:proc)(A,B:form)

((P’:proc)(sat P’ A) -> (sat (par P P’) B))

-> (sat P (comp_adj A B)) ...

which is not admitted in CIC because the occurrences (sat P A) in sat neg

and (sat P’ A) in sat comp adj are in negative position. In this section, we
present and discuss three possibles ways for circumventing this obstacle.

Axiomatic solution Much in the spirit of the Edinburgh LF [8], one can
drop inductive types and to fall back to the plain Calculus of Constructions.
Thus, the sat judgment and its constructors are declared as axioms:

Parameter sat : proc -> form -> Prop. ...

Axiom sat_neg: (P:proc)(A:form)~(sat P A) <-> (sat P (neg A)).

Axiom sat_comp_adj: (P:proc)(A,B:form)

((P’:proc)(sat P’ A) -> (sat (par P P’) B))

<-> (sat P (comp_adj A B)). ...

The adequacy of this encoding is proved by usual inductions:

Proposition 2.7 (Adequacy of sat) For N⊂Λ finite, P ∈ ΠN , A ∈ ΦN,∅,

(i) (Soundness) if ΓN �ΣA
: (sat P A), then we have δΠ

N(P) |= δΦ
N,∅(A).

(ii) (Completeness) if P |= A, then ΓN �ΣA
: (sat εΠN (P) εΦN,∅(A)).

Notice that A ranges only over ΦN,∅ (closed formulas), since the satisfaction
relation is defined only on formulas with no free variables.

Mutual Inductive solution The axiomatic solution works fine as long as
we do not need a structural induction principle on sat-derivations. Never-
theless, it is clear that an inductive definition of the satisfaction relation may
be useful for future proof-theoretical investigations of the Modal Logic. Here
we introduce a such alternative definition, which is suggested by the encoding

84

Scagnetto and Miculan

P |=i T
P ≡ 0
P |=i 0

P �≡ 0
P �|=i 0

P �|=i A
P |=i ¬A

P |=i A
P �|=i ¬A

P |=i A
P |=i A∨ B

P |=i B
P |=i A ∨ B

P �|=i A P �|=i B
P �|=i A∨ B

n[P] |=i A
P |=i A@n

n[P] �|=i A
P �|=i A@n

for some P ′ : P ≡ n[P ′] and P ′ |=i A
P |=i n[A]

for all P ′, if P ≡ n[P ′] then P ′ �|=i A
P �|=i n[A]

for some P ′, P ′′ : P ≡ P ′|P ′′, P ′ |=i A, P ′′ |=i B
P |=i A|B

for all P ′, P ′′ : if P ≡ P ′|P ′′ then P ′ �|=i A or P ′′ �|=i B
P �|=i A|B

for all m : P |=i A{x ← m}
P |=i ∀x.A

for some m : P �|=i A{x ← m}
P �|=i ∀x.A

for some P ′ : P →∗ P ′ and P ′ |=i A
P |=i ✸A

for all P ′, if P →∗ P ′ then P ′ �|=i A
P �|=i ✸A

for all P ′.P ′ �|=i A or P |P ′ |= B
P |=i A � B

for some P ′.P |=i A and P|P ′ �|= B
P �|=i A � B

for some P ′ : P ↓∗ P ′ and P ′ |=i A
P |=i ✧A

for all P ′, if P ↓∗ P ′ then P ′ �|=i A
P �|=i ✧A

for some P ′ : P ≡ (νn)P ′ and P ′ |=i A
P |=i nA

for all P ′. if P ≡ (νn)P ′ then P ′ �|=i A
P �|=i nA

(νn)P |=i A
P |=i A � n

(νn)P �|=i A
P �|=i A � n

Fig. 5. Mutual inductive satisfaction and unsatisfaction relations.

paradigm in inductive type theory. The idea is that occurrences of sat in
negative position can be viewed as occurrences in positive position of a new
judgment which represents “unsatisfaction”. Thus, the inductive satisfaction
system (Figure 5) derives two kinds of judgments: satisfaction (P |=i A) and
unsatisfaction (P �|=i A). Notice that �|=i is a real judgment, not a metalogical
abbreviation. Moreover, all occurrences of |=i and �|=i are in positive position.

