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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

The critical distance value should theoretically be determined from the plain specimen fatigue limit and the threshold stress intensity 
factor, though usually ordinary notch geometries are considered. In this paper, we proposed an optimized sharp notch with the aims 
of simple and reliable manufacture and, more importantly, a local strong stress gradient able to minimize the sensitivity on the 
deduced critical distance value. A numerical procedure is proposed to find the critical distance from the fatigue strength of the 
notched specimen, by implementing the line method with simple formulas based on dimensionless equations and specific 
coefficients derived from accurate FE analyses. A definition of the boundaries for a valid critical distance evaluation is also 
introduced and discussed. Finally, an application example is provided on a quenched and tempered steel also comparing the 
obtained critical distances with the threshold derived values. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ICSI 2017. 
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1. Introduction 

The theory of critical distance is a widespread and reliable tool for assessing the strength of notched components 
in particular under fatigue loading (Taylor (2007), Taylor (2008)) and recently extended in many fatigue areas such as 
residual stress effects Benedetti et al. (2010) or even fretting fatigue Bertini and Santus (2015). 
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Nomenclature 

ΔKth Threshold stress intensity factor, full range. 
Δσfl  Plain specimen fatigue limit, full range. 
L Fatigue critical distance. 
Δσy  Notch axial stress, full range. 
ΔσN  Notched specimen (net) nominal stress, full range. 
ΔσN,fl  Notched specimen fatigue limit, nominal stress, full range. 
Kf  Fatigue stress concentration factor. 
D  Specimen external diameter. 
R  Notch radius. 
A  Notch depth. 
ρ R/A notch radius ratio. 
α Notch angle. 
s Williams linear elastic power law singularity exponent. 
KN  Notch stress intensity factor. 
KN,U  Notch stress intensity factor for unitary stress. 
KN,UU  Notch stress intensity factor for unitary stress and unitary half diameter. 
Δσav,0 Average stress according to the line method, zero radius notch, full range. 
Δσav  Average stress according to the line method, radiused notch, full range. 
lmin, lmax Minimum and maximum limits for the range of accurate dimensionless critical distance determination. 
γmin, γmax Minimum and maximum limits for the range of the inversion function. 

 
Different methods can be formalized within the theory. Among them, the Line method is the most commonly used, 

unless multiaxial fatigue is involved where the Point method may be preferential, as proposed by Bagni et al. (2016). 
On the other hand, Benedetti et al. (2016) recently explored the possibility of combining an area method and the 
Crossland multiaxial criterion with the aim to eliminate the dependence on the load ratio. 

According to the basic definition of the Critical Distance, its determination is obtained by combining the threshold 
stress intensity factor full range ΔKth and the plain specimen fatigue limit full range Δσfl: 

2

th

fl

1 KL
 
 

   
    (1) 

However, an accurate evaluation of the threshold may be a difficult experimental task, thus any sharply notched 
specimen can be considered as an alternative to the fracture mechanics test to estimate the L value (Taylor (2011)), or 
even the threshold after the inversion of Eq. 1. This approach has been supported in particular by Susmel and Taylor 
(2010) also extending this method to the determination of the fracture toughness. In the present paper, the use of a 
reference sharp notch specimen is deeply investigated, with the aim of defining an optimal geometry, and providing a 
formulation to straightforwardly calculate the critical distance without the need of a finite element simulation. 

2. Notched specimen critical distance inversion 

Among the several notched specimen geometries, such as those shown by Hu et al. (2013), the V-shaped notch on 
a round specimen is here considered, both to avoid the edge effect, which may play a role in a flat specimen, and to 
easily manufacture the notch detail with a relatively small root radius. Initially, a stress analysis is here reported about 
the ideal perfectly sharp geometry with the stress singularity, Fig. 1 (a), still useful as a reference, then the radiused 
notch is approached, Fig. 1 (b). 
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Fig. 1. Local geometry, dimensions and stress distributions for round specimens with V-shaped (a) sharp notch; (b) radiused notch. 

2.1. Perfectly sharp notch 

The power law singularity exponent, according to the local Williams’ solution, depends on the notch angle. This 
dependence is reported in Fig. 2 (a) along with the values for the two most common angles, in agreement with those 
available in Atzori et al. (2005) and Hills and Dini (2011). 

  

Fig. 2. (a) Williams linear elastic power law singularity exponent, specific values for the notch angles α = 60°, 90°; (b) Unitary notch stress 
intensity factor dependence on the notch depth. 

The singularity term of the local stress distribution is reported below and, owing to the stress linearity, KN,U [mms] 
can be defined as the notch stress intensity factor for unitary nominal stress: 
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        (2) 

Furthermore, the self-similarity of the solution suggests rescaling the length of the problem. After selecting a 
reference dimension (D/2 has been considered here, Fig. 1 (a)) a purely dimensionless notch stress intensity factor can 
be introduced as: 
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KN,UU is dimensionless, in fact it is the notch stress concentration factor for unitary nominal stress and for unitary 
scaling length, i.e. when the specimen radius (D/2) equals unity. The value of KN,UU can be obtained by means of FE 
simulations (here not reported for brevity) and only depends on the dimensional ratios, and not on the size of the 
specimen, viz. on the α angle and the relative notch depth a = A/(D/2). The maximum at a = 0.3 is evident, Fig. 2 (b). 
At this intermediate depth, the dimensionless stress intensity factor is highest, providing the strongest gradient 
dominated region ahead of the notch root. For this reason, this optimal depth is then considered for the following 
investigated geometry with radiused notch. 

