
p ()

URL: http://www.elsevier.nl/locate/entcs/volume70.html 18 pages

Simple Easy Terms

F. Alessi
1

Dipartimento di Matematica ed Informatica

Universit�a di Udine, Via delle Scienze 208

33100 Udine, Italy

S. Lusin
2

Dipartimento di Informatica

Universit�a di Venezia

via Torino 153

30170 Venezia, Italy

Abstract

We illustrate the use of intersection types as a semantic tool for proving easiness

result on �-terms. We single out the notion of simple easiness for �-terms as a useful

semantic property for building �lter models with special purpose features. Relying

on the notion of easy intersection type theory, given �-terms M and E, with E

simple easy, we successfully build a �lter model which equates interpretation of M

and E, hence proving that simple easiness implies easiness. We �nally prove that a

class of �-terms generated by !2!2 are simple easy, so providing alternative proof

of easiness for them.

Introduction

Intersection types were introduced in the late 70's by Dezani and Coppo

[10,12,6], to overcome the limitations of Curry's type discipline. They are

a very expressive type language which allows to describe and capture various

properties of �-terms. For instance, they have been used in [26] to give the

�rst type theoretic characterization of strongly normalizable terms and in [13]

to capture persistently normalizing terms and normalizing terms. See [14] for

a more complete account of this line of research.

Intersection types have a very signi�cant realizability semantics with re-

spect to applicative structures. This is a generalization of Scott's natural

1
Email: alessi@dimi.uniud.it

2
Email: slusin@oink.dsi.unive.it

c
2002 Published by Elsevier Science B. V.

1

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

semantics [28] of simple types. According to this interpretation types denote

subsets of the applicative structure, an arrow type A! B denotes the sets of

points which map all points belonging to the interpretation of A to points be-

longing to the interpretation of B, and an intersection type A\B denotes the

intersections of the interpretation of A and the interpretation of B. Building

on this, intersection types have been used in [6] to give a proof of the com-

pleteness of the natural semantics of Curry's simple type assignment system

in applicative structures, introduced in [28].

But intersection types have also an alternative semantics based on duality

which is related to Abramsky's Domain Theory in Logical Form [1]. Ac-

tually it amounts to the application of that paradigm to the special case of

!-algebraic complete lattice models of pure lambda calculus, [11]. Namely,

types correspond to compact elements: the type
 denoting the least element,

intersections denoting joins of compact elements, and arrow types denoting

step functions of compact elements. A typing judgment then can be inter-

preted as saying that a given term belongs to a pointed compact open set in

a !-algebraic complete lattice model of �-calculus. By duality, type theories

give rise to �lter �-models. Intersection type assignment systems can then be

viewed as �nitary logical de�nitions of the interpretation of �-terms in such

models, where the meaning of a �-term is the set of types which are deducible

for it.

This duality lies at the heart of the success of intersection types as a pow-

erful tool for the analysis of �-models, see e.g. [2,6,11,13,3,16,20,15,25,18,27].

In this paper we face the issue of easiness proofs of �-terms from the

semantic point of view (we recall that a closed term P is easy if, for any other

closed term M , the theory �� + fM = Pg is consistent).

Actually the mainstream of easiness proofs is based on the use of syntactic

tools (see [22], [23], [21], [8], [9], [7], [24], for easiness results on the �-terms

dealt with in the present paper and other general easiness results obtained via

syntactic tools).

Instead, very little literature can be found on easiness issues handled by

semantic tools, and we can summarize it in short lines.

A semantic proof of the easiness of !2!2 (!2 = �x:xx) appeared in [5]

with a proof based on non-standard P(!) models. [19] builds extensional

�lter models equating !2!2 to arbitrary closed terms. The third reference

is the main inspiration of the present paper: in [4] a strengthened version

of intersection types theories, namely the easy ones, were introduced and

successfully used for proving semantically easiness of the terms !2!2 and !3!3I

(!3 = �x:xxx, I = �x:x), by exhibiting, for anyM , suitable �lter models which

identify the interpretation ofM with the interpretation of the given easy term.

In this paper we go in the direction of [4]. We introduce the notion of

simple easiness: roughly speaking, an unsolvable term E is simple easy if, for

each �lter model F5 built on an easy intersection type theory �
5
, any type

C in �
5
, we can expand �

5
to a new easy intersection type theory �

50

such

2

that the interpretation of E in F5
0

is the sup of the old interpretation of E

in F5 and the �lter generated by C.

As a �rst consequence of this fact, if one starts from a �lter model where

the interpretation of E is the least element, then [[E]] can possibly become any

�lter.

A second consequence is that simple easiness is a stronger notion than

easiness. A simple easy term E is easy, since, given an arbitrary closed term

M , it is possible to build (in a canonical way) a non-trivial �lter model which

equates the interpretation of E and M .

Besides of that, simple easiness is interesting in itself, since it has to do

with minimal sets of axioms which are needed in order to give the easy term

a certain type.

The question whether easiness implies simple easiness is open.

We will prove that the terms R
n
are simple easy where R0 = (!2!2)

and R
n+1 = R

n
R
n
. For !2!2, our simple easiness result can be viewed as

a strengthened version of the easiness result of [4] for !2!2. Instead simple

easiness of R
n
for n > 0 is totally new.