The following equivalence result is easily proved by mutual structural in-
duction on formulas (⇒) and derivations (⇐):

Proposition 2.8 For all P process, A closed formula: P |=i A iff P |= A,
and P �|=i A iff not P |= A.

Functional solution Actually, all the properties proved in [4] do not rely
on induction principles over derivations, thus for many applications the mu-
tual inductive satisfaction system presented above may be an overkill. On the
other hand, the axiomatic encoding is quite unsatisfactory from the point of
view of the proof automatization. In fact, at a careful analysis the original

85

Scagnetto and Miculan

system (Figure 4) can be seen as a deterministic, syntactic-driven unravel-
ling of satisfaction judgments into “metalogical” statements. Following [15],
this observation can be made precise in Coq by representing satisfaction by a
function recursively defined on the syntax of formulas:

Fixpoint satF [P:proc;A:form]: Prop:=

<Prop>Cases A of T => True

| (neg B) => (satF P B) -> False

| (Or A1 A2) => (satF P A1) \/ (satF P A2)

| (comp_adj A1 A2) => (P’:proc)(satF P’ A1)->(satF (par P P’) A2)

| (forall B) => ((m:name)(satF P (B m))) ...

end.

This approach is proved to be formally equivalent to the axiomatic one:

Lemma SATF_SAT: (A:form)(P:proc)(satF P A) <-> (sat P A).

As a corollary, the adequacy of satF follows from Proposition 2.7. Thus we can
freely switch between the two encodings as needed during proofs developments.
The functional presentation of the satisfaction relations allows for a certain
degree of automatization. A goal (satF P A) can be automatically Simplified
(i.e., using Coq’s tactic Simpl) to a proposition of atomic predicates, which
can be dealt with simply using the semi-automatized tactics for predicate logic
provided by the environment (Auto, EAuto, Tauto, Prolog, . . .).

3 Formal Reasoning on Ambients in Coq

In this section, we describe the formal development of some properties proved
in [4]. Since these properties are mostly about behaviour of names and con-
texts, we will extensively use the axioms of the Theory of Contexts [10].

3.1 The Theory of Contexts for Ambients

The first basic axiom we need is the decidability of the equality over names:

Axiom dec_name: (x,y:name)x=y \/ ~x=y.

This fact, tacitly assumed in many presentations of process algebras, is re-
quired in the development of the metatheory since many proofs proceed by
discriminating on names (e.g. [16, Lemma 6] or [3, Lemma 4-6]). Another
common assumption is that the set of names is infinite; our unsaturation ax-
iom enforces this notion by stating that for any process and formula, we can
always pick a new name not occurring in them:

Axiom unsat: (P:proc)(F:form)

(Ex [n:name](notin_proc n P) /\ (notin_form n F)).

The remaining axiom schemata of the Theory of Contexts are β-expansion
and extensionality. Here, we report the statements of two instantiations for
the type proc:
Axiom proc_exp: (P:proc)(n:name)

(Ex [P’:name->proc](notin_proc n (nu P’)) /\ P=(P’ n)).

86

Scagnetto and Miculan

Axiom proc_ext: (P,Q:name->proc)(x:name)(notin_proc x (nu P)) ->

(notin_proc x (nu Q)) -> (P x)=(Q x) -> P=Q.

We use β-expansion and extensionality also for the types cap and form and
for contexts over them and over proc.

Other axioms of the Theory of Contexts Originally [11], the Theory of
Contexts provided also the axioms of monotonicity and decidability of occur
checking for processes. An important result we proved in this case study is
that those properties are indeed derivable from the remaining axioms:

Lemma NOTIN_PROC_MONO: (P:name->proc)(x,y:name)

(notin_proc x (P y))->(notin_proc x (nu P)).

Lemma ISIN_PROC_MONO: (P:name->proc)(x,y:name)~x=y ->

(isin_proc x (P y)) -> (isin_proc x (nu P)).

Lemma NOTIN_PROC_DEC: (P:proc)(n:name)

(isin_proc n P) \/ (notin_proc n P).

