
Scientific Programming 13 (2005) 299–316 299
IOS Press

XMatch: A language for satisfaction-based
selection of Grid services

Sergio Andreozzia,b,∗, Danilo Montesib and Rocco Morettib,c

aIstituto Nazionale di Fisica Nucleare (INFN) – CNAF, Viale Berti Pichat 6/2, 40127 Bologna, Italy
bDepartment of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna, Italy
cDepartment of Pure and Applied Mathematics, University of Padova, Via G. Belzoni 7, 35131 Padova, Italy

Abstract Grid systems enable the sharing of a large number of geographically-dispersed resources among different communities
of users. They require a mapping functionality for the association of users requests expressed in terms of requirements and
preferences to actual resources. This functionality should deal with a potentially high number of similar resources and with the
diversity of the perceived satisfactions of users. We propose XMatch, a query language enabling the expression of the user request
in terms of the expected satisfaction over XML-based representation of available resources. This language offers a compact way
for users to express their preferences for Grid resources and enable the maximization of the global preference.

Keywords Service evaluation, service selection, Grid, LSP, XQuery

1. Introduction

Grid systems follow a new paradigm of distributed computing that enables the sharing of resources and services
that are not subject to centralized control, are geographically dispersed and can dynamically join and leave virtual
pools [1]. Users typically express their requests as constraints and preferences using a well-known set of terms
defined in an information model and describing the resource characteristics. A resource request may involve different
types of resources or more items of the same resource and it requires the capability of expressing inter-dependencies
among them. Such inter-dependencies may be verified before starting the service provision or may require the
knowledge about the status of resources during the service provision. Given the large number of possible attributes
and the need for making an automatic selection, it is essential to define mechanisms enabling the efficient evaluation
of the degree to which resources satisfy the request.

In our previous work [2], we have proposed a model for the rigorous representation of service characteristics,
for the association of each of their possible values with the user satisfaction and for the aggregation of the single
satisfactions in an overall score using a particular logic. In this paper, we propose XMatch, a query language enabling
the expression of the user requirements and preferences based on the defined model. This language is inspired by
XQuery [3] reusing a set of constructs useful for our goal and providing clauses based on our service evaluation
model. Each XMatch query is executed on a snapshot representation of the available Grid resources. In a scenario
involving a workflow requiring the selection of resources not only at its start, but also during its execution, different
XMatch queries can be defined at different instants. The evaluation of how XMatch can be used together with
specific workflow description languages [4] is not in the scope of this paper.

∗Corresponding author: Sergio Andreozzi, Istituto Nazionale di Fisica Nucleare (INFN) – CNAF, Viale Berti Pichat 6/2, 40127 Bologna, Italy.
Tel.: +39 328 8462871; Fax: +39 051 6092746; E-mail: sergio.andreozzi@cnaf.infn.it.

ISSN 1058-9244/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

300 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

The paper is structured as follows: in Section 2 we set out our service evaluation model used to measure the
satisfaction; in Section 3, we introduce the XMatch language with a number of examples; in Section 4, we use the
language in two important use cases concerning the Grid computing area; in Section 5, we present a number of
works that are relevant to our area of research; in Section 6, we draw up our conclusions and plan for future work;
in Appendix 7, the EBNF (Extended Backus-Naur Form) grammar definition of our language is given.

2. Background on the service evaluation model

In order to understand the goal of the language that we are proposing, it is important to set out the core part of the
service evaluation model proposed in [2]. It is an approach tailored to the problem of identifying a service satisfying
a request from the requester viewpoint. In particular, we define a model for the rigorous representation of service
characteristics, for associating each of their possible values to the satisfaction perceived by a specific viewpoint and
for the aggregation of the single satisfactions in an overall score using a particular logic.

Our model does not make assumptions as regards the definition of the attributes and the way values are associated to
them. Specific representations are considered by different domains like the area of information modeling, knowledge
representation, ontologies and expert systems. As regards the Grid community, GLUE (Grid Laboratory Uniform
Environment) Schema [5] and JSDL (Job Submission Description Language) [6] are meaningful proposals in the
information modeling area; an ontology-based matchmaker is presented in [7]; Component-Expert technology [8] is
proposed in the area of expert systems.

The measurement theory [9] and the Logic Scoring of Preferences (LSP) method [10,11] are the building blocks
of our model. The former supports the rigorous representation of properties of interest by defining a mapping from
the empirical world into its formal representation, thus enabling to perform meaningful analysis and forecasts. The
latter supports the synthesis of the global satisfaction by associating elementary satisfactions to each property and
by providing a flexible aggregation mechanism.

2.1. Measurement theory

In this section, we introduce the basic concepts of the measurement theory that are useful to model in a rigorous
way the attributes characterizing the entities to which the user is interested in expressing satisfaction predicates.
These concepts enable to define an unambiguous machine-processable representation of the domain of interest. We
start by considering the following definition [9]:

Definition 1. Measurement is the process by which numbers or symbols are assigned to attributes of entities in the
real world in such a way as to describe them according to clearly defined rules.

A proper insight of this definition requires the investigation of the concepts of entity and attribute. The former
is an object or event of the real world, whereas the latter is a feature of this object or event. For each entity under
investigation, each of its attributes needs the expression of criteria in order to determine its measurableness and
define its measurement. Empirical relationships are inferred from attributes of entities. Therefore, respective formal
relationships must be based on the formalization of these attributes in the models of the entities. We define an
empirical relationship as the relationship among entities of the real world based on rules derived from experience.
The first step towards the representation of the aspects of interest consists in defining an abstraction of the reality
under investigation. An empirical relational system can be defined in the following way:

Definition 2. An empirical relational system is an ordered tuple ERS = (EO, er1, . . . , ern, �1, . . . , �m) where
EO is a set of empirical objects, eri (i = 1, . . . , n) are k-ary empirical relationships (k � 2) defined in EO, � j

(j = 1, . . . , m) are binary closed operations between empirical objects in EO.
An empirical relational system describes the objects of the real world (EO) and our empirical knowledge of

their attributes (the empirical relationships eri). We introduce the formal relational system enabling to model each
empirical object, relationship and operation:

S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services 301

Definition 3. A formal relational system is an ordered tuple FRS = (FO, fr1, . . . , frn, �1, . . . , �m) where FO is
a set of formal objects, fri (i = 1, . . . , n) are k-ary formal relationships (k � 2) defined in FO, � j (j = 1, . . . , m)
are binary closed operations between formal objects in FO.

In the formal relational system, empirical objects are mapped into the formal objects, empirical relationships are
modeled by the respective formal relationships and empirical operations are mapped into formal operations. The link
between the empirical relational system and the formal relational system is represented by the following concepts of
measure and measurement scale.

Definition 4. Let EO and FO be a set of empirical objects and a set of formal objects respectively. A measure
µ : EO → FO is a function mapping each empirical object eo ∈ EO into a formal object µ(eo) ∈ FO (the
measurement value).