The present paper is organized as follows. In Section 1 we present easy

intersection type theories and type assignment systems for them. We prove

some meta-theoretic properties including a Generation Theorem. In Section 2

we introduce �-models based on spaces of �lters in easy intersection type

theories. In Section 3 we introduce the notion of simple easiness and prove

that simple easiness implies easiness. Sections 4 and 5 contain respectively

the simple easiness proofs for !2!2 and the generalization to R
n
.

1 Intersection Type Assignment Systems

Intersection types are syntactical objects built inductively by closing a given

set CCof type atoms (constants) which contains the universal type
 under

the function type constructor! and the intersection type constructor \.

De�nition 1.1 [Intersection Type Language]

Let CCbe a countable set of constants such that
 2 CC. The intersection type

language over CC, denoted by TT= TT(CC) is de�ned by the following abstract

syntax:

TT= CCj TT! TTj TT\ TT:

Notice that the most general form of an intersection type is a �nite inter-

section of arrow types and type constants.

Notation

Upper case Roman letters i.e. A;B; : : :, will denote arbitrary types. Greek

letters will denote constants in CC. When writing intersection types we shall

use the following convention: the constructor \ takes precedence over the

constructor ! and it associates to the right. Moreover An ! B will be short

3

for A! � � � ! A| {z }
n

! B. I; J;K etc. will denote non-empty �nite sets.

Much of the expressive power of intersection type disciplines comes from the

fact that types can be endowed with a preorder relation �, which induces the

structure of a meet semi-lattice with respect to \, the top element being
.

The notion we give of easy intersection type theory di�ers from the original

one of [4] in that:

� we consider just extensional structures (where any constant is equivalent to

an intersection of arrow types);

� we allow equivalence axioms � A of a slightly more general shape.

A part from these two (minor) points the present de�nition coincide with that

of [4].

De�nition 1.2 [Easy intersection type theories]

Let TT= TT(CC) be an intersection type language. The easy intersection type

theory (eitt for short) �(CC;5) over TTis the set of all judgments A � B

derivable from 5, where 5 is a collection of axioms and rules such that (we

write A � B for A � B & B � A):

(i) 5 contains the set 5 of axioms and rules:

(re
) A � A (idem) A � A \ A

(inclL) A \ B � A (inclR) A \ B � B

(mon)
A � A0 B � B0

A \B � A0 \ B0
(trans)

A � B B � C

A � C

(
) A �
 (
-�)
 �
!

(!-\) (A! B) \ (A! C) � A! B \ C (�)
A0 � A B � B0

A! B � A0 ! B0

(ii) further axioms can be of the following two shapes only:

 � 0;

 �
T
h2H

(�h ! Eh):

where ; 0; �h 2 CC, A 2 TT, and ;
0 6�
;

(iii) 5 does not contain further rules;

(iv) for each 6�
 there is exactly one axiom in 5 of the shape � A;

(v) Let 5 contain �
T
h2H

(�h ! Eh) and
0 �

T
k2K

(�0
k
! E 0

k). Then 5

contains also � 0 i� for each k 2 K, there exists hk 2 H such that

�0
k
� �hk and Ehk � E 0

k are both in 5.

Notice that:

(a) since
 �
 !
 2 �(CC;5) by (
) and (
-�), it follows that all atoms

4

in CCare equivalent to suitable (intersections of) arrow types;

(b) \ (modulo �) is associative and commutative;

(c) in the last clause of the above de�nition E 0
k and Ehk must be constant

types for each k 2 K.

Notation

When we consider an eitt �(CC;5), we will write CC5 for CC, TT5 for TT(CC)

and �5 for �(CC;5). Moreover A �5 B will be short for (A � B) 2 �5

and A�5B for A �5 B �5 A. We will consider syntactic equivalence \�" of

types up to associativity and commutativity of \. We will write
T

i�nAi for

A1 \ : : :\An. Similarly we will write
T

i2I Ai, where I denotes always a �nite

non-empty set.

A nice feature of easy intersection type structures is the possibility of

performing smooth induction proofs based on the number of arrows in the

types.

In view of this aim next de�nition and lemma work.

De�nition 1.3

The mapping # : TT5 ! N is de�ned inductively on types as follows:

#(A) = 0 if A 2 CC5;

#(A! B) = #(A) + 1;

#(A \B) = maxf#(A);#(B)g:

Lemma 1.4

For all A 2 TT
5 with #(A) � 1 there is B 2 TT

5 such that A�5B, B �T
i2I(Ci ! Di), and #(B) = #(A).

Proof. Let A � (
T

j2J(C
0
j ! D0

j)) \ (
T

h2H h), where C
0
j; D

0
j 2 TT

5, h 2

CC
5. For each h 2 H there are I(h), �

(h)
i 2 CC

5, E
(h)
i 2 TT

5, such that

 h�5

T
i2I(h)(�

(h)
i ! E

(h)
i). We can choose

B � (
\

j2J

(C 0

j ! D0

j)) \ (
\

h2H

(
\

i2I(h)

(�
(h)
i ! E

(h)
i))):

2

Before giving the crucial notion of intersection-type assignment system, we

introduce bases and some related de�nitions.