The first two lemmata are proved by induction on the number of proc-
constructors contained in (P y). Notice that a näıve structural induction
carried out using the built-in induction principle on processes provided by
Coq is not sufficient. The reason is that the inductive hypothesis of structural
induction applies only to proper subterms of the involved process, while sub-
stituting a name with another one (in the cases involving binders) breaks this
relationship. On the other hand, the number of process-constructors is pre-
served by all renamings. NOTIN PROC DEC follows then by means of a structural
induction on P using the monotonicity of notin proc and its dual isin proc 2

in the cases involving restriction and input action.

It is important to notice that these lemmata can be seen as general results
about the Theory of Contexts. Indeed, since during the proof development
we did not exploit any particular feature of the Ambient Calculus (a quick
look at the Coq code will confirm this), these properties can be derived for the
encoding of any language.

3.2 Fresh renaming properties

Some interesting results of [4] are the “fresh renaming” properties (i.e., the
possibility of replacing a name with a fresh one in the arguments of a judg-
ment) and the preservation of satisfaction under structural congruence:

Lemma 3.1 Let P ∈ Π, m,m′ ∈ Λ s.t. m′ �∈ fn(P), and R ∈ {≡,→, ↓}.
For all P ′, if PRP ′ then m′ �∈ fn(Q) and P{m←m′}RQ{m←m′}.
For all Q, if P{m←m′}RQ then there is a P ′ such that PRP ′, m′ �∈ fn(P ′)
and Q = P ′{m←m′}.

Lemma 3.2 If P |= A and P ≡ P ′, then P ′ |= A.

Lemma 3.3 For all closed formulas A, processes P , and names m, m′, if
m′ �∈ fn(P) ∪ fn(A) then P |= A iff P{m← m′} |= A{m← m′}.

2 The intended meaning of (isin proc n P) is, informally, “n occurs free in P”.

87

Scagnetto and Miculan

All these properties have been formalized and fully verified in Coq (lem-
mata STRUCT_NOTIN and STRUCT_RW for ≡, RED_NOTIN and RED_RW for →,
NEST_NOTIN and NEST_RW for ↓, SAT_UPTO_STRUCT_EQ and SAT_RW for |=).
It is interesting to see how the previous lemmata about fresh renamings are
rendered. For instance, the case of Lemma 3.1 for → splits in two parts:

Lemma RED_NOTIN: (A,B:proc)(red A B) ->

(x:name)(notin_proc x A)->(notin_proc x B).

Lemma RED_RW : (P,Q:name->proc)

(m:name)(notin_proc m (nu P)) -> (notin_proc m (nu Q)) ->

(red (P m) (Q m)) ->

(m’:name)(notin_proc m’ (nu P)) -> (notin_proc m’ (nu Q)) ->

(red (P m’) (Q m’)).

Representing P with (P m) and P ′ with (Q m) allows us to formalize both
directions of Lemma 3.1 by means of RED RW. Indeed, m and m’ can be swapped
without altering the meaning of the lemma, allowing to deduce (red (P m)

(Q m)) from (red (P m’) (Q m’)), i.e., P → P ′ from P{m← m′} → Q
where Q = P ′{m←m′}. HOAS allows to express very naturally this possibil-
ity of swapping names preserving the validity of a property, i.e., the equivari-
ance property introduced in [19] as the “fundamental assumption of Nominal
Logic”. The same considerations hold for the lemmata about ≡, ↓ and |=.

3.3 Gabbay-Pitts’ “new” quantifier

In [4] the Gabbay-Pitts fresh-name quantifier () is used in order to define
formulas of the form x.A meaning that “for fresh x, A holds”. is defined
in [4] a syntactic shorthand for a more complex formula as follows:

x.A � ∃x.x#(fnv(A) \ {x}) ∧ xT ∧A, (1)

where x#N is an abbreviation for the formula
∧

y∈N (x �= y) meaning that x
is a name fresh w.r.t. a given (finite) set of names N (recall that equality
between names in ambient logic can be defined as η = µ � η[T]@µ). Since
a process P satisfies the formula xT iff x does not occur free into it, the
first part of the definition simply states that x is a name fresh w.r.t. both the
process P and the formula A. However, as remarked in [4], since (1) contains
in the right-hand side the set of free names and variables of A, it is a meta-
theoretical abbreviation rather than a definition within the logic. Hence, it
must be always understood in its expanded form, where x#(fnv(A) \ {x}) is
replaced by the corresponding conjunction of disequalities.