The measure µ enables to define the measurement scale expressing a mapping between the empirical and the
formal relational system.

Definition 5. Let ERS = (EO, er1, . . . , ern, �1, . . . , �m) and FRS = (FO, fr1, . . . , frn, �1, . . . , �m) be an
empirical relational system and a formal relational system respectively. Let µ : EO → FO be a measure. S =
(ERS,FRS, µ) is a measurement scale if and only if ∀i ∈ [1, n], ∀j ∈ [1, m] and ∀eo1, . . . , eok, b, c ∈ EO (k � 2)
the following properties hold: eri(eo1, . . . , eok) ⇐⇒ fri

(
µ(eo1), . . . , µ(eok)

)
and µ(b �j c) = µ(b) �j µ(c). If

FO = R the measurement scale S is a real measurement scale.
Five measurement scales are reputed to be particularly meaningful [9]: (1) the nominal scale is used when the

measured objects need to be partitioned in classes; (2) the ordinal scale is a nominal scale with an order relation
among the classes; (3) the interval scale is an ordinal scale that preserves the difference among the values associated
to the measured objects; (4) the ratio scale is an interval scale that maintains constant the ratio of the values associated
to the measured objects; finally, (5) the absolute scale is a ratio scale representing the only possible scale suitable to
measure the attribute under investigation.

We have considered software measurement theory [9] in order to quantitatively express attributes and properties
of interest. Without this step, no evaluation method can be used for obtaining meaningful information, therefore we
consider the adoption of this theory as a requirement that has to be satisfied before starting to apply our evaluation
method.

2.2. LSP

We present two steps included in the Logic Scoring of Preferences (LSP) method [10,11]. The first step that
we consider is the definition of the elementary criteria of satisfaction that are functions associated to the values of
measurements concerning the attributes of the entities to examine. These functions map each possible value into
a number e ∈ [0, 1] (i.e., e = 0 means ‘no satisfaction’, whereas e = 1 means ‘full satisfaction’) expressing the
satisfaction for each possible value. Therefore, the elementary criteria of satisfaction are defined depending on the
set of possible measurement values. There are three main ways to define an elementary criterion of satisfaction [10]:
an enumeration of all possible values returned by a measurement of an attribute, an absolute classification of these
values and a relative classification.

The second step of the LSP method is the synthesis of the satisfaction concerning a feature that can be modeled
only by a set of measurements. The method prescribes the definition of functions returning a global satisfaction
E ∈ [0, 1]. Such functions are based on the satisfactions e1, . . . , en defined by n elementary criteria to be aggregated
and by their respective weights w1, . . . , wn. These weights can be selected in order to reflect the relevance of
the attribute that the satisfaction refers to. Besides, they must be positive (i.e., w i > 0 ∀i) and normalized (i.e.,∑n

i=1 wi = 1). A wide spectrum of nonlinear multi-criteria scoring functions has been defined in order to model
simultaneity (i.e., ei and ej have to be simultaneously greater than a threshold), neutrality, replaceability (i.e., a high
value of ei can compensate a low value of ej) and other input relationships. These scoring functions, defined in [10],
have the following generalized form:

(1) E = (w1 e1
r+. . . +wn en

r)
1
r

302 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

w2w1

ep

w11 −
es

1 −
CA EA

w2

e

E
.
..

w1e

en−1

en

2w

wn−1

wn

wnwn1. ..2ww11

2

(a)

(b)

+ + + + = 1

Aggregation
function

Fig. 1. Aggregation functions: (a) Notation to represent the aggregation functions. (b) The conjunctive partial absorption function.

where −∞ � r � +∞. The power r is a parameter selected in order to capture the desired logical relationship
and intensity of polarization of the aggregation function. The calculation of the value assigned to the r parameter
is based on the number n of satisfactions to be aggregated and on the expected degree of conjunction [10,11]. A
useful notation based on [11] is presented in Fig. 1(a). An aggregation function is represented by a circle; for each
satisfaction ei a weighted entry arc is defined (i = 1, . . . , n;

∑n
i=1 wi = 1); finally, for each circle we have a single

exit arc (the synthesized global satisfaction). Besides, the aggregation functions can be composed in order to produce
other functions enabling to define aggregation criteria based on a particular logic.

By using this notation, in Fig. 1(b) we introduce a particular scoring function defined in [10]: the conjunctive
partial absorption function suitable for aggregating a primary satisfaction e p and a secondary satisfaction es. The
arithmetic mean function A (r = 1) is the input of the medium quasi-conjunction function CA (r = −0.72) and the
weights are placed as presented in the figure. Apart from the value of the secondary satisfaction e s, we have E = 0
if the principal satisfaction ep is equal to 0; on the contrary, if ep > 0 the global satisfaction E is positive. Finally,
we have the largest global satisfaction (E = 1) if ep = es = 1.

2.3. The service evaluation model

We start by providing a number of definitions that are the building blocks of our service evaluation model. The
first definition associates each attribute to its measurement scale. By this association, the meaningful predicates can
be identified.

Definition 6. Let A be the set of attributes of the entities involved in the evaluation. AM is the set of pairs: (a, S a)
where a ∈ A and Sa = (ERSa,FRSa, µa) is a measurement scale.

The next definition concerns the set of elementary criteria of satisfaction.

Definition 7. Let A be the set of attributes of the entities involved in the evaluation. ECA is the set of elementary
criteria of satisfaction for each a ∈ A.

The following equivalence relation is defined in order to identify equivalence relevance classes for the attributes.

Definition 8. Let A be the set of attributes of the entities involved in the evaluation, a i and aj be elements of A,
then ∼REL is an equivalence relation on A defining a collection of pairs (a i, aj) where ai ∼REL aj means that the
satisfaction concerning the values of ai is as relevant as the satisfaction concerning the values of aj .

S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services 303

 F4 E
1 − 2m−1w...

e
m−1 1

e
m k

 m

...

A ...

w

...

w

 F1

 F2

 Fm−1

 Fm

1w2

3w4

A
w

A
1 − 1w1 − 2w1 − 31 − w4 F F

ww2m

1 − w2m

2m−1

...
...

e
11

ee
e

1k
1

e

2111

2k
2

e
m1

e
m−1 k

 m−1

Fig. 2. From attribute values to the overall satisfaction degree.

The next definition introduces the functions needed to aggregate the values returned by the elementary criteria of
satisfaction.

Definition 9. AFECA is the set of functions for the aggregation of the satisfaction synthesized by the elementary
criteria in ECA.

The definitions given above compose our service evaluation model (SEM) synthesized by the following function:

(2) SEM : (AM,∼REL, ECA, AFECA) → [0, 1]

Figure 2 expresses how the arguments of the function SEM have to be used in order to obtain the overall
satisfaction degree. Considering the figure: (1) the measurement scales for the attributes under investigation are
defined; (2) the satisfaction concerning the value of each attribute is produced by its respective elementary criterion
of satisfaction; (3) the satisfactions reputed to be of the same relevance are grouped together by means of ∼ REL; (4)
the overall score is obtained by using the general pattern by firstly (4a) aggregating the satisfactions belonging to the
same category and secondly (4b) by performing the aggregation of the satisfactions synthesized for each category.

