
This journal is c The Royal Society of Chemistry 2012 Mol. BioSyst., 2012, 8, 2845–2849 2845

Cite this: Mol. BioSyst., 2012, 8, 2845–2849

TOFwave: reproducibility in biomarker discovery from time-of-flight

mass spectrometry dataw

Marco Chierici,z*a Davide Albanese,za Pietro Franceschi
b
and Cesare Furlanello

a

Received 6th June 2012, Accepted 23rd July 2012

DOI: 10.1039/c2mb25223f

Many are the sources of variability that can affect reproducibility of disease biomarkers from

time-of-flight (TOF) Mass Spectrometry (MS) data. Here we present TOFwave, a complete

software pipeline for TOF-MS biomarker identification, that limits the impact of parameter

tuning along the whole chain of preprocessing and model selection modules. Peak profiles

are obtained by a preprocessing based on Continuous Wavelet Transform (CWT), coupled

with a machine learning protocol aimed at avoiding selection bias effects. Only two parameters

(minimum peak width and a signal to noise cutoff) have to be explicitly set. The TOFwave

pipeline is built on top of the mlpy Python package. Examples on Matrix-Assisted Laser

Desorption and Ionization (MALDI) TOF datasets are presented. Software prototype, datasets

and details to replicate results in this paper can be found at http://mlpy.sf.net/tofwave/.

Introduction

Mass spectrometry (MS) based profiling allows the construction

of molecular snapshots of a biological system and constitutes an

excellent ground for systemic approaches with implications on the

diagnosis of human diseases. Body fluids like blood serum can be

routinely used to generate MS profiles that can be analyzed to

identify potential disease biomarkers, such as metabolites,

peptides, individual proteins, or sets of interacting proteins.1,2

Due to the growth of technologies for MS profiling, instrumental

platforms are capable of acquiring high throughput data with

both high mass resolution and stability. The full exploitation of

this potential requires the development of dedicated pipelines

with high confidence and reproducibility.

Reproducibility is still a major concern for the discovery of

predictive biomarkers in MS clinical studies.3–5 Excluding batch

effects, a fair fraction of the known sources of variability is due to

non-explicit visual tuning in the preprocessing phase, which may

explain why it is so hard to compare different algorithms for peak

detection and quantification.5 For reproducibility, the number of

parameters should be reduced to a minimum and possibly depend

more on technical specifications of the MS platform and less on

manual fine tuning. Moreover, for predictive modeling from MS

data, it is urgent to adopt Data Analysis Plans (DAPs) that ensure

a valid estimate of accuracy and avoid overfitting by careful use of

cross-validation protocols, as shown for large scale microarray

studies.6

Here we introduce the TOFwave pipeline to address

both reproducibility and predictive modeling issues with one

software environment for TOF-MS data. For preprocessing,

we propose a Continuous Wavelet Transform (CWT) module.7

The multi-scale nature of the CWT solves the issue of tuning

TOF-MS peak matching, since it automatically deals with

peak-width variation in different mass spectrum regions.

For data analysis, the TOFwave pipeline can use generic

machine learning workflows for multivariate classification

or regression and for the identification of a ranked set of

predictive biomarkers (e.g. a MS peak profile). In particular,

we propose here a DAP built according to model development

practices defined in regulatory initiatives, such as the U.S. Food

and Drug Administration’s projects for reliable biomarker

identification.6

The system is provided as a modular software pipeline,

whose elements are all available as methods from the mlpy

Python package, an Open Source environment for data analysis

and machine learning for high throughput data.8

Materials and methods

The workflow (Fig. 1) is derived from an analysis protocol

previously proposed for proteomic profiling.9 The preprocessing,

feature extraction and machine learning steps are built on top of

the modular mlpy library. Although the workflow is presented

here for a typical classification task such as a case/control study,

it can be adapted to multi-class and regression problems by

exploiting algorithms implemented in mlpy, such as multi-class

(kernel) Support Vector Machines (SVMs) and Support Vector

Regression (SVR).8 The key components of TOFwave are

described in the following.
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CWT-based preprocessing