Having adopted a higher-order encoding approach, we cannot directly en-
code definition (1). The reason is that we cannot write a function fnv com-
puting the set of free names of a formula, since recursive calls cannot cross
abstractions over name (in the case regarding the forall constructor). In
order to overcome this problem we add a new constructor to the type form

corresponding to :

... | new: (name -> form) -> form.

88

Scagnetto and Miculan

The problem of defining the behaviour of new is then shifted to the level of the
satisfaction relation, where we add the following axiom and functional case:

Axiom sat_new: (P:proc)(A:name->form)

(Ex [m:name](notin_proc m P) /\ (notin_form m (forall A)) /\

(sat P (A m))) <-> (sat P (new A)).

Fixpoint satF [P:proc;A:form]: Prop:= <Prop>Cases A of ...

| (new B) => (Ex [m:name](notin_proc m P) /\

(notin_form m (forall B)) /\ (satF P (B m)))

end.

It should be noted that all the previously proved properties still hold. More-
over, we can derive formally the following results (obviuosly NEW_EXISTS fol-
lows directly from sat_new):

Lemma EXISTS_FORALL: (P:proc)(A:name->form)
(Ex [m:name]((notin_proc m P)/\(notin_form m (forall A))/\(sat P (A m))))
<->((m:name)((notin_proc m P)/\(notin_form m (forall A)))->(sat P (A m))).
Lemma NEW_EXISTS: (A:name->form)(P:proc)(sat P (new A)) <->
(Ex [m:name]((notin_proc m P)/\(notin_form m (forall A))/\(sat P (A m)))).
Lemma NEW_FORALL: (A:name->form)(P:proc)(sat P (new A)) <->
((m:name)((notin_proc m P)/\(notin_form m (forall A)) -> (sat P (A m)))).

which essentially amount to the property establishing the double nature (existential-
universal) of the quantifier (Propositions 4-2 and 4-4 in [4]):

P |= x.A ⇐⇒ ∃m ∈ Λ.m �∈ fn(P,A) and P |= A{x← m}
⇐⇒ ∀x ∈ Λ.m �∈ fn(P,A) implies P |= A{x← m}

Also in this case our encoding based on HOAS and the Theory of Contexts
turns out to be quite effective in deriving results about fresh renamings. This
is confirmed also in the case of the logical properties of the quantifier. Indeed,
we proved very easily the following lemmata

Lemma NEW_NOT_F: (A:name->form)(P:proc)

(satF P (neg (new A))) <-> (satF P (new [x:name](neg (A x)))).

Lemma NEW_COMP_F: (A,B:name->form)(P:proc)

(satF P (new [x:name](comp (A x) (B x))))

<-> (satF P (comp (new A) (new B))).

which are the formal counterparts of the following properties:

P |= ¬ x.A iff P |= x.¬A P |= x.(A|B) iff P |= (x.A)|(x.B)

These correspond to two corollaries of Proposition 4-3 in [4] expressed in terms
of the satisfaction relation. In particular the second one is described in [4] as
“of particular interest (and difficulty)”; however, with our encoding the formal
proof is quite simple (a few lines of tactics).