304 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

3. The XMatch language

In this section, we introduce the XMatch language enabling to express queries over XML-based representations
of Grid resources by considering also the satisfaction degree that a user perceives as regards the possible values of
the attributes of interest. In Appendix 7, the complete grammar is given. The grammar rules are given only for
symbols starting with the prefix XM, while the other symbols are taken from the XQuery W3C specification [3]. The
core part of the XMatch language is an expression defined in the grammar by the symbol XMExpr as follows:

(3) XMExpr ::= XMForClause XMLetClause+ XMWhereClause XMReturnClause

The rule defining this symbol is inspired by the FLWOR (For-Let-Where-Order by-Return) expression of the
XQuery language [3]. The first clause (XMForClause) of this expression generates an ordered sequence of tuples
of bound variables called the tuple stream. For each set of bound variables generated in this step, the second
clause (XMLetClause) enables to bound one or more variables to the value returned by an elementary criterion
of satisfaction as regards elements belonging to the tuple stream. The third clause (XMWhereClause) enables to
associate each variable defined in the second clause (i.e., an elementary satisfaction) with a relevance category, thus
defining the aggregation pattern. The fourth and last clause (XMReturnClause) is used to return the result as an
XML document and allows to select a subset of solutions based on their overall satisfaction.

3.1. Generation of the tuple stream

As stated in the previous section, the clause XMForClause generates an ordered sequence of tuples of bound
variables, called the tuple stream. This is a simplified version of the XQuery ForClause, where only the basic
constructs are maintained to select elements from an XML document and to generate set of elements by using
joins. For each XMatch expression, only one XMForClause is allowed with one or more variables to be bound to
different types of nodes. The URILiteral is defined in the XQuery specification and should refer to a URI that
can be resolved to a file containing the data in XML format from which the set of important fragments are extracted.
The OrExpr is also part of the XQuery specification.

(4) XMForClause ::= <"for" "$"> VarName "in" XMDocCall
("," "$" VarName "in" XMDocCall)*

XMDocCall ::= "doc(" URILiteral ")" XMPathExpr? XMPredicate?
XMPathExpr ::= ("/" QName)+
XMPredicate ::= "[" OrExpr "]"

3.2. Expressing the Satisfaction

In this section, we describe the symbol XMLetClause as the essential construct for defining a single elementary
criterion of satisfaction. The three main categories are supported (see Section 2): an enumeration of all possible values
returned by a measurement of an attribute, an absolute classification of these values and a relative classification [10].

(5) XMLetClause ::= "let" (XMSimpleEnum | XMCompEnum | XMRange)
XMSimpleEnum ::= XMPathExpr ValueComp XMElement "satisfies" XMSatLiteral

("," XMElement "satisfies" XMSatLiteral)*
XMCompEnum ::= XMPathExprList ValueComp XMElementList "satisfies"

XMSatLiteral ("," XMElementList "satisfies" XMSatLiteral)*
XMRange ::= XMPathExpr "in" XMElement "to" XMElement "satisfies" "with"

("linear" "increment" | "linear" "decrement" | "around")
XMPathExprList ::= "(" XMPathExpr ("," XMPathExpr)+ ")"
XMElementList ::= "(" XMElement ("," XMElement)+ ")"
XMElement ::= (Literal | XMPathExpr | XMFunctionCall)
XMSatLiteral ::= ("0"? "." Digits | "1")
XMFunctionCall ::= ("max"|"min"|"avg"|"sum"|"count") "(" XMPathExpr ")"
XMPathExpr ::= ("/" QName)+

S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services 305

The values that are input for an elementary criterion of satisfaction are determined by a simplified XPath expression
(XMPathExpr). A step in this expression consists only of a child forward step in its abbreviated form with a name
node test according to the definitions given in the XPath 2.0 specification [12]. As stated in this specification, the
result of an XPath expression is any sequence allowed by the data model. An important characteristic introduced
by the new data model [13] is that there is no distinction between an item (i.e., a node or an atomic value) and a
singleton sequence containing this item (an item is equivalent to a singleton sequence containing the item and vice
versa). As regards XMatch, we only admit as result of an XMPathExpr expression a sequence of atomic values.
Besides, we have to specify how an elementary criterion of satisfaction is applied to such a type of result. Given
the simplified path expression, the resulting sequence is composed by elements with the same qualified name at the
same distance from the root node.

We start by describing the elementary criteria of satisfaction when the result of a path expression is a singleton.
The first category of elementary criterion of satisfaction can be used when the number of possible values for which
the user wants to express an explicit satisfaction is finite. For instance, a user may want to express a number of
acceptable possibilities for the operating system type where its job should be executed; the most preferred one is
Scientific Linux, but RedHat Enterprise Linux is acceptable with lower satisfaction. This could be
expressed as in Example 6 by using the XMSimpleEnum clause.

(6) let $e1 := $CS/OSName eq "Scientific Linux" satisfies 1, "RedHat Enterprise
Edition" satisfies 0.8

A more complex use case supported in XMatch is the association of an elementary satisfaction by enumeration
to a compound comparison predicate. For instance, if a user wants to express a satisfaction associated to both the
name and version of an operating system, this can be done as in Example 7 by using the XMCompEnum clause.

(7) let $e1 := ($CS/OSName, $CS/OSVersion) eq ("Scientific Linux", "3") satisfies 1,
("RedHat Enterprise Edition", "3") satisfies 0.8

The second category of elementary criterion of satisfaction can be used when the expression of satisfaction is
based on parameters independent from attribute values under investigation. The possible functions that map the
range of values into a satisfaction are infinite. Our choice is to express in the language three meaningful functions.
They are linear and capture an increasing satisfaction, a decreasing satisfaction or a satisfaction centered around a
value. An example of usage for the first function (linear increment) is a user requiring a storage service with at least
50 GB of available disk space. Values up to 70 GB produce an increasing satisfaction, while values greater than
70 GB are considered to be equal and fully satisfying. This can be captured in XMatch as in Example 8 by using the
XMRange clause. The satisfaction is 0 if the value of the attribute is lower than or equal to the lower bound of the
range, while it is 1 if the value of the attribute is equal to or higher than the upper bound.

(8) let $e2 := $SS/FreeSpace in 50 to 70 satisfies with linear increment

The second linear function (linear decrement) is similar to the previous function, except that for values lower
than or equal to the lower bound, the satisfaction is 1 and for values equal to or higher than the upper bound, the
satisfaction is 0. For attribute values in the range, the satisfaction linearly decreases. For instance, let us consider a
user that is fully satisfied if the response time of a service is lower than or equal to 5 ms, but he will accept values
up to 30 ms (see Example 9).