De�nition 1.5 [Bases]

(i) A 5-basis is a (possibly in�nite) set of statements of the shape x : B,

where B 2 TT
5, with all variables distinct.

(ii) x 2 � is short for 9A 2 TT5: (x :A) 2 � and �; x :A is short for �[fx :Ag

when x =2 �.

5

(iii) Let � and �0 be 5-bases. The 5-basis �] �0 is de�ned as follows:

�] �0 = fx : A \B j x : A 2 � and x : B 2 �0g

[fx : A j x : A 2 � and x =2 �0g

[fx : B j x : B 2 �0 and x =2 �g:

Accordingly we de�ne:

� �+�0 , 9�00:�] �00 = �0:

De�nition 1.6 [The type assignment system]
The intersection type assignment system relative to the eitt �5, notation �\5,
is a formal system for deriving judgements of the form � `5 M : A, where the
subject M is an untyped �-term, the predicate A is in TT5, and � is a 5-basis.
Its axioms and rules are the following:

(Ax)
(x :A) 2 �

� `5 x :A
(Ax-
) � `5 M :

(! I)
�; x :A `5 M : B

� `5 �x:M : A! B
(! E)

� `5 M : A! B � `5 N : A

� `5 MN : B

(\I)
� `5 M : A � `5 M : B

� `5 M : A \B
(�5)

� `5 M : A A �5 B

� `5 M : B

As usual we consider �-terms modulo �-conversion. Notice that intersec-
tion elimination rules

(\E)
� `5 M : A \B

� `5 M : A

� `5 M : A \B

� `5 M : B
:

can be immediately proved to be derivable in all �\5. A �rst simple proposi-
tion, which can be proved straightforwardly by induction on the structure of
derivations is the following.

Proposition 1.7

(i) If x =2 FV(M) and �; x :B `5 M : A, then � `5 M : A;

(ii) If � `5 M : A and � �+�0, then �0 `5 M : A.

We end this section by stating a Generation Theorem (its proof is quite
similar to that given in [4]), or for the type assignment system �\5.

Theorem 1.8 (Generation Theorem)

(i) Assume A6�5
. � `5 x : A i� (x : B) 2 � and B �5 A for some

B 2 TT
5
.

(ii) � `5 MN : A i� � `5 M : B ! A, and � `5 N : B for some B 2 TT
5
.

(iii) � `5 �x:M : A i� �; x : Bi `
5
M : Ci and

T
i2I

(Bi ! Ci) �5 A, for

some I and Bi; Ci 2 TT
5
.

6

(iv) � `5 �x:M : B ! C i� �; x :B `5 M : C.

2 Filter Models

In this section we discuss how to build �-models out of type theories. We
start with the de�nition of �lter for eitt's. Then we show how to turn the
space of �lters into an applicative structure. Finally we will de�ne a notion of
interpretation of �-terms and show that we get �-models (�lter models).

Filter models arise naturally in the context of those generalizations of Stone
duality that are used in discussing domain theory in logical form (see [1], [11],
[29]). This approach provides a conceptually independent semantics to inter-
section types, the lattice semantics. Types are viewed as compact elements of
domains. The type
 denotes the least element, intersections denote joins of
compact elements, and arrow types allow to internalize the space of continuous
endomorphisms. Following the paradigm of Stone duality, type theories give
rise to �lter models, where the interpretation of �-terms can be given through
a �nitary logical description.

De�nition 2.1

(i) A 5-�lter (or a �lter over TT5) is a set X � TT
5 such that:

�
 2 X;
� if A �5 B and A 2 X, then B 2 X;
� if A;B 2 X, then A \B 2 X;

(ii) F5 denotes the set of 5-�lters over TT5;

(iii) if X � TT
5, " X denotes the 5-�lter generated by X;

(iv) a 5-�lter is principal if it is of the shape " fAg, for some type A. We
shall denote " fAg simply by " A.

It is well known that F5 is a !-algebraic cpo, whose compact (or �nite)
elements are the �lters of the form " A for some type A and whose bottom
element is "
.

Next we endow the space of �lters with the notions of application and of
�-term interpretation. Let EnvF5 be the set of all mappings from the set of
term variables to F5.

De�nition 2.2

(i) Application � : F5 �F5 ! F5 is de�ned as

X � Y = fB j 9A 2 Y:A! B 2 Xg:

(ii) The interpretation function: [[]]5 : �� EnvF5 ! F5 is de�ned by

[[M]]5
�
= fA 2 TT

5 j 9� j= �: � `5 M : Ag;

where � ranges over EnvF5 and � j= � if and only (x : B) 2 � implies
B 2 �(x).

7

(iii) The triple hF5; �; [[]]5i is called the �lter model over �5.

Notice that previous de�nition is sound, since it is easy to verify that X �Y
is a 5-�lter. Next we prove that F5 is a �-model. First we need a syntactic
result, which is proved by induction on the derivation of judgments.