The general “renaming property” pattern All the renaming lemmata
illustrated in this subsection have very similar statements—the only differences
are in the particular relation which we want to be preserved by renaming and

89

Scagnetto and Miculan

eventually in the syntactic categories involved—and are formally proved in
Coq by means of the same proof technique. Indeed, they are all instances of
the following pattern:

for some x �∈ ⋃n
i=1 fn(Ci[·]) : R(C1[x], . . . , Cn[x])

for all y �∈ ⋃n
i=1 fn(Ci[·]) : R(C1[y], . . . , Cn[y])

(2)

where R is a given n-ary relation (e.g., structural congruence, capture-avoiding
substitution, reduction relation etc.) and C1[·] . . . , Cn[·] are variables ranging
over contexts of given syntactic categories. Usually, this kind of properties
are proved “with pencil and paper” by carrying out a structural induction
either on the derivation of the premise R(C1[x], . . . , Cn[x]) or on one of the
arguments Ci[x] (1 ≤ i ≤ n) or a “measure” of an argument (e.g., the number
of symbols it contains). However, Coq tactics (in particular those handling in-
duction principles) deal not adequately with higher-order unification; hence,
we are forced to prove a preliminary version of the renaming lemma where
we introduce by hand the necessary unifications in order to recover sufficient
information on the structure of the contexts Ci[·] from their instantiations
Ci[x]. In other words, we “lift” structural information to the level of func-
tional terms; in order to achieve this goal, the axioms of β-expansion and
extensionality turn out to be indispensable (in fact, this is the original mo-
tivation of their introduction in [11]). This lifting follows a general pattern.
First, we replace the original goal with the following:

for some x �∈ ⋃n
i=1 fn(Ci[·]), T1 = C1[x], . . . , Tn = Cn[x] : R(T1, . . . , Tn)

for all y �∈ ⋃n
i=1 fn(Ci[·]) : R(C1[y], . . . , Cn[y])

(3)

where T1, . . . , Tn are plain terms and T1 = C1[x], . . . , Tn = Cn[x] are the
necessary unifications. Clearly we can infer (2) from (3) by taking Ti = Ci[x].

During the proof, the inductive hypothesis gives us some structural infor-
mation on T1, . . . , Tn. Then, using the β-expansion axiom, we can expand the
latters into contexts applied to x yielding the equations T1 = T ′

1[x], . . . , Tn =
T ′

n[x] where x �∈ ⋃n
i=1 fn(T ′

i [·]). By transitivity we obtain the equations
Ci[x] = T ′

i [x]; thus, by extensionality, we get Ci[·] = T ′
i [·], i.e., the struc-

tural information we needed on the variable Ci[·]. Such an information can
then be transferred to the instantiations over y in the current goal in order
to apply the suitable constructor of R and solve the subsequent subgoal by
means of the inductive hypothesis.

This proof pattern should be automatizable by means of some ad hoc tactic.

3.4 The Hidden-Name Quantifier

For the sake of completeness, in this section we also give the encoding of the
hidden-name quantifier ν. This allows one to define a formula (νx)A, whose
informal meaning is “for a name x (hidden in the underlying process), A
holds”. Thus, one can talk about restricted names in processes.

The formal definition in the modal logic is given by (νx)A � x.xA [4].
Hence, the corresponding encoding is a straightforward Coq definition:

90

Scagnetto and Miculan

Definition nu_f: (name -> form) -> form :=

[A:name->form](new [x:name](rev x (A x))).

As the satisfaction relation is concerned, we have proved the formal equivalent
of [4, Lemma 5-2]:

P |= (νx)A iff ∃m ∈ Λ.m �∈ fn(P,A)∧∃P ′ ∈ Π.P ≡ (νm)P ′∧P ′ |= A{x← m}
Lemma NU_F_SATF: (P:proc)(A:name->form)(satF P (nu_f A)) <->

(Ex [m:name]((notin_proc m P) /\ (notin_form m (forall A)) /\

(Ex [P’:name->proc](struct_eq P (nu P’)) /\ (satF (P’ m) (A m))))).

The proof is trivial, since it relies on the definition of nu_f in terms of new
and rev. On the other hand, Lemma 3.3 is needed in order to prove [4,
Proposition 5-3]:

for all n ∈ Λ, x ∈ ϑ, P ∈ Π and closed A ∈ Φ,
n �∈ fn(P) ∧ P |= (νx)A{n← x} ⇔ ∃P ′ ∈ Π.P ≡ (νn)P ′ ∧ P ′ |= A

Observing that n �∈ fn(P) follows from the existence of a P ′ such that P ≡
(νn)P ′, we can rearrange the previous statement as

for all n ∈ Λ, x ∈ ϑ, P ∈ Π and closed A ∈ Φ, if n �∈ fn(P) then
P |= (νx)A{n← x} ⇔ ∃P ′ ∈ Π.P ≡ (νn)P ′ ∧ P ′ |= A.