(9) let $e3 := $CS/EstimantedResponseTime in 5 to 30 satisfies with linear decrement

The last function should be used when a high satisfaction is associated to values close to the one reputed to be the
optimum. For instance, let us consider a user requiring a bandwidth for a network service around 200 Mb/s with a
10% tolerance (see Example 10).

(10) let $e4 := $NS/Bandwidth in 180 to 220 satisfies with around

306 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

The third category of elementary criterion refers to a relative comparison among the attribute values of all entities
in the evaluation context. This criterion requires the introduction of aggregation functions (e.g., min or max). They
can be used in both the first and second elementary criteria given above. For instance, let us consider a user requiring
the storage service offering the highest free storage capacity (see Example 11).

(11) let $e5 := $SS/FreeSpace eq max($SS/FreeSpace) satisfies 1

The use case of a relative elementary criterion concerning a range of values can be expressed by enabling the
possibility of using aggregation functions to define the range bounds. For instance, a user may be fully satisfied
when he is assigned for the service with the lowest response time among the available ones, but his satisfaction
linearly decreases up to 0 when the highest is given.

(12) let $e6 := $CS/EstimantedResponseTime in min($CS/EstimantedResponseTime) to
max($CS/EstimantedResponseTime) satisfies with linear decrement

In the Examples from (6) to (12), the hypothesis is that the path expression returns a singleton, while in the
remaining part of this section, we generalize the behavior of the XMLetClause to path expressions returning a
sequence with multiple atomic values. In order to perform a meaningful evaluation of the satisfaction, we need to
introduce the following definitions.

Definition 10. Two distinct elements el1 and el2 of an XML document are in intra-evaluation relationship if and
only if the qualified name of el1 is equal to the qualified name of el2 and they are siblings.

Definition 11. Two distinct elements el1 and el2 of an XML document are in inter-evaluation relationship if and
only if they are not siblings and the path from the root to el 1 and the path from the root to el2 are equal.

According to the last definition, two elements in inter-evaluation relationship are identified by the same
XMPathExpr expression, but they are not siblings. In order to exemplify the two definitions, let us consider the
following example.

(13) 1: <DataSet>
2: <A>
3:
4: <C>10</C>
5: <C>2</C>
6:
7:
8: <C>1</C>
9:

10:
11: <C>2</C>
12: <C>3</C>
13:
14:
15: <A>
16:
17: <C>7</C>
18: <C>4</C>
19:
20:
21: </DataSet>

The path expression /DataSet/A/B/C returns a sequence with seven C elements. As an example in this
sequence, the first and second element (lines 4 and 5) are in intra-evaluation relationship because they share the
same parent node (line 3); the second and the third one (lines 5 and 8) are in inter-evaluation relationship because
they have different parent nodes (lines 3 and 7 respectively), but are identified by the same path expression. We

S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services 307

consider values in intra-evaluation relationships as alternative values when determining the satisfaction concerning
the attribute defined according to our service evaluation model (see Section 2.3). Therefore, the evaluation of
an elementary criterion is made for each value and the higher satisfaction will be selected for the attribute under
consideration. As regards values in inter-evaluation relationships, they are reputed to refer to different alternative
entities according to our service evaluation model. Therefore, the evaluation of the global satisfaction must be based
on only one entity among the alternative ones. Such an entity is selected maximizing the global satisfaction. In
order to exemplify the concepts presented by the Example 13, let us consider a user requiring an A element. The
user has a linearly increasing satisfaction from 0 to 1 for the values of C from 0 to 10. This elementary criterion can
be written in XMatch as expressed in Example 14.

(14) let $e1 := $A/B/C in 0 to 10 satisfies with linear increment

By means of the XMForClause, the variable $A is bound to each A element in the document presented in the
Example 13. Let us consider the first A element: according to Definition 10, the C elements in lines 4 and 5 are in an
intra-evaluation relationship. The same relationship holds for the C elements in lines 11 and 12. For each subset of
the elements that are in intra-evaluation relationship (i.e., 10 and 2 in lines 4 and 5; 1 in line 8; 2 and 3 in lines 11 and
12), a representative providing the maximum satisfaction is selected and returned as part of the sequence assigned
to the $e1 variable, that is (1, 0.1, 0.3). This demonstrates how the intra-evaluation relationships can be resolved
within the single elementary criterion. According to Definition 11, the three satisfactions in the sequence refer to
attributes that are in an inter-evaluation relationship. This implies that in order to select the satisfaction participating
to the aggregation producing the global satisfaction, we need to relate the values returned by different elementary
criteria considering also their relevance. A complete example is given in Section 4. Following the same rules, the
elementary criterion applied to the second A element will bound the variable $e1 with the singleton sequence (0.7).

3.3. Classifying the satisfactions by relevance

In this section, we explain how the association of an elementary satisfaction to a relevance category is modeled
in the XMatch language. Potentially, the relevance categories can be infinite, but only three of them are introduced
as they are sufficient for meaningful use cases. They are defined in the XMatch language grammar by using the
following string literals: essential, desirable and optional. The advantage of such a definition is the
improvement of the legibility of XMatch queries. A possible approach to generalize the language to an high number
of relevance classes is to use natural numbers to label the relevance categories. The lower is the natural number
associated to a relevance category, the more important is the satisfaction.

(15) XMWhereClause ::= "where" XMRelevanceExpr ("and" XMRelevanceExpr)*
XMRelevanceExpr ::= ("$" VarName "is" | XMVarNameList "are")

("essential" | "desirable" | "optional")
XMVarNameList ::= "(" "$" VarName ("," "$" VarName)+ ")"

Given a set of XMLetClause expressions defining elementary satisfactions, each of them can be associated to
a relevance category by using the XMWhereClause (see Example 16). This provides the meaningful information
for building the aggregation pattern.

(16) where ($e1, $e2) are essential and $e3 is desirable

Weight and power parameters used in the aggregation pattern (see Fig. 2) are considered to be part of the query
processor. Let us consider Example 17 showing an XML document having elements in both intra- and inter-evaluation
relationships.

308 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

(17) 1: <DataSet>
2: <A>
3:
4: <C>10</C>
5: <C>2</C>
6: <D>6</D>
7:
8:
9: <C>1</C>

10:
11:
12: <C>2</C>
13: <C>3</C>
14: <D>9</D>
15:
16:
17: <A>
18: ...
19:
20: </DataSet>

We consider a user that wants to select an A element for which it is essential that a C element is higher than 6
and it is desirable that a D element is higher than 8. This expectations can be written in XMatch as showed in the
following example:

(18) for $A in doc("data.xml")/DataSet/A,
let $e1 := $A/B/C gt 6 satisfies 1
let $e2 := $A/B/D gt 8 satisfies 1
where $e1 is essential and $e2 is desirable

The values returned by the expression $A/B/C are in both intra- and inter-evaluation relationships. The same
condition holds for the values returned by the expression $A/B/D. Considering the rules defined in Section 3.2, the
variable $e1 is bound to the sequence (1, 0, 0), while the variable $e2 is bound to the sequence (0, 1). In order
to choose the satisfaction participating in the aggregation for each elementary criterion, we introduce the ancestor
relationship for performing such a choice. This relationship applies to the values of an XML document selected
among two or more XMLetClause’s and is presented in Definition 3.3.