Theorem 2.3

For all I, and Ai; Bi; C;D 2 TT5,
\

i2I

(Ai ! Bi) �5 C ! D) 9J � I:C �5
\

i2J

Ai &
\

i2J

Bi �5 D;

provided that D 6�5
.

Theorem 2.4

The �lter model hF5; �; [[]]5i is a �-model, in the sense of Hindley-Longo [17],

that is:

(i) [[x]]5� = �(x);

(ii) [[MN]]5� = [[M]]5� � [[N]]5� ;

(iii) [[�x:M]]5� �X = [[M]]5
�[X=x];

(iv) (8x 2 FV(M): [[x]]5� = [[x]]5�0)) [[M]]5� = [[M]]5�0 ;

(v) [[�x:M]]5� = [[�y:M [y=x]]]5� , if y =2 FV(M);

(vi) (8X 2 F5:[[M]]5
�[X=x] = [[N]]5

�[X=x])) [[�x:M]]5� = [[�x:N]]5� .

Moreover it is extensional, that is [[�x:Mx]]5� = [[M]]5� when x =2 FV(M).

Proof. By Theorem 2.3 and Theorem 2.13 (iii) of [11], [F5 ! F5] is a retract
of F5, hence it is a �-model. 2

3 Simple easy terms

In this section we give the main notion of the paper, namely simple easiness.
A term E is simple easy if, given any eitt �5 and a type Z in it, we can
extend in a conservative way �5 to a new easy intersection type theory, say
�5

0

, so that [[E]]5
0

=" Z [[[E]]5. On one hand, a consequence of this notion
is that it is possible to build through a uniform technique, �lter models that
equate the interpretation of E with the interpretation of M , for M arbitrary.
Therefore simple easiness implies easiness. On the other hand, simple easiness
is interesting in itself: in fact when E is simple easy then for any �5 and type
Z in it, we can enrich �5 with a set of new constants and axioms for them,
which is minimal, in the sense that in the enriched intersection type theory, E
can receive just Z (and its intersections with other types already derivable for
E in �5), as new type with respect to the old types E could receive in �5.

De�nition 3.1

8

(i) Let �5 and �5
0

be two easy intersection type theories. We de�ne �5 v
�5

0

i� CC5 � CC
50

and for all A;B 2 TT5,

A �5 B , A �50 B:

(ii) Let, for any n 2 N , �5n v �5n+1. We de�ne

�5� = �(
[

n

CC
5n;
[

n

5
n
):

It is immediate to prove that in the de�nition above �5� is an eitt and for
each n, �5n v �5� .

De�nition 3.2

(i) A pointed eitt is a pair (�5; Z) with Z 2 TT5.

(ii) EITT and PEITT denote respectively the class of eitts and pointed eitts.

(iii) A �lter scheme is a mapping S : PEITT ! EITT, such that for all
(�5; Z)

�5 v S(�5; Z):

We now give the central notion of simple easy term.

De�nition 3.3

An unsolvable term E is simple easy if there exists a �lter scheme SE such
that for all pointed eitt (�5; Z),

`5
0

E : B () 9C 2 TT5:C \ Z �50 B & `5 E : C;

where �5
0

= SE(�
5; Z).

Theorem 3.4

With the same notation of previous de�nition, we have [[E]]5
0

=" Z t [[E]]5.

Proof. (�) We have, takingB =
 in the De�nition 3.3, `5
0

E : Z. Therefore
" Z � [[E]]5

0

. Since moreover [[E]]5 � [[E]]5
0

, we get [[E]]5
0

�" Z t [[E]]5.
(�) If B 2 [[E]]5

0

, then `5
0

E : B, hence, by De�nition 3.3, there exists
C 2 TT5 such that C 2 [[E]]5 and C \Z �50 B. We are done, since C \Z 2"
Z t [[E]]5

0

. 2

Theorem 3.5

Let E be a simple easy term. Then E is easy.

Proof. Let M be an arbitrary closed �-term. We prove that there exists a
non-trivial �lter model F5 such that [[M]]5 = [[E]]5. First a simple remark on
interpretations of terms. Let (�5n)n be an ascending chain of easy intersection
type theories, with �5n v �5n+1 for each n. For each n, we can �nd a sequence
of types (A

(n)
p)p � TT

5n such that

8n; p:A
(n)
p+1 �5n A

(n)
p

& [[M]]5n =
[

p

" A(n)
p
:

9

Actually it is not restrictive to choose such sequences so that this further

condition holds:

(�) 8n:A
(n)
n+1 �5n+1 A

(n)
n
:

Given such sequences (A
(n)
p)p, we de�ne, for each n, Zn = A

(n)
n 2 TT

5n . We

show that in the �lter model F5�

(y) [[M]]5� =
[

n

" Zn:

(�) is immediate since by de�nition of Zn we have Zn 2 [[M]]5n � [[M]]5� .
As to (�), let A 2 [[M]]5� . Then there exists n such that A 2 [[M]]5n =

S
p
"

A
(n)
p . This implies that there exists p such that A

(n)
p �5n A. For any m � n; p

it follows Zm �5m A, hence A 2
S
n
" Zn.