Thus the formal equivalent, which we have formally proved, is the following:

Lemma NU_F_SATF_PROPER: (n:name)(P:proc)(A:name->form)

(notin_proc n P) -> (notin_form n (forall A)) -> (satF P (nu_f A))

<->(Ex [P’:name->proc](struct_eq P (nu P’))/\(satF (P’ n) (A n))).

4 Conclusions

In this paper we have presented a HOAS-based encoding of the Ambient Cal-
culus and its Modal Logic [4] in the Calculus of Inductive Constructions.
Many fundamental lemmata, mostly “fresh renamings” properties, have been
formally proved in Coq using the Theory of Contexts [10].

In our opinion the present case study confirms a pleasant feature of HOAS-
encodings, namely, the fact that object languages with binders can be encoded
in a “purified” form, freed from inessential notions. As a consequence also the
metatheoretic properties over names can be rendered in simpler, although
equivalent, forms than the corresponding ones “on the paper”.

This work has a bearing both on the object system and on the Logical
Framework. A new system in natural deduction style for satisfaction has been
introduced; its features (especially from a proof-theoretic point of view) de-
serve further investigations. On the other hand, we have described a general
pattern for “fresh renaming” properties, which should be applicable to any
nominal calculi. Also, some properties originally taken as axioms in the The-
ory of Contexts have been proved derivable from the others, thus reducing the
minimum set of axioms one has to take.

91

Scagnetto and Miculan

Finally, the quantifier has been faithfully rendered in Coq, and some of its
properties formally proved, thus giving some insights about the connections
between FM-based theories and the Theory of Contexts.

Related work. To our knowledge, this is the first formalization in a Logical
Framework of the Ambient Calculus and of the satisfaction relation for the
related modal logic. The closest process algebra which has been studied to
some extent is the π-calculus; see [11,20,5,9] for some formalizations in Coq or
Isabelle/HOL using HOAS, First Order Abstract Syntax or de Bruijn indexes.
In particular, in [20] the monotonicity axiom is proved easily since the freshness
predicate is not defined inductively, but as the negation of a free occurrence
predicate (the analogous of our isin proc). Instead, in Section 3 we derived
monotonicity for notin proc which is inductively defined. Moreover, using
the proved properties of monotonicity of isin proc and notin proc, we have
proved that occur checking is decidable (NOTIN PROC DEC). Therefore, the only
classical feature we need for the Theory of Contexts is the decidability of the
equality over names.

Future work. The present encoding can be seen as the basis for further de-
velopments. One interesting direction is the encoding of some typing systems
among the many proposed in the literature (see, e.g., [1]), in order to get rid
of “bad terms”. Type systems for Ambients are a whole interesting topic on
their own, raising deep questions such as subject reduction properties, safe-
ness properties and so on. However, type systems like those presented in [1],
are usually given in a sequent-style, while proof systems are best encoded in
type-theory based metalanguages when they are in Natural Deduction style.
Thus the first step would be the development of some equivalent formulation
of existing type systems in Natural Deduction style, if possible.

A The Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is an extension of the Calculus
of Constructions (CC), which can be defined as the PTS λC of Barendregt’s λ-
cube, with two sorts, Prop and Set . Under the proposition-as-types, proofs-as-
terms paradigm, there is an isomorphism between propositions of intuitionistic
higher-order logic and types of sort Prop. If A has type Prop then it represents
a logical proposition; the fact that A is inhabited by a term M represents the
fact that A holds. Each term M inhabiting A represents a proof of A. On
the other hand, the sort Set is supposed to be the type of datatypes, such as
naturals, lists, trees, booleans, etc. These types differ from those inhabiting
Prop for their constructive contents.