Definition 12. A value vih (h ∈ [1, m]) in the i-th sequence (vi1, . . . , vim) returned by a path expression /X/Y
(where X and Y are path expressions) is in an ancestor relationship with a value v jk (k ∈ [1, n]) in the j-th sequence
(vj1, . . . , vjn) returned by a path expression /W/Z (where W and Z are path expressions) if and only if the path X
is equal to the path W and the number of steps from the element v ih to the element vjk is equal to the number of
steps in Y plus the number of steps in Z . If vih is in an ancestor relationship with vjk, then the same relationship
holds for their respective elementary satisfactions.

In order to exemplify this definition, we consider the two path expressions in Example 18 (/A/B/C and /A/B/D)
applied to the XML document in Example 17. They identify the sequences (10,2,1,2,3) and (6,9) respectively.
Considering the Definition 12, X is equal to /A/B, Y is equal to C, W is equal to /A/B and Z is equal to D. The
first and the second value of the first sequence (i.e., 10 and 2) are in an ancestor relationship with the first value of
the second sequence (i.e., 6), while they are not in an ancestor relationship with the second value (i.e., 9). For the
final aggregation, we have to select only one value for each elementary criterion. The choice is made by selecting
the n-tuple of elementary satisfactions (n is the number of elementary criteria of satisfaction) that are in ancestor
relationships and that maximize the global satisfaction. It may happen that it is not possible to produce a complete
tuple because the structure of the XML document may lead to the identification of a set of elementary satisfactions
that are in ancestor relationship whose cardinality is less than n. In this situation, the missing elementary satisfactions
are considered to be equal to 0. In Exampl 18, we have two elementary criteria, therefore we must produce pairs

S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services 309

2

3

4

5

6

1

desE

1E 2E 3E

w2

Eopt

Eess
C

+

e

e

e A

e
e

e

41 − w31 − w21 − w

w
CA

4w
3

1w1 −
ECAACAA

1w

Fig. 3. Example aggregation pattern given by the XMWhereClause.

of elementary satisfactions (i.e., n = 2). The sequence e1 = (1, 0, 0) associated to the sequence of values v1 is
composed of three values, while the sequence e2 = (0, 1) associated to the sequence of values v2 is composed of
two values. In particular, we can point out that the second value of e 1 (i.e., e12 = 0) has no respective satisfaction in
e2 for which an ancestor relationship holds. Therefore, the related pair is (e 12,), where the symbol ‘ ’ expresses the
lack of an elementary satisfaction (to be replaced with 0 during the aggregation phase). Summarizing, the tuple of
elementary satisfactions that are candidate for the aggregation are: (1, 0), (0,) and (0, 1). The tuple that maximizes
the global satisfaction is the first one because its first value is essential and equal to 1.

3.4. Constructing the result

In this section, we describe how the result of the query is constructed and returned. Our decision is to define
a clause that does not provide any transformation capability. The transformation of the result can be achieved by
adding a postprocessing phase using languages like XQuery or XSLT. The XMReturnClause clause returns an
XML document with a predefined structure as presented in Example 19.

(19) <Results>
<Result E="0.98">
...
</Result>
<Result E="0.94">
...
</Result>

</Results>

Each Result element contains a set of elements as generated by the XMForClause and an E attribute with the
overall satisfaction associated to the solution. These elements are given following a decreasing order with respect
to the value of E. Moreover, the number of results can be limited in two ways: by asking the ‘Top K’ results and by
dropping all solutions that do not reach a minimum overall satisfaction.

(20) XMReturnClause ::= "return" "top" digits ("with threshold" XMSatLiteral)?

4. Use cases

In this section, we present two meaningful use cases in the area of Grid computing. The first use case refers to the
selection of a set of three different Grid services that better satisfy the user expectations. The XML representation
of these services is simplified in the sense that neither intra-evaluation nor inter-evaluation relationships are present.
The second use case refers to the selection of a single storage service, but its structure is more complex and presents
intra/inter-evaluation and ancestor relationships.

310 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

4.1. Computing, network and storage resources

We consider a simplified scenario where core services referring to computing, storage and network resources are
defined as follows: the computing service is a uniquely identified Grid service that can provide a user software
application for computing power in a certain execution environment; the storage service is a uniquely identified Grid
service that manages storage extents to be used for storing data; finally, the network service is a uniquely identified
service that offers unidirectional communication capability between network domains that are sets of services sharing
the same connectivity (we refer to the model defined in [14]). The following XML fragments represent a computing,
a storage and a network service. They are based on a schema and represent the mapping to a formal relational
system. In a real scenario, a broker service maintains and continuously updates a cache with the representation
of the available services [15]. The broker also receives requests from users and, based on their requirements and
preferences, performs the matchmaking phase during which suitable solutions are prepared and one is selected.

(21) <data>
<CS>

<URI>httpg://hostname.cnaf.infn.it/CS/</URI>
<DomainURI>/INFN/CNAF</DomainURI>
<Type>CS</Type>
<OSName>Scientific Linux</OSName>
<OSVersion>3.0.3</OSVersion>
<ProcessorFamily>Intel Pentium</ProcessorFamily>
<AssignedJobSlots>30</AssignedJobSlots>
<WaitingJobs>10</WaitingJobs>
<RunningJobs>30</RunningJobs>
<FreeJobSlots>0</FreeJobSlots>

</CS>
<NS>

<URI>/NS/1</URI>
<Type>NS</Type>
<SourceDomainURI>/INFN/CNAF</SourceDomainURI>
<DestDomainURI>/INFN/MI</DestDomainURI>
<Bandwidth Unit="Mb/s">300</Bandwidth>
<RoundTripTime Unit="ms">3</RoundTripTime>

</NS>
<SS>

<URI>httpg://hostname.mi.infn.it/SS</URI>
<Type>SS</Type>
<DomainURI>/INFN/MI</DomainURI>
<Durability>0.6</Durability>
<AvailableSpace Unit="GB">300</AvailableSpace>
<DataAvailability>0.8</DataAvailability>

</SS>
</data>

Let us consider a user that requires a computing service offering the Scientific Linux operating system
in its version 3.0.3, but also CentOS version 4.0 is acceptable with lower satisfaction. Then, the user requires an
Intel Pentium processor family. The application is expected to store permanent data for around 220 GB in
a storage service. A network service with around 70 Mbit/s of bandwidth and a small RTT (Round Trip Time) is
desirable. Finally, the minimization of the waiting time of the computing service is optional. In Example 22, we
show a possible XMatch query expressing these requirements.