The Line Method stress averaging can be put in a dimensionless form too: 

2 2

0 0

1 1( )d ( )d
2 2
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Where the dimensionless critical distance l = L/(D/2) is here introduced. By considering just the singular term of 
the stress distribution, the line method integration can be rewritten as: 
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in which “0” stands for zero radius notch. According to the line method, this stress has to be equal to the plain 
specimen fatigue limit, and the estimated (dimensionless) critical distance can be calculated under this hypothesis, 
and then rearranged according to the Kf definition: 
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   (6) 

This latter power equation can be easily reversed, and then the length dimension regained just by multiplying by 
the reference size D/2. Finally, an easier approximated form is also proposed: 
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  (7) 

The equation for L0 (or alternatively L0,aprx) has a similitude with Eq. 1, though apparently in a different form. 
Indeed, it offers a direct formula for the critical distance determination, and it is a simple model for the size effect. 
Obviously, if the α angle were zero, the crack geometry would result, thus s = 0.5 and L0 = L0,aprx. For α = 60° the 
discrepancy between L0 and L0,aprx is approximately 1.5% and it only raises to 5% for α = 90°. 

2.2. Radiused notch specimen 

A certain radius needs to be considered since the ideal perfectly sharp notch is unrealistic, and it is recommended 
to be accurately controlled. The notch root radius variable R is therefore introduced, Fig. 1 (b), and obviously it is a 
primary geometry parameter. The dimensionless radius r = R/(D/2) is also defined, according to the previous 
formulation, and finally a root radius ratio shape parameter is useful to be introduced: ρ = R/A (= r/a). The stress 
distribution is now bounded with a relatively severe gradient, in which the size of the material critical distance needs 
to be compared. Two extreme, and not appropriate, conditions can be found: 
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 The critical distance is very small in comparison to the local radius, Fig. 3 (a), thus the stress gradient is 

relatively not high within the averaging length. 
 The critical distance is too large relatively to the specimens size, thus the integration length is larger than 

the high gradient region, Fig. 3 (b). 
 

          

Fig. 3. Extreme cases for the critical distance: (a) very small with respect to the local radius, (b) large with respect to the notch depth; (c) 
Uncertainty resulting on the evaluation of the critical distance for any low gradient stress distribution. 

In both cases, a potential variation of the critical distance implies a small variation of the averaged stress. 
Conversely, the accuracy of the reverse search is limited, Fig. 3 (c), since any small error, for example due to any 
experimental issue, implies a significant variation of the predicted critical distance value. In other words, both the 
notch and the plain specimen tests are low gradient, thus the critical distance is derived from the comparison of two 
almost parallel lines. On the contrary, in its original definition, the plain specimen should be combined with the long 
crack which has the highest gradient.  

Including the effect of the notch radius, Eq. 5 can be rewritten by introducing a correction function f(l), which for 
a specific geometry shape only depends on the integration length, i.e. the dimensionless critical distance: 
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Fig. 4. (a) Dimensionless critical distance limit values for ρ = 0.1; (b) Limiting values depending on the radius ratio. 

Since the stress distribution is bounded, f(l) tends to zero for small l, thus its discrepancy with the unitary value can 
be considered to define a useful range for the inversion. The minimum dimensionless critical distance has been set 
according to a certain fraction, and 0.5 was found to be an effective value, Fig. 4 (a). If the critical distance is smaller 
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than this reference limit, the notch radius is relatively too high, inducing a low gradient stress in the averaging region. 
On the other hand, if the critical distance is relatively too large, the stress distribution far from the notch again shows 
low gradient, as described above. This latter scenario was identified when the numerical integration of the simulated 
stress distribution overtakes the singularity integration, in other words when f(l) > 1.0. Therefore, the range 0.5 ≤  f(l) 
≤ 1.0 was selected, and then a series of radius ratios ρ was analyzed, Fig. 4 (b). 

After introducing the fatigue stress concentration factor Kf in Eq. 8, and the l0 definition according to Eq. 7, an 
inversion function was defined as: γ(l) = l/f (l)1/s, and the equation to be inverted reduced to a very simple form: 

N,UU
f 0 01/

( ) , , ( )
1 (2 ) ( )s s

Kf l lK l l l
s l f l
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

   (9) 

In this latter equation the unknown is the (dimensionless) critical distance l, while l0 can be regarded as an initial 
tentative value for l. 

       

Fig. 5. Almost perfect linearity and boundaries of the inversion function. 