Each raw spectrum first undergoes a de-noising and baseline

removal phase, based on the CWT. In order to preserve

the basic shape characteristics of TOF peaks, we chose

the Mexican Hat mother wavelet.10 De-noising and baseline

removal steps are driven by Full Widths at Half Maximum

Peak Height (FWHM) Wl and Wh, which represent the desired

detail level by taking into account only spectral structures

wid‘er than Wl Da in regions with low mass-to-charge

values, and structures wider than Wh Da in regions with high

mass-to-charge values, respectively. A linear interpolation is

performed in the range between the two parameters, obtaining

W (m/z).

Overall, the procedure consists of the following steps:

(1) each spectrum is transformed by CWT;

(2) de-noising is achieved by removing CWT coefficients

that correspond to signal structures narrower than W (m/z);

(3) baseline is corrected by removing CWT coefficients

related to signal structures wider than 5W (m/z), a width that

adequately represents the low frequency variation of the base-

line in MALDI-TOF spectra;

(4) a de-noised and baseline-corrected version of the signal,

S (m/z), is reconstructed by inverse CWT (ICWT) on the

updated coefficient matrix;

(5) the noise level Nl of the spectrum is estimated by:

(a) performing ICWT on the two lowest scales of the

CWT coefficient matrix, obtaining N (m/z);

(b) computing the 95-percentile on N (m/z).

Each spectrum is then normalized by the estimated noise

level, to obtain intensities in terms of signal-to-noise ratio

SNR= S (m/z)/Nl. Fig. 2 shows the effects of different choices of

detail levels for a sample spectrum of dataset B (see Application),

demonstrating the flexibility of the proposed preprocessing

pipeline.

Feature extraction

For each preprocessed spectrum, a list of peak locations

is obtained by detecting intensity maxima that are above

the SNR threshold (SNRt). The peak locations of all samples

are first merged, then clustered according to W (m/z) by

using a memory-saving implementation of centroid linkage

hierarchical clustering. Common peaks are defined as the

cluster centroids, computed by averaging peak locations

belonging to the same cluster. Finally, peak heights are quantified

as the maximum intensity of the normalized spectrum over

each cluster.

Machine learning

The machine learning module is run in a 100� random

subsampling cross-validation (CV) schema (75–25% training-

test proportion), while maintaining class labels proportion. For

each training set, peaks are directly ranked according to feature

weights computed by single-layer perceptron classifier after

feature normalization; each test set is normalized according to

the parameters of the training set. For the i-th CV subsample, a

series of perceptron models built upon an increasing number of

features (from the i-th ranked peak list)11 are tested, obtaining a

test error (TE) curve. An average test error (ATE) curve is

finally computed, together with a unified peak list ranked by

average positions.

Peak detection reproducibility

The performance of peak detection was evaluated on a validated

and openly availableMALDI-TOF dataset (‘‘Aurum’’), containing

known purified and trypsin-digested proteins.12 The performance

test follows the approach proposed by Yang and colleagues.13

We considered 200 spectra equally arranged in eight groups,

Fig. 1 The modular structure of the TOFwave workflow.

Fig. 2 Effects of different detail levels for a sample spectrum

of dataset B (see Application). (A) Raw spectrum. (B) De-noised,

baseline-corrected and normalized signal with W (m/z) = 3 (evaluated

at 629 Da). (C) De-noised, baseline-corrected and normalized signal

with W (m/z) = 0.4 (evaluated at 629 Da).
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setting the detail level parameters to Wl = 0.08 (evaluated on