(22) for $NS in doc("data.xml")/data/NS,
$CS in doc("data.xml")/data/CS[DomainURI=$NS/SourceDomainURI]
$SS in doc("data.xml")/data/SS[DomainURI=$NS/DestDomainURI]

S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services 311

let $e1 := ($CS/OSName, $CS/OSVersion) eq ("Scientific Linux", "3.03") satisfies
1, ("CentOS", "4.0") satisfies 0.8

let $e2 := $CS/ProcessorFamily eq "Intel Pentium" satisfies 1
let $e3 := $SS/AvailableSpace in 200 to 250 satisfies with linear increment
let $e4 := $NS/Bandwidth in 50 to 100 satisfies with linear increment
let $e5 := $NS/RoundTripTime in 0 to 10 satisfies with linear decrement
let $e6 := $CS/FreeJobSlots in 0 to max($CS/FreeJobSlots) satisfies with linear

increment
where ($e1, $e2, $e3) are essential and ($e4, $e5) are desirable and $e6 is
optional return top 10 with threshold 0.6

Each let clause is used to express an elementary criterion of satisfaction, while the where clause describes the
aggregation pattern in Fig. 3 and corresponds to the following equation of our service evaluation model:

(23) Eess =
(
w11e

ress
1 + w12e

ress
2 + w13e

ress
3

) 1
ress

(24) Edes =
(
w21e

rdes
4 + w22e

rdes
6

) 1
rdes

(25) Eopt = e5

(26) E1 =
(
(1 − w1)Eopt + w1Edes

)

(27) E2 =
(
(1 − w2)E

raggr

1 + w2E
raggr

des

) 1
raggr

(28) E3 =
(
(1 − w3)E2 + w3Eess

)

(29) E =
(
(1 − w4)E

raggr

3 + w4E
raggr
ess

) 1
raggr

4.2. Storage resource

In this section, we consider a scenario concerning a user interested in selecting a storage service. The expected
characteristics of this service are: the access protocol must be gridftp (/SS/AccessProtocol/Type ele-
ment), the data availability should be as high as possible (/SS/SA/DataAvailability element), the storage
area must be of type permanent and with an available space greater than 60 GB (/SS/SA/AvailableSpace
and /SS/SA/Type elements), the user must be able to access the storage area, that is the virtual organization
(VO) he belongs to (urn:vo:1) must be authorized (/SS/SA/AuthorizedVO element). The following XML
document represents two examples of storage services:

(30) 1: <data>
2: <SS>
3: <UniqueID>urn:cnaf.infn.it:storage.service</URI>
4: <SA>
5: <LocalID>storage.area.001</LocalID>
6: <AvailableSpace>70</AvailableSpace>
7: <AuthorizedVO>urn:vo:1</AuthorizedVO>
8: <AuthorizedVO>urn:vo:2</AuthorizedVO>
9: <Type>permanent</Type>

10: <DataAvailability>0.7</DataAvailability>
11: </SA>
12: <SA>

312 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

13: <LocalID>storage.area.002</LocalID>
14: <AvailableSpace>90</AvailableSpace>
15: <Type>permanent</Type>
16: <AuthorizedVO>urn:vo:3</AuthorizedVO>
17: </SA>
18: <SA>
19: <LocalID>storage.area.003</LocalID>
20: <AvailableSpace>50</AvailableSpace>
21: <Type>volatile</Type>
22: <DataAvailability>0.7</DataAvailability>
23: <AuthorizedVO>urn:vo:4</AuthorizedVO>
24: <AuthorizedVO>urn:vo:5</AuthorizedVO>
25: </SA>
26: <AccessProtocol>
27: <URI>gridftp://grid001.cnaf.infn.it:2811</URI>
28: <Type>gridftp</Type>
29: </AccessProtocol>
30: </SS>
31: <SS>
32: <UniqueID>urn:cern.ch:storage.service</URI>
33: <SA>
34: <LocalID>storage.area.001</LocalID>
35: <AvailableSpace>30</AvailableSpace>
36: <Type>permanent</Type>
37: <DataAvailability>0.9</DataAvailability>
38: <AuthorizedVO>urn:vo:4</AuthorizedVO>
39: <AuthorizedVO>urn:vo:5</AuthorizedVO>
40: </SA>
41: <SA>
42: <LocalID>storage.area.001</LocalID>
43: <AvailableSpace>80</AvailableSpace>
44: <Type>permanent</Type>
45: <DataAvailability>0.9</DataAvailability>
46: <AuthorizedVO>urn:vo:1</AuthorizedVO>
47: </SA>
48: <AccessProtocol>
49: <URI>gridftp://grid005.cern.ch:2811</URI>
50: <Type>gridftp</Type>
51: </AccessProtocol>
52: </SS>
53: </data>

An XMatch query expressing the user expectations in the use case presented in Example 30 is the following one:

(31) for $SS in doc("data.xml")/data/SS
let $e1 := $SS/SA/AuthorizedVO eq "urn:vo:1" satisfies 1
let $e2 := $SS/SA/AvailableSpace gt 60 satisfies 1
let $e3 := $SS/SA/Type eq "permanent" satisfies 1
let $e4 := $SS/SA/DataAvailability in 0 to 1 satisfies with linear increment
let $e5 := $SS/AccessProtocol/Type eq "gridftp" satisfies 1
where ($e1, $e2, $e3, $e5) are essential and $e4 is desired
return top 10 with threshold 0.6

For each storage service in the XML document, the five elementary criteria of satisfaction are applied to the
five attributes of interest. According to the Definitions 10, 11 and 12, we notice that intra-evaluation relationships

S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services 313

hold among the elements returned by the path expression $SS/SA/AuthorizedVO, while inter-evaluation and
ancestor relationships hold among the elements returned by the path expressions $SS/SA/AuthorizedVO,
$SS/SA/AvailableSpace, $SS/SA/Type and $SS/SA/DataAvailability.

For the first storage service (from line 2 to line 30), the XMLetClause’s generate the following sequences of
satisfaction: e1 = (1, 0, 0), e2 = (1, 1, 0), e3 = (1, 1, 0), e4 = (1, 0) and e5 = (1). The tuples of elementary
satisfactions that are candidate for the aggregation are: (1, 1, 1, 1, 1), (0, 1, 1, , 1) and (0, 0, 0, 0, 1). Among these
three candidate tuples, the first one is selected in order to determine the global satisfaction. For the second storage
service (from line 31 to line 52), the XMLetClause’s generate the following sequences of satisfaction: e 1 = (0, 1),
e2 = (0, 1), e3 = (1, 1), e4 = (0.9, 0.9) and e5 = (1). The tuples of elementary satisfactions that are candidate for
the aggregation are (0, 0, 1, 0.9, 1) and (1, 1, 1, 0.9, 1). The second candidate tuple is selected in order to determine
the global satisfaction.