The dependence of γ(l) turned out to be quite accurately approximated by a linear relationship (see for example 
Fig. 5 for ρ = 0.1). Thus the inversion problem, in dimensionless form, is a simple linear equation: 
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    (10) 

After having solved Eq. 10, the dimensionless l is easily converted into the L value: L = D/2 l. In order to provide 
the limits for l and γ, the following fit models have been proposed: 
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    (11) 

The coefficients of Eq. 11, derived from accurate numerical simulations, are listed in Tab. 1 for a large range of 
the notch radius ratio ρ and for the two most common V notch angles α = 90° and 60°. As discussed above, lmin and 
lmax are not only the coefficients for Eq. 11, but they also provide the effective range recommended for the critical 
distance inversion, i.e. to avoid the high sensibility cases of Fig. 3 and equivalently have 0.5 ≤  f(l) ≤ 1.0. 
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     Table 1. pi, qi, ci fit coefficients for the γ, l limit values as function of the notch radius ratio ρ. 

Notch angle α = 90°, notch depth a = 0.3, notch radius ratio range ρ = 0.01 – 1.0 

p1 = 1.5332×10-3 p2 = -5.4477×10-3 p3 = 1.3930×10-2 p4 = 4.3940×10-6 

q1 = 3.0471×10-3 q2 = -1.8507×10-2 q3 = 6.1618×10-2 q4 = -8.6254×10-5 

c1 = -7.8701×10-2 c2 = 1.8323×10-1 c3 = 1.4606×10-1  

Notch angle α = 60°, notch depth a = 0.3, notch radius ratio range ρ = 0.01 – 1.0 

p1 = 3.4760×10-3 p2 = -1.0042×10-2 p3 = 1.8483×10-2 p4 = 1.3622×10-5 

q1 = 1.1537×10-2 q2 = -3.7191×10-2 q3 = 7.5317×10-2 q4 = 1.4765×10-4 

c1 = 1.7720×10-2 c2 = 8.6435×10-2 c3 = 3.2025×10-1  

3. Experimental validation 

An experimental validation is reported in the present paper, and a deeper investigation is undertaken by the authors 
at the present. The Quenched and Tempered steel 42CrMo4 was fatigue tested with positive near zero load ratio 
(R=0.1). This steel was preliminarily characterized as tensile test, obtaining QT steel common properties: yield and 
ultimate strengths 730 MPa and 875 MPa respectively, elongation at break 17.6% and reduction in area 57.7%. Such 
high strength steel was expected to have large notch sensitivity which in turn implies a quite short critical distance, in 
the order of a few tens of microns (Taylor (2007)). For this reason, the insert tool nose radius was selected as quite 
small. On the other hand, a too sharp tip was not to be prescribed either, since the tip self-blunting can happen because 
of the material high hardness. The chosen radius was R = 0.2 mm, Fig. 6 (a). 

 

    

Fig. 6. (a) Notched specimen drawing with the dimensions used in the experimental validation; (b) SEM visualization of the notch root. 

According to Eqs. 12 the effective critical distance ranged from 0.0091 mm and 0.447 mm. Since high strength 
alloys have small value critical distances, the minimum of the range was the most limiting. However, it was 
successfully verified at the end of the determination procedure. Particular attention was paid to this detail, indeed Fig. 
6 (b) shows the SEM assessment of the notch radius, and it was found just slightly larger than the nominal value. 
Fatigue tests on plain and cylindrical specimens are reported in Fig. 7 (a) and also a threshold test was performed at 
the same load ratio for a final comparison. Both the C(T) and all the cylindrical specimens have been manufactured 
from the same batch of round bars, and also the load line was carefully aligned with the axis of the bar to avoid any 
effect of material inhomogeneity and/or anisotropy. The analytical procedure here introduced gave as result: L = 0.038 
mm. This critical distance was then compared with the threshold derived length (Eq. 1), providing the value L = 0.036 
mm, which can be considered very well in agreement. This validation was then repeated about the load ratio R=-1. 
The threshold was found with the M(T) specimen, and the obtained value was L = 0.042 mm to be compared to the 
proposed procedure result L = 0.031 mm obtained with the same notched specimen. This latter comparison can still 
be considered satisfactory though the slight opposite trend with respect to R. 

a b
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Fig. 7. (a) S-N curves of plain and notched specimens; (b) Paris propagation data and evidence of the threshold value. 

Conclusions 

 A radiused V-shaped notched specimen was proposed for an optimal critical distance inversion search, 
mainly to circumvent the threshold experimental determination. 

 All the dimensions of this specimen are provided and discussed, in particular the notch root radius which 
is required to be carefully selected by taking into account the expected critical distance size. 

 The determination of the critical distance was performed with a set of simple formulas, based on the self-
similitude of the stress solution, thus according to a dimensionless approach. All the required coefficients, 
derived from a series of accurate finite element simulations, are available in the paper. 

 As validation experiment, the critical distance was found with the proposed procedure and then compared 
to the threshold derived value. This analysis was taken on a common quenched and tempered steel, and 
very similar lengths resulted for two different load ratios. 
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