Therefore, CC, as many similar Type Theories, can be fruitfully used as
a general logic specification language, i.e. as a Logical Framework (LF) [8,17,
18]. In an LF, following the “judgment-as-types” paradigm, we can represent
faithfully and uniformly all the relevant concepts of the inferential process in
a logical system (syntactic categories, terms, variables, contexts, assertions,

92

Scagnetto and Miculan

axiom schemata, rule schemata, instantiation, tactics, etc.).

The Calculus of Inductive Constructions (implemented in the Coq system
[12]) extends CC with some special constants which represent the definition,
introduction and elimination of inductive types. For instance, the following
definition of natural numbers (written in Gallina, Coq’s specification language)

Inductive nat : Set := O : nat | S : nat -> nat

allows to define terms by “case analysis”, like the following function:

Definition pred := [n:nat]Cases n of O => O | (S u) => u end.

where [n:nat] is Gallina notation for abstraction λn : nat. Using these elim-
ination schemata, Coq automatically states and proves the induction principle
for each inductively defined type. For instance, the above definition yields the
Peano induction principle “for free”:

nat_ind : (P:nat->Prop)(P O) ->

((n:nat)(P n)->(P (S n))) -> (n:nat)(P n)

where (n:nat) is the notation for dependent product
∏

n:nat. This feature has
been extensively used in the definition of logical connectives: we need only to
specify the introduction rules, and we can prove the elimination rules from
the elimination principle the system automatically provides us.

However, allowing for any inductive definition in CIC would yield non-
normalizing terms, thus invalidating the standard proof of consistency of the
system. Hence, inductive definitions are subject to the positivity condition,
which (roughly) requires that the type we are defining does not occur in neg-
ative position in the type of any argument of any constructor. This condition
ensures the soundness of the system, but it rules out also many sound in-
ductive definitions. For instance, the following definition of λ-terms in (full)
higher-order abstract syntax

Inductive L : Set := lam : (L->L) -> L | app : L -> L -> L.

is not well-formed, due to the negative occurrence of L in the type L->L of the
argument of lam.

Another problem arising from the use of higher order abstract syntax to-
gether with inductive types is that of exotic terms. These are λ-terms which
do not correspond to any object “on the paper”, despite their types corre-
spond to some syntactic category. Exotic terms are generated when a type
has a higher-order constructor over an inductive type. A simple example is
the following fragment of first-order logic:

Inductive i : Set := zero : i | one : i.

Inductive o : Set := ff : o | eq : i->i->o | forall : (i->o)->o.

Definition weird : o := (forall [x:i](Cases x of

zero => ff

| one => (eq zero zero)

end)).

93

Scagnetto and Miculan

The term weird does not correspond to any proposition of first order logic:
there is no formula ∀xφ such that φ{0/x} and φ{1/x} are syntactically equal to
“ff ” and “0 = 0”, respectively. Exotic terms are problematic in establishing
the faithfulness of the formalization; usually, they have to be ruled out by
means of auxiliary “validity” judgments [6, 20]. Another approach, which we
have used in this paper, is to have the higher order constructors to range over
types which are not inductive, so that there is no Cases to use as above.

A common implementation of CIC is Coq, an interactive proof assistant
developed by the INRIA and other institutes. For a complete description, we
refer to [12]. Coq is an editor for interactively searching for an inhabitant of
a type, in a top-down fashion by applying tactics step-by-step, backtracking
if needed, and for verifying correctness of typing judgments. A proof search
starts by entering

Lemma ident : goal.

where goal is the type representing the proposition to prove. At this point,
Coq waits for commands from the user, in order to build the proof term
which inhabits goal (i.e., the proof). To this end, Coq offers a rich set of
tactics, e.g., introduction and application of assumptions, application of rules
and previously proved lemmata, elimination of inductive objects, inversion of
(co)inductive hypotheses and so on. These tactics allow the user to proceed
in his proof search much like he would do informally. At every step, the type
checking algorithm ensures the soundness of the proof. When the proof term
is completed, it can be saved (by the command Qed) for future applications.

References

[1] Cardelli, L., G. Ghelli and A. D. Gordon, Types for the ambient calculus,
Information and Computation (2002), to appear. Special issue on TCS’2000.

