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Abstract The paper deals with semilinear differential inclusions with state-dependent
impulses in Banach spaces. Defining a suitable Banach space in which all the solutions can
be embedded we prove the first existence result for at least one global mild solution of the
problem considered. Then we characterize this result by means of a new definition of Lya-
punov pairs. To this aim we give sufficient conditions for the existence of Lyapunov pairs
in terms of a new concept of contingent derivative.
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1 Introduction

Impulsive differential equations or inclusions describe phenomena characterized by the fact
that the model parameters are subject to short-term perturbations in time. For instance, in

� G. Gabor
ggabor@mat.umk.pl

I. Benedetti
irene.benedetti@unipg.it

T. Cardinali
tiziana.cardinali@unipg.it

P. Rubbioni
paola.rubbioni@unipg.it

1 Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy

2 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, Toruń,
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the periodic treatment of some diseases, impulses may correspond to administration of a
drug treatment; in environmental sciences, impulses may correspond to seasonal changes
or harvesting; in economics, impulses may correspond to abrupt changes of prices. For a
bibliography on the theory of impulsive differential equations one can see, for instance, the
monographs [4, 25] and for more recent results on impulsive differential inclusions we refer
the interested reader to some papers and monographs of the last decade: [7, 8, 18, 19]. All
the cited papers deal with fixed moments of impulses, but in fact as well as fixed beforehand
the moments of impulses can be chosen in various ways, for instance, randomly, or deter-
mined by the state of a system. Existence results for several kind of impulsive differential
inclusions with variable times of impulses in a finite dimensional framework are contained
in [5, 6, 16, 17, 20]. Some interesting results on classical solutions to single-valued impul-
sive problems in abstract spaces (with state-dependent impulses) can be found in, e.g., [21].
As far as we know this work is the first attempt to solve the problem of the existence of mild
solutions for semilinear differential inclusions with impulses at variable times in Banach
spaces.

In particular, given a > 0 we consider the following semilinear differential inclusion
with state-dependent impulses:

(IP )

⎧
⎨

⎩

y′(t) ∈ Ay(t) + G(t, y(t)), t ∈ [0, a], t �= τj (y(t)), j = 1, · · · ,m

y(t+) = y(t) + Ij (y(t)), t ∈ [0, a], t = τj (y(t)), j = 1, · · · ,m

y(0) = y0 ∈ E,

where E is a Banach space endowed with the norm ‖ · ‖; A : D(A) ⊆ E → E is a linear
operator satisfying

(A) A is the infinitesimal generator of a C0-semigroup {U(t)}t≥0;

G : [0, a] × E � E is a given multivalued map; τj : E → R and Ij : E → E,
j = 1, · · · , m, are given maps; y(t+) = lims→t+ y(s).

Problems with state-dependent impulses are more suitable to describe real-life phenom-
ena, but more complicated from a theoretical point of view. Indeed, while for problems with
fixed moments of impulses (i.e., with τj constant functions for any j = 1, . . . , m) several
methods from continuous problems can be adopted, this is not the case for state-dependent
impulses. One of the main difficulties is to find a suitable function space, where all solu-
tions could be embedded. Recently, in [20], where E = R

n, such a function space (which is
a Banach space) is introduced and, under suitable assumptions, all solutions are interpreted
as elements of this space (for non-metrizable space see, e.g., [3]).

In this paper, we extend this definition from a finite-dimensional setting to an infinite
one obtaining the first existence result for at least one global mild solution of the problem
(IP ) (see Theorem 2.4). Then we characterize this first result by means of a new definition
of a Lyapunov pair (called equi-Lyapunov pair) based on the definition of a Lyapunov pair
given in [10]. Roughly speaking we prove the existence of at least one mild solution in the
case that the barrier τj is the first component of the equi-Lyapunov pair (see Theorem 3.6).

We recall that Cârjǎ in [10] considers the following autonomous Cauchy problem

(AP )ξ

{
y′(t) ∈ Ay(t) + G(y(t)), for a.e. t ∈ R

y(0) = ξ