Summarizing, the representative tuple of satisfactions for the first storage service is (1, 1, 1, 1, 1), while the
representative tuple of satisfactions for the second storage service is (1, 1, 1, 0.9, 1). Because of the monotonicity of
the weighted power mean [16], we can assert that the first storage service will be selected as it provides the highest
satisfaction among the considered services. The XMatch query given in Example 31 has also a representation in
terms of an aggregation function as defined in the previous use case (see Eqs (23–29) and Fig. 3).

5. Related work

Relevant works for our activity are present in two main areas: the database area and the Grid computing area. In
the first area, the literature about preference queries grew up in the last twenty years. The Agrawal and Wimmers
proposal [17] is targeted at giving users the ability of quickly and flexibly express their preferences over search
queries in the Web. This work was proposed in the context of searching on-line information about products and
services where the number of items is a critical factor for the query response time. The concept of score was defined
in terms of values belonging to the set [0, 1] ∪ {⊥, �} representing the possible user preference. The symbol ‘⊥’
represents the indifference while the symbol ‘�’ represents a veto. Given the structure of the description of a set of
entities, the user can express a set of preference functions by assigning scores to possible combinations of values in
the description and a way to combine such preferences is provided. The concept of score given in this work relates
to the user preference as in our proposal. Conversely, their global preference is the result of a combination of the
user preferences considered by relevance (i.e., first vetoes, then values from 1 to 0 and finally the indifference),
while in our proposal the global satisfaction is the result of an aggregation taking into account the relevance of
each attribute and specific conjunction degrees. As regards the mapping to data models, the relational one was
selected, while we have opted for XML. Kießling proposed a formal language for formulating preference queries
based on the Best-Matches-Only (BMO) query model [18,19]. It developed a set of constructors and combinators
that can be used to write preference expressions. An algebra modeling such operators was defined and extensions
for both SQL (Preference SQL [20]) and XPATH (Preference XPATH [21]) were proposed. In our work, we focused
on the XML data model and we have proposed a new language based on XQuery. Chomicki proposed a logical
framework for formulating preferences as strict partial orders by using arbitrary logical formulas [22]. In order
to embed such formulas into relation algebra, a single winnow operator that can be parameterized by a preference
formula was defined. This enables the rewriting of preference formulas as SQL queries. Our language is targeted at
semi-structured data and our approach has been to define a new language.

In the Grid computing area, there are several works trying to introduce quality aspects in service selection. In [23,
24], a framework to support QoS management in service-oriented Grids is proposed. It includes support for resource
and service discovery based on QoS properties. The approach is to model these properties in the WSDL (Web
Service Description Language) document describing a service, then to use an extended UDDI (Universal Description
and Discovery Integration) to enable QoS-based discovery and selection. The expression of the desired service is
based on the boolean logic, therefore this framework enables the partition of services in two categories: the one that
satisfy the user expectations and the one that do not satisfy the user expectations. Our approach enables to use a
continuous logic for expressing the satisfaction associated to each service. In this way, the services can be partitioned
in an arbitrary number of categories. Another relevant work is a framework for the reputation management in Grid

314 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

systems that provides a distributed mechanism for resource selection [25]. This framework relies on the concepts
of trust and reputation based on community experiences to classify, select and tune the allocation of entities. Trust
is defined as the underlying principle for a security mechanism applicable in a global context and helps in reducing
risks in unknown situations. Reputation refers to the history of the trust exhibited by an entity. For each entity
that can be requested, an overall grade is computed as the aggregation of the elementary grades assigned by service
requesters. The algorithm is an adaptation of a mechanism for evaluating trust in peer-to-peer networks. As
regards the elementary grade, there is no specification about the way this can be evaluated, however an algorithm
to compute the decay of trust values depending on time and on the global reputation returned by service requesters
is provided. This work provides a meaningful way to synthesize a community-based reputation concept, while our
work focuses on a user-based satisfaction concept. Reputation and satisfaction differ because the former is a possible
metric that can be applied to an attribute, while the latter is the acceptance degree concerning the value returned
by a measurement for such a metric. Finally, we mention an ontology-based matchmaker [7] enabling a flexible
and extensible approach for performing Grid resource selection. It allows the definition of ontologies describing
resources and user requests. The ontology-based matchmaker performs a semantic-based selection with a ranking
phase using the attribute specified in the RankBy element, while we propose a syntax-based selection with a ranking
phase supporting the expression and aggregation of satisfactions over a number of different attributes.

6. Conclusions

Grid systems require a mapping functionality for the association of users requests expressed in terms of re-
quirements and preferences to actual resources. Our work started by proposing a model for the evaluation of the
satisfaction perceived by a potential user for a set of services. In this paper, we have presented a mapping of such
a model to a language for querying XML-based representations of available resources. This language provides a
bi-directional mapping with our model, thus offering a tailored solution for its application. It also offers a compact
way for users to express their preferences for Grid resources and enable the maximization of the global preference.
Future work will be targeted at defining a method for rewriting XMatch in terms of XQuery in order to exploit the
available XQuery processor implementations. In this way, we will be able to evaluate, test and tune the suitability of
our language. After that, it will be possible to design and implement a dedicated processor providing an optimized
execution of XMatch queries. Another important aspect is the extension of the language to enable the definition
of the weights and the power parameters. Finally, a meaningful activity is to include the XMatch language in the
metamodeling framework for engineering Grid services proposed in [26].

7. XMatch grammar

In this appendix, we define the complete grammar of the XMatch language specified in the simple Extended
Backus-Naur Form (EBNF). The grammar rules are given only for symbols starting with the prefix XM, while the
other symbols are taken from the XQuery W3C specification [3].

(32) XMExpr ::= XMForClause XMLetClause+ XMWhereClause XMReturnClause
XMForClause ::= "for" "$" VarName "in" XMDocCall ("," "$" VarName "in"

XMDocCall)*
XMDocCall ::= "doc(" URILiteral ")" XMPathExpr? XMPredicate?
XMPredicate ::= "[" OrExpr "]"
XMLetClause ::= "let" (XMSimpleEnum | XMCompEnum | XMRange)
XMSimpleEnum ::= XMPathExpr ValueComp XMElement "satisfies" XMSatLiteral

("," XMElement "satisfies" XMSatLiteral)*
XMCompEnum ::= XMPathExprList ValueComp XMElementList "satisfies"

XMSatLiteral
("," XMElementList "satisfies" XMSatLiteral)*

S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services 315

XMRange ::= XMPathExpr "in" XMElement "to" XMElement "satisfies" "with"
("linear" "increment" | "linear" "decrement" | "around")

XMPathExprList ::= "(" XMPathExpr ("," XMPathExpr)+ ")"
XMElementList ::= "(" XMElement ("," XMElement)+ ")"
XMElement ::= (Literal | XMPathExpr | XMFunctionCall)
XMFunctionCall ::= ("max"|"min"|"avg"|"sum"|"count") "(" XMPathExpr ")"
XMPathExpr ::= ("/" QName)+
XMWhereClause ::= "where" XMRelevanceExpr ("and" XMRelevanceExpr)*
XMRelevanceExpr ::= ("$" VarName "is" | XMVarNameList "are")