[2] Cardelli, L. and A. D. Gordon, Mobile ambients, in: Proc. FOSSACS ’98,
Lecture Notes in Computer Science 1378 (1998), pp. 140–155.

[3] Cardelli, L. and A. D. Gordon, Anytime, anywhere. Modal logics for mobile
ambients, in: Proc. 27th ACM POPL, 2000, pp. 365–377.

[4] Cardelli, L. and A. D. Gordon, Logical properties of name restriction, in:
S. Abramsky, editor, Proc. TLCA 2001, LNCS 2044 (2001), p. 46.

[5] Despeyroux, J., A higher-order specification of the pi-calculus, in: IFIP TCS,
2000, pp. 425–439.

[6] Despeyroux, J., A. Felty and A. Hirschowitz, Higher-order syntax in Coq, in:
Proceedings of TLCA’95, Lecture Notes in Computer Science 905 (1995).

[7] Gabbay, M. J. and A. M. Pitts, A new approach to abstract syntax with variable
binding, Formal Aspects of Computing ? (2001), pp. ?–?. To appear.

94

Scagnetto and Miculan

[8] Harper, R., F. Honsell and G. Plotkin, A framework for defining logics, J. ACM
40 (1993), pp. 143–184.

[9] Hirschkoff, D., Bisimulation proofs for the π-calculus in the Calculus of
Constructions, in: Proc. TPHOL’97, LNCS 1275 (1997).

[10] Honsell, F., M. Miculan and I. Scagnetto, An axiomatic approach to
metareasoning on systems in higher-order abstract syntax, in: Proceedings of
ICALP’01, Lecture Notes in Computer Science 2076 (2001), pp. 963–978.

[11] Honsell, F., M. Miculan and I. Scagnetto, π-calculus in (co)inductive type
theory, Theoretical computer science 239–285 (2001), pp. 239–285.

[12] INRIA, “The Coq Proof Assistant Reference Manual”, http://coq.inria.fr/.

[13] Miculan, M., “Encoding logical theories of programs,” Ph.D. thesis,
Dipartimento di Informatica, Università di Pisa, Pisa, Italy (1997).

[14] Miculan, M., Developing (meta)theory of lambda-calculus in the theory of
contexts, in: S. Ambler, R. Crole and A. Momigliano, editors, Proc. MERLIN
2001, Electronic Notes in Theoretical Computer Science 58.1 (2001), pp. 1–22.

[15] Miculan, M., On the formalization of the modal µ-calculus in the Calculus of
Inductive Constructions, Information and Computation 164 (2001), pp. 199–
231.

[16] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, Tech. Rep.
ECS-LFCS-89-85, Dept. of Computer Science, University of Edinburgh (1989).

[17] Paulin-Mohring, C., Inductive definitions in the system Coq; rules and
properties, in: M. Bezem and J. F. Groote, editors, Proc. of Conference on
Typed Lambda Calculi and Applications, Lecture Notes in Computer Science
664 (1993), pp. 328–345.

[18] Pfenning, F., The practice of Logical Frameworks, in: Proc. CAAP’96, Lecture
Notes in Computer Science 1059 (1996), pp. 119–134.

[19] Pitts, A. M., Nominal Logic: A first order theory of names and binding, invited
talk in: Proc. TACS 2001, Lecture Notes in Computer Science 2215 (2001),
pp. 219–242.

[20] Röckl, C., D. Hirschkoff and S. Berghofer, Higher-order abstract syntax with
induction in Isabelle/HOL: Formalising the π-calculus and mechanizing the
Theory of Contexts, in: F. Honsell and M. Miculan, editors, Proceedings of
FoSSaCS 2001, Lecture Notes in Computer Science 2030 (2001), pp. 359–373.

[21] Scagnetto, I., Coq code for ambient and modal logic, available at http://www.
dimi.uniud.it/~scagnett/Coq-Sources/ambient_modal_logic.v.gz.

[22] Scagnetto, I., “Reasoning about Names in Higher-Order Abstract Syntax,”
Ph.D. thesis Cs 2002/4, Dipartimento di Matematica e Informatica, Università
di Udine, Udine, Italy (2002).

95