We now exploit the equality (y) and de�ne a �lter model such that the

interpretation of E is equal to
S
n
" Zn. Here is the construction of the

model.

step 0:

take the easy intersection type theory �50 whose �lter model is isomorphic to

Scott D1 (see [3]):

- CC50 = f
; !g;

- 50 = 5[f! �
! !g.

step (n+ 1):

perform the following operations:

- compute [[M]]5n;

- take a sequence (A
(n)
p)p such that [[M]]5n =

S
p
" A

(n)
p and condition (�)

above is satis�ed;

- de�ne the type Zn as A
(n)
n ;

- de�ne �5n+1 = SE(�
5n; Zn);

�nal step:

take �5�.

We will prove that F5� identi�es M and E, but before that we have to

prove that F5� is not trivial. For this aim we show that [[I]]5� 6= [[K]]5� , where

K = �xy:x. Let D � (! ! !) ! (! ! !). Since `5� I : D, we have that

D 2 [[I]]5� . On the other hand, if D 2 [[K]]5� , then there should be n such

that D 2 [[K]]5n . This would imply (by applying several times the Generation

Theorem) ! ! ! �5n !. Since we have �5p v �5p+1 for any p, we should

have ! ! ! �50
!. Since ! �50

 ! !, we should conclude, by Theorem

2.3,
 �50
!, which is a contradiction. Therefore we cannot have D 2 [[K]]5�

and the model F5� is non-trivial.

In order to prove that [[M]]5� = [[E]]5� , in view of (y), it is suÆcient to

prove that

[[E]]5� =
[

n

" Zn:

10

First we prove (�). By Theorem 3.4 and the de�nition of �5n , we have that

for all n, Z
n
2 [[E]]5n , hence Z

n
2 [[E]]5� and the inclusion is proved.

We prove (�) by induction on n, by showing that [[E]]5n �" Z
n
. If n = 0, then

[[E]]50 ="
, since F50 is the Scott D1 model, where all unsolvable terms

are equated to bottom. Suppose the thesis true for n and let B 2 [[E]]5n+1 .

Then `5n+1 E : B. This is possible only if there exists C 2 TT
5n such that

C \ Z
n+1 �5n+1

B and moreover `5n E : C. By induction we have C 2"Z
n
,

hence Z
n
�5n

C. Since Z
n+1 �5n+1

Z
n
, we derive Z

n+1 �5n+1
C, hence

Z
n+1 �5n+1

Z
n+1 \ C �5n+1

B. 2

4 Simple easiness of !2!2

In this section we prove that !2!2 is simple easy, and as a by-product of

Theorem 3.5 we obtain its easiness.

First we give a lemma which characterizes the types derivable for !2 and

!2!2.

Lemma 4.1

(i) `5 !2 : A! B i� A �5 A! B;

(ii) `5 !2!2 : B i� A �5 A! B for some A 2 TT5 such that `5 !2 : A.

(iii) If `5 !2!2 : B then there exists A 2 TT
5

such that #(A) = 0, A �5

A! B and `5 !2 : A.

Proof. Using Theorem 1.8 and Lemma 1.4. A direct proof can be found in

[4]. 2

The �rst step for proving simple easiness of !2!2 is to �nd its �lter scheme.

De�nition 4.2

Let be (�5; Z) be a pointed eitt. We de�ne

S(!2!2)(�
5
; Z) = �5

0

;

where:

� CC
50

= CC
5 [f�g (with � =2 CC5);

� 50 = 5[f� � �! Zg.

Lemma 4.3

(i) S(!2!2)(�
5
; Z) is an easy intersection type theory;

(ii) �5 v S(!2!2)(�
5
; Z).

Proof. (i) is immediate by De�nition 4.2. (ii) follows by induction on deriva-

tion of judgements. 2

Next lemma is crucial for proving that S(!2!2) is a �lter scheme for !2!2.

11

Lemma 4.4

Let �5
0

= S(!2!2)(�
5
; Z). Then

`5
0

!2!2 : B () 9C 2 TT5:C \ Z �50 B & `5 !2!2 : C:

Proof. Throughout the proof we use the Generation Theorem and Theorem

2.3 without explicitely mentioning them each time.

()) Let `5
0

!2!2 : B. Then there exists a type P 2 TT5
0

such that

(a) P �
T
i2I

(�
i
! E

i
) \ �;

(b) 8i 2 I:�
i
2 CC5 & E

i
2 TT5;

(c) P �50 P ! B;

(d) `5
0

!2 : P .

In fact, by Lemma 4.1(iii) it follows that there exists T 2 TT5
0

such that the

following three properties hold:

(i) #(T) = 0;

(ii) T �50 T ! B;

(iii) `5
0

!2 : T .

If we consider T 0 � T \ �, it is easy to prove that T 0 satis�es (i), (ii) and

(iii) above. It must hold T
0 �50 (

T
k2K

k
) \ �, with

k
2 CC

5,
k
6�50

for all k 2 K, since the unique possible shape for T 0 is an intersection of

constants containing �. Next, since for each k 2 K, we have, from the axioms

of 5,
k
�5

T
l2L(k)(�

(k)
l
! E

(k)
l
), we can de�ne P �

T
k2K

(
T
l2L(k)(�

(k)
l
!