the peak measured at m/z = 1024.64 Da) and Wh = 0.28

(evaluated at m/z = 2886.31 Da). We ran TOFwave peak

detection on spectra in the same group with seven signal-to-

noise thresholds (SNRt = 2, 5, 10, 20, 50, 100, 200). We then

assessed the performance in terms of sensitivity with respect to

four false discovery rate (FDR) ranges ([0,0.1), [0.2,0.3),

[0.4,0.5), [0.6,0.7)), with sensitivity and FDR computed using

lists of ground-truth peaks.13 For each group, we averaged the

sensitivity values with associated FDR falling in the same

range, thus obtaining eight average sensitivities for each FDR

range. Finally, we compared the results with the sensitivities

previously obtained13 in the same setup by five public peak

detection algorithms, namely ‘‘Cromwell’’,14 ‘‘CWT’’,15

‘‘LMS’’,16 ‘‘LIMPIC’’17 and ‘‘PROcess’’.18 Results are displayed

in Fig. 3, for increasing FDR. Sensitivity of TOFwave is found

comparable to or higher than that of the alternative algorithms,

with inferior variability in terms of interquartile ranges.

Additionally, to simulate typical tuning differences among

users or laboratories, we repeated the previous analysis while

decreasing and increasing the pair W = (Wl, Wh) values by

10%, considering the additional setups W� and W+, respec-

tively. The comparison of sensitivity betweenW�,W andW+

is displayed in Fig. 4, for increasing FDR, showing that

TOFwave peak detection is robust against small variations

of (Wl, Wh).

Application

TOFwave was run on three MALDI-TOF datasets (A, B, C;

details in ESIw). Datasets A and B were acquired in-house, to

test the pipeline performance in the mass range typical of

metabolic profiling. Sanguiin H6 (C82H54O52, monoisotopic

mass 1870.158 Da)19 and methionine (C5H11NO2S, monoisotopic

mass 149.051 Da) have been spiked in half of the samples for

datasets A and B, respectively. Dataset C is a proteomics pattern

dataset consisting of spectra from 77 controls and 93 ovarian

cancer patients.20

Results are presented in Table 1 in terms of Average Test

Error (ATE) curves with 97.5% bootstrap (1000� resampling)

Fig. 3 Performance of TOFwave peak detection in comparison with different publicly available algorithms. Average sensitivity for different FDR

ranges: [0,0.1) (FDR around 0.05, top left), [0.2,0.3) (FDR around 0.25, top right), [0.4,0.5) (FDR around 0.45, bottom left), [0.6,0.7) (FDR

around 0.65, bottom right). The detail level parameters were set to W = (Wl, Wh) = (0.08,0.28).

Fig. 4 Stability of TOFwave peak detection for 10% perturbation of the W setup (see Fig. 3), with W� = 0.9W and W+ = 1.1W.
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confidence intervals (ATEmin, ATEmax), and in Table 2 in terms

of unified peak lists, ranked by average positions. To ensure that

the procedure is not affected by systematic bias, each experiment

was repeated by running the modeling step 10 times after having

randomly permuted the sample labels, using the original class

proportion (‘‘random labels’’ in the following; details in ESIw).
As for dataset A, detail level parameters were set to Wl =

0.4 (evaluated at 629.2 Da) andWh = 4 at 3148 Da (see ESIw).
An average prediction error on test data ATE = 0.2% was

obtained with three top-ranked peaks, with SNRt = 2

(Table 1 and Table S2 (ESIw), Fig. 5). The analysis was

repeated with SNRt = 4 obtaining an Average Test Error of

0% on the three top-ranked peaks (Tables S3 and S4, Fig. S2,

ESIw). In positive ion mode MALDI of large polyphenols is

expected to yield mainly sodium and potassium adducts. As

far as Sanguiin is concerned, m/z signals for these species are

expected at m/z 1893.147 ([M + Na]+), 1909.121 ([M + K]+)

and 1916.137 ([M + 2Na]+). In Table 2 and Table S3 (ESIw)
are presented the top-10 ranked features selected by the pipeline.

Mass values represent the position of the cluster centroids after

preprocessing with their associated cluster bounds. They can be

related to the envelopes of the expected ionic species as can be

seen in Fig. S1, ESI.w It is worth mentioning that cluster bounds,

and thus the uncertainty about cluster centroids, may be reduced

by selecting smaller Wl and Wh.