("essential" | "desirable" | "optional")
XMVarNameList ::= "(" "$" VarName ("," "$" VarName)+ ")"
XMReturnClause ::= "return" "top" digits ("with threshold" XMSatLiteral)?
XMSatLiteral ::= ("0"? "." Digits | "1")

References

[1] Z. Németh and V. Sunderam, Characterizing Grids: Attributes, Definitions, and Formalisms, Journal of Grid Computing 1(1) (2003), 9–23.
[2] S. Andreozzi, P. Ciancarini, D. Montesi and R. Moretti, An Approach to the Quantitative Evaluation of Grid Services, To appear in Journal

of Concurrency and Computation: Practice and Experience, 2005.
[3] S. Boag, D. Chamberlin, M.F. Fernndez, D. Florescu, J. Robie and J. Simeon, XQuery 1.0: An XML Query Language, W3C Candidate

Recommendation, 3 Nov 2005.
[4] J. Yu and R. Buyya, A Taxonomy of Workflow Management Systems for Grid Computing, Technical Report GRIDS-TR-2005-1, Grid

Computing and Distributed Systems Laboratory, University of Melbourne, Australia, Mar 2005.
[5] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Kónya, M. Mambelli, J.M. Schopf, M. Viljoen and A. Wilson, GLUE Schema Specification –

Version 1.2, 2005.
[6] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pulsipher and A. Savva, Job Submission Description

Language (JSDL) Specification, Version 1.0, 2005. draft 25.
[7] H. Tangmunarunkit, S. Decker and C. Kesselman, Ontology-Based Resource Matching in the Grid – The Grid Meets the Semantic Web, In

Proceedings of the 2nd International Semantic Web Conference (ISWC 2003), 20–23 Oct, Sanibel Island, FL, USA, 2003.
[8] L. Dutka and J. Kitowski, Application of Component-Expert Technology for Selection of Data-Handlers in CrossGrid, In Proceedings of

the 9th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages
25–32, London, UK, 2002. Springer-Verlag.

[9] N.E. Fenton and S.L. Pfleeger, Software Metrics: a Rigorous and Practical Approach, (2nd edition), Course Technology, 1998.
[10] J.J. Dujmovic, A Method for Evaluation and Selection of Complex Hardware and Software Systems, In Proceedings of the International

Conference for the Resource Management and Performance Evaluation of Enterprise Computing Systems (CMG96), San Diego, CA,
USA, Vol. 1, pages 368–378, Dec 1996.

[11] S.W. Su, J.J. Dujmovic, D.S. Batory, S.B. Navathe and R. Elnicki, A Cost-Benefit Decision Model: Analysis, Comparison, and Selection
of Data Management Systems, ACM Transaction on Database Systems 12(3) (1987), 472–520.

[12] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernández, M. Kay, J. Robie and J. Siméon, XML Path Language (XPath) 2.0. W3C Candidate
Recommendation, 3 Nov 2005.

[13] M. Fernández, A. Malhotra, J. Marsh, M. Nagy and N. Walsh, XQuery 1.0 and XPath 2.0 Data Model. W3C Candidate Recommendation,
3 Nov 2005.

[14] S. Andreozzi, A. Ciuffoletti, A. Ghiselli and C. Vistoli, Monitoring the Connectivity of a Grid, In Proceedings of the 2nd International
Workshop on Middleware for Grid Computing (MGC 2004), Toronto, Canada, Oct 2004.

[15] P. Andreetto, S. Andreozzi, G. Avellino, S. Beco, S. Borgia, V. Ciaschini, F. Giacomini, A. Giannelle, A. Guarise, A. Krenek, D. Kuril,
A. Maraschini, M. Marchi, L. Matyska, M. Mezzadri, S. Monforte, M. Mordacchini, M. Mulac, F. Pacini, M. Pappalardo, G. Patania,
J. Pospisil, F. Prelz, D. Rebatto, E. Ronchieri, M. Ruda, Z. Salvet, J. Sitera, J. Skrabal, M. Sgaravatto, A. Terracina, M. Vocu and L.
Zangrando, Pratical Approaches to Grid Workload and Resource Management in the EGEE Project, In Proceedings of the Conference on
Computing in High Energy and Nuclear Physics (CHEP 2004), Interlaken, Switzerland, Sep 2004.

[16] P.S. Bullen, Handbook of Means and Their Inequalities, (Second edition), Kluwer Academic Publishers, 2003.
[17] R. Agrawal and E.L. Wimmers, A Framework for Expressing and Combining Preferences, In International Conference on Management of

Data, Dallas, pages 297–306, May 2000.
[18] W. Kießling, Foundations of Preferences in Database Systems, In Proceedings of the 28th Very Large Database System (VLDB) Conference,

Hong Kong, China, 2002.
[19] B. Hafenrichter and W. Kießling, Optimization of Relational Preference Queries, In Proceedings of the 16th Australasian Database

(ADB05) Conference, Newcastle, Australia, 2005.
[20] W. Kießling and G. Köstler, Preference SQL – Design, Implementation, Experiences, In Pro-ceedings of 28th International Conference on

Very Large Databases (VLDB), Hong Kong, China, Aug 2002.

316 S. Andreozzi et al. / XMatch: A language for satisfaction-based selection of Grid services

[21] W. Kießling, B. Hafenrichter, S. Fischer and S. Holland, Preference XPATH: a Query Language for E-Commerce, In Proceedings of 5th
Internationale Tagung Wirtschaftsinformatik, Augsburg, Germany, Sep 2001.

[22] J. Chomicki, Preference Formulas in Relational Queries, ACM Transaction on Database Systems 28(4) (2003), 427–466.
[23] A. ShaikhAli, O.F. Rana, R. Al-Ali and D.W. Walker, UDDIe: an Extended Registry for Web Services, In Workshop on Service Oriented

Computing: Models, Architectures and Applications at SAINT Conference, Florida, USA, Jan 2003.
[24] R.J. Al-Ali, O.F. Rana, D.W. Walker, A. Jha and S. Sohail, G-QoSM: Grid Service Discovery Using QoS Properties, International Journal

of Computing and Informatics 21(4) (2002), 363–382.
[25] B. Alunkal, I. Valjkovic, G. Von Laszewski and K. Amin, Reputation-based Grid Resource Selection, In Proceedings of the Workshop on

Adaptive Grid Middleware (AGridM 2003), New Orleans, LA, USA, Sep 2003.
[26] S. Andreozzi, P. Ciancarini, D. Montesi and R. Moretti, Towards a Metamodeling Based Method for Representing and Selecting Grid

Services, In Proceedings of the 1st International Conference on Grid Services Engineering and Management (GSEM’04), Erfurt (Germany),
pages 78–93, Oct 2004.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