E

(k)
l
))\�. Then, by reindexing the types and using a unique intersection, we

get the required syntactic shape for P as in (a).

Considering (a), (d), (�5) and Lemma 4.1(i), we have that for all i 2 I,

�
i
�50 �

i
! E

i
. Since �5 v �50

and for each i 2 I, �
i
; E

i
2 TT

5, it follows

that �
i
�5 �

i
! E

i
, for all i 2 I. By applying Lemma 4.1(i) and (\I), we

get `5 !2 :
T
i2I

(�
i
! E

i
). Because of (c), there exists I 0 � I such that

P �50 (
T
i2I0 �i) \ � and (

T
i2I0 Ei

) \ Z �50 B. Because of (d) and (�50), it

follows `5
0

!2 :
T
i2I0 �i. Let �

i
�
T
m2M(i)(�

(i)
m ! D

(i)
m). Then by (�50), we

have `5
0

!2 : �
(i)
m ! D

(i)
m for each i 2 I

0 and m 2 M
(i). By Lemma 4.1(i) it

follows, for each i 2 I
0 and m 2 M

(i), �
(i)
m �50 �

(i)
m ! D

(i)
m . Exploiting again

�5 v �50

, we have, for each i 2 I 0 and m 2 M (i), �
(i)
m �5 �

(i)
m ! D

(i)
m , hence,

by Lemma 4.1(i), `5 !2 : �
(i)
m ! D

(i)
m , for each i 2 I 0 andm 2M (i). Therefore,

by (\I), we have `5 !2 :
T
i2I0(

T
m2M(i)(�

(i)
m ! D

(i)
m)), that is `5 !2 :

T
i2I0 �i.

Since `5 !2 :
T
i2I

(�
i
! E

i
), by (�5) we get `

5
!2 : (

T
i2I0 �i) ! (

T
i2I0 Ei

).

Therefore, applying (! E), we obtain `5 !2!2 :
T
i2I0 Ei

. Since we have

proven (
T
i2I0 Ei

) \ Z �50 B, we are done, by choosing C �
T
i2I0 Ei

.

(() By Theorem 3.4 we have that `5
0

!2!2 : Z. Since by hypothesis `5

!2!2 : C and moreover �5 v �50

, we obtain `5
0

!2!2 : C. By applying

(�50) we have `5
0

!2!2 : B. 2

Theorem 4.5

!2!2 is simple easy.

12

Proof. It follows immediately by De�nition 3.3, Lemmas 4.3 and 4.4. 2

By previous theorem and Theorem 3.5 we get via semantics the well known

result on easiness of !2!2 (see e.g. [5] for another semantic proof).

Corollary 4.6 !2!2 is easy.

5 Generalizing simple easiness to Rn

In this section we generalize the results of previous section, proving that a

class of �-terms generated by !2!2 is simple easy. More in details, consider

the terms so de�ned inductively:

R0 = !2!2;

R
n+1 = R

n
R
n
:

Relying on semantic proof of easiness for !2!2, it is not diÆcult to prove

via semantics that for any n, R
n
is an easy term: in fact we know from previous

sections that there exists a �lter model F5� which identi�es R0 to an arbitrary

M
0. Take M 0 = KM . Then we have

[[R1]]
5� = [[R0R0]]

5�

= [[KMR0]]
5�

= [[M]]5� :

Thus we have that for any M , we can build a model which identi�es R1 with

M . So going on inductively, we can prove that R
n
is easy for any n.

Nevertheless proving simple easiness of R
n
is a rather more diÆcult task,

and it is the aim of the present section.

We start �xing some notations. From now on ~� stands for a (non-empty)

sequence of types [�1; : : : ; �n]. Given A and B types, �(~�;B) will be short for

the type

�1 \ (�1 ! �2) \ : : : \ (�1 ! �2 : : :! �
n
) \ (�1 ! �2 : : :! �

n
! B):

For each 0 � p � n, we write �
(p)(~�;B) as short for �([�p+1; : : : ; �n]; B).

Notice that

- �(~�;B) = �
(0)(~�;B),

- A! �([�1; : : : ; �n; �n+1]; B) � A! �([�1; : : : ; �n]; �n+1 \ (�n+1 ! B)),

- �(p)(~�) � �p+1 ! �
(p+1)(~�),

- �(n)(~�;B) � B.

Let � be a fresh constant. We de�ne a set of axioms A(~�; �) as follows:

A(~�) = f�j � � ! �j j 1 � j � ng [f� � �1 ! �1g:

Before going on we have to remark the auxiliary character of the set of

axioms A. In De�nition 5.1 below, in de�ning the theory �5(n)
, the central

role is played by the axiom � � �(�; ~�; Z), which allows to give the easy term

13

the type Z. But since we consider extensional structures, we need to �nd also

suitable axioms for each new constant that is introduced. For this aim we

introduce A.

We now de�ne the sequence of �lter scheme SRn.

De�nition 5.1

For any n > 0 and (�5; Z) pointed eitt, we de�ne SRn(�
5; Z) = �5

(n)
, where:

- CC
5(n)

= CC
5 [f�; �1; : : : ; �n; �g;

- 5(n) = 5[A(~�; �) [f� � �! �(~�; Z)g.