As for dataset B, detail level parameters were set to Wl =

0.1 at 171.55 Da andWh = 0.2 at 644.6 Da (see ESIw). ATE=

0.3% was obtained with only one feature, and ATE = 1.1%

with three features (Fig. 6, Tables S5 and S6 (ESIw)). In

positive ion mode, methionine is expected as the [M + H]+

ion at m/z 150.058 Da. Features corresponding to this ion and

its 13C contribution are indeed among the top 3 discriminating

features (Table S5, ESIw).
An average prediction error on test data ATE = 36.6% for

10 top features was found on dataset C (details in ESIw).

Conclusions

In this work we presented TOFwave, a new pipeline for the

identification of potential biomarkers in TOF-MS profiling

experiments. TOFwave is provided as a modular software

pipeline, freely available from http://mlpy.sf.net/tofwave. The

pipeline couples TOF-MS data preprocessing with a predictive

modeling workflow optimized to allow the control of selection bias

and to avoid overfitting effects, thus improving reproducibility.

Preprocessing parameters have been reduced to a minimum

Table 1 Dataset A, SNRt = 2: Average Test Error (ATE) with
97.5% bootstrap confidence interval (ATEmin, ATEmax) for the top-10
ranked peaks. n: number of peaks used in the model

n ATE ATEmin ATEmax

1 0.006 0.000 0.014
2 0.003 0.000 0.009
3 0.002 0.000 0.008
4 0.013 0.007 0.021
5 0.015 0.007 0.024
6 0.033 0.020 0.048
7 0.034 0.022 0.049
8 0.046 0.033 0.061
9 0.045 0.032 0.060
10 0.044 0.031 0.059

Table 2 Dataset A, SNRt = 2: top-10 ranked peaks (m/z, cluster
centroids) with their associated cluster bounds (Cmin, Cmax) and
average positions. n: peak rank

n m/z [Da] Cmin [Da] Cmax [Da] Avg. pos.

1 1910 1909.6 1911.7 1.03
2 1917 1915.7 1918.5 2.23
3 1894 1893.3 1896.1 2.75
4 1932 1930.7 1933.6 4.94
5 277.2 276.86 277.46 6.42
6 347.7 347.46 348.03 8.22
7 87.9 87.70 88.14 13.17
8 304.4 304.08 304.81 15.07
9 97.8 97.63 97.90 19.25
10 409.6 409.10 410.06 21.26

Fig. 5 Dataset A: Average Test Error (ATE) curves with 97.5%

bootstrap confidence intervals (c.i.) for a complete preprocessing and

classification experiment, with SNRt = 2. Horizontal dotted line

indicates the ‘‘no-information error rate’’, here defined as the ratio

between the smallest class and the whole dataset size, corresponding to

the error reached by classifying all samples as belonging to the most

populous class.

Fig. 6 Dataset B: Average Test Error (ATE) curves with 97.5%

bootstrap c.i. for a complete preprocessing and classification experiment,

with SNRt = 3. Horizontal dotted line indicates the ‘‘no-information

error rate’’.
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and they are directly correlated to the physical characteristics of

the spectra, exploiting the multiscale nature of the Continuous

Wavelet Transform. The user thus gains full control on

peak detection steps, avoiding any non-explicit visual tuning

that may jeopardize reproducibility. Performance tests on

the validated MALDI-TOF ‘‘Aurum’’ dataset proved the

robustness of the preprocessing phase with respect to different

choices of the parameters. Moreover, the performance of

peak detection on the same dataset was found comparable to

or higher than alternative publicly available algorithms in

terms of sensitivity and false discovery rate. In our investigation

we showed that TOFwave can be used on a wide range of

MALDI-TOF spectra, with biomarkers ranging from small

molecules (e.g. methionine, dataset B) to large metabolites

(e.g. Sanguiin, dataset A), and even proteins or peptides

(e.g. dataset C). This flexibility makes TOFwave suitable for

biomarker identification at different omics levels, from meta-

bolomics to proteomics.
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