Lemma 5.2

(i) SRn(�
5; Z) is an easy intersection type theory;

(ii) �5 v SRn(�
5; Z).

Proof. (i) follows immediately by De�nition 4.2. (ii) follows by induction on

derivation of judgements. 2

Next two lemmata are very useful. Their proofs are long but not diÆcult,

relying on the Generation Theorem and Theorem 2.3.

Lemma 5.3

Let n > 0. Let A 2 TT5, A 6�5
. Then for any 1 � j � n,

(i) A 6�5(n) �j;

(ii) A 6�5(n) � ;

(iii) �j 6�5(n) A;

(iv) � 6�5(n) A.

Lemma 5.4

Let n > 0 and 0 � p � n. Then

(i) `5
(n)

Rp : �
(p)(~�; Z);

(ii) 6`5
(n)

Rp : �j, for j � p;

(iii) 6`5
(n)

Rp : � .

Next theorem is the key result for proving simple easiness of Rn. Its

consequence, as expected, will be that SRn are �lter schemes for Rn.

Theorem 5.5 Let n > 0 and 0 � p � n. Then

`5
(n)

Rp : B () 9C 2 TT5: `5 Rp : C & C \ �(p)(~�; Z) �5(n) B:

Proof. ()) We reason by induction on p. If p = 0, then the proof follows

exactly the lines of the proof of Theorem 4.4, by replacing Z with �(p)(~�; Z).

Suppose now the thesis true for p. We prove the thesis for p + 1. Let `5
(n)

Rp+1 : B. Then there exists A0 2 TT5
(n)

such that `5
(n)

Rp : A
0 \ (A0 ! B).

Since �(p)(~�; Z) �5(n) �p+1, by Lemma 5.4(i) and (�5(n)), we get `5
(n)

Rp : �p+1. Hence we can de�ne A 2 TT
5(n)

as A � A0 \ (A0 ! B) \ �p+1 so

14

that

- `5
(n)

Rp : A and

- A �5(n) �p+1 \ (A! B).

By induction there exists C 0 2 TT5 such that:

(i) `5 Rp : C
0;

(ii) C 0 \ �(p)(~�; Z) �5(n) A.

Let C 0 �5

T
i2I

(Di ! Ei), with Di 2 TT
5
for each i 2 I. By (ii) and (trans)

it follows

(y) C 0 \ �(p)(~�; Z) �5(n) A! B:

Notice that

�(p)(~�; Z) �5(n) (� ! �p+1) \ (�p+1 ! �(p+1)(~�; Z)):

Moreover we cannot have A �5(n) � . If so, we could deduce `5
(n)

Rp : � ,

contradicting Lemma 5.4(iii). So, when applying Theorem 2.3 to (y), we

conclude that there exists I 0 � I such that:

(a) A �5(n) (
T

i2I0 Di) \ �p+1;

(b) (
T

i2I0 Ei) \ �
(p+1)(~�; Z) �5(n) B:

(a) along with (ii), implies C 0\�(p)(~�; Z) �5(n)

T
i2I0 Di. Let K, Tk; Uk 2 TT

5
,

be such that
T

i2I0 Di �
T

k2K
(Tk ! Uk): By (trans) for all k 2 K we have

C \ �(p)(~�; Z) �5(n) Tk ! Uk, that is

(c)
\

i2I

(Di ! Ei) \ (� ! �p+1) \ (�p+1 ! �(p+1)(~�; Z)) �5(n) Tk ! Uk:

Since Tk 2 TT
5, by Lemma 5.3(i) and (ii), we can have neither Tk �5(n) � nor

Tk �5(n) �p+1. So, when applying Theorem 2.3 to (c), we obtain that there

exists Ik � I, such that Tk �5(n)

T
i2I

k

Di and
T

i2I
k

Ei �5(n) Uk. By standard

computations we get
T

i2I
(Di ! Ei) �5(n) Tk ! Uk for all k 2 K, hence

C 0 �5(n)

\

k2K

(Tk ! Uk) �
\

i2I0

Di:

Applying Lemma 5.2, we get C 0 �5

T
k2K

(Tk ! Uk) �
T

i2I0 Di. By (i) and

(�5), we get

(d) `5 Rp :
T

i2I0 Di.

On the other hand, since C 0 �5 (
T

i2I0 Di)! (
T

i2I0 Ei), by (�5) we have

(e) `5 Rp : (
T

i2I0 Di) ! (
T

i2I0 Ei). Therefore, applying (! E) to (d) and

(e), we get `5 Rp+1 :
T

i2I0 Ei. We are done, de�ning C as
T

i2I0 Ei and taking

into account of (ii).

(() follows by standard computations, using Lemma 5.4(i). 2

Simple easiness of Rn is now an immediate consequence of previous The-

orem.

Theorem 5.6

For any n, Rn is simple easy.

15

Proof. Take p = n in the statement of the previous theorem and remember

�
(n)(~�; Z) � Z. 2

Corollary 5.7

For any n, R
n
is easy.

Acknowledgement

The authors wish to thanks Mariangiola Dezani Ciancaglini for enlightening

discussions on the subject.

References

[1] S. Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic, 51(1-
2):1{77, 1991.

[2] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus.
Inform. and Comput., 105(2):159{267, 1993.

[3] F. Alessi. Strutture di tipi, teoria dei domini e modelli del lambda calcolo. PhD
thesis, Torino University, 1991.

[4] F. Alessi, M. Dezani-Ciancaglini, and F. Honsell. Filter models and easy terms.
In A. Restivo, S. Ronchi della Rocca, and L. Roversi, editors, Mathematical

Foundations of Computer Science 2000, volume 2202 of Lecture Notes in

Comput. Sci., pages 17{37. Springer, 2001.

[5] J. Baeten and B. Boerboom. ! can be anything it shouldn't be. Indag.Math.,
41:111{120, 1979.

[6] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A �lter lambda model
and the completeness of type assignment. J. Symbolic Logic, 48(4):931{940,
1983.

[7] A. Berarducci. In�nite �-calculus and non-sensible models. In M. D. Inc.,
editor, Logic and Algebra, number 180 in Lecture Notes in Pure and Applied
Mathematics, pages 339{378. Springer-Verlag, 1996.

[8] A. Berarducci and B. Intrigila. Some new results on easy lambda-terms.
Theoret. Comput. Sci., 121:71{88, 1993.

[9] A. Berarducci and B. Intrigila. Church-Rosser �-theories, in�nite �-calculus
and consistency problems. In W. Hodges and M. Hyland et al., editors, Logic:
From Foundations to applications, pages 33{58. Oxford Sci. Publ., New York,
1996.

[10] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality
theory for the �-calculus. Notre Dame J. Formal Logic, 21(4):685{693, 1980.

16

[11] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended type
structures and �lter lambda models. In Logic colloquium '82, pages 241{262.
North-Holland, Amsterdam, 1984.

[12] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes
and �-calculus semantics. In R.Hindley and J.Seldin, editors, To H. B. Curry:

essays on combinatory logic, lambda calculus and formalism, pages 535{560.
Academic Press, London, 1980.

[13] M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type theories, normal forms,
and D1-lambda-models. Inform. and Comput., 72(2):85{116, 1987.

[14] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama. Compositional
characterization of �-terms using intersection types. In M. Nielsen and
B. Rovan, editors, Mathematical Foundations of Computer Science 2000,
volume 1893 of Lecture Notes in Comput. Sci., pages 304{313. Springer, 2000.

[15] P. Di Gianantonio and F. Honsell. An abstract notion of application. In
M.Bezem and J.F.Groote, editors, Typed lambda calculi and applications,
volume 664 of Lecture Notes in Comput. Sci., pages 124{138. Springer, Berlin,
1993.

[16] L. Egidi, F. Honsell, and S. Ronchi Della Rocca. Operational, denotational and
logical descriptions: a case study. Fund. Inform., 16(2):149{169, 1992.

[17] R. Hindley and G. Longo. Lambda-calculus models and extensionality. Z.

Math. Logik Grundlag. Math., 26(4):289{310, 1980.

[18] F. Honsell and M. Lenisa. Semantical analysis of perpetual strategies in �-
calculus. Theoret. Comput. Sci., 212(1-2):183{209, 1999.

[19] F. Honsell and S. Ronchi Della Rocca. A �lter model for
. Technical report,
Torino University, 1984.

[20] F. Honsell and S. Ronchi Della Rocca. An approximation theorem for
topological lambda models and the topological incompleteness of lambda
calculus. J. Comput. System Sci., 45(1):49{75, 1992.

[21] B. Intrigila. A problem on easy terms in �-calculus. Fund. Inform., 15.1:99{106,
1991.

[22] G. Jacopini. A condition for identifying two elements of whatever model of
combinatory logic. In C.B�ohm, editor, �-calculus and computer science theory,
volume 37 of Lecture Notes in Comput. Sci., pages 213{219. Springer, Berlin,
1975.

[23] G. Jacopini and M. Venturini Zilli. Easy terms in the lambda calculus. Fund.

Inform., 80:225{233, 1985.

[24] J. Kuper. On the Jacopini technique. Inform. and Comput., 138:101{123, 1997.

[25] G. D. Plotkin. Set-theoretical and other elementary models of the �-calculus.
Theoret. Comput. Sci., 121(1-2):351{409, 1993.

17

[26] G. Pottinger. A type assignment for the strongly normalizable �-terms. In
R.Hindley and J.Seldin, editors, To H. B. Curry: essays on combinatory logic,

lambda calculus and formalism, pages 561{577. Academic Press, London, 1980.

[27] A. Pravato, S. Ronchi, and L. Roversi. The call-by-value lambda calculus: a
semantic investigation. Math. Struct. in Comput. Sci., 9(5):617{650, 1999.

[28] D. Scott. Continuous lattices. In F. Lawvere, editor, Toposes, algebraic

geometry and logic, volume 274 of Lecture Notes in Math., pages 97{136.
Springer, Berlin, 1972.

[29] S. Vickers. Topology via logic. Cambridge University Press, Cambridge, 1989.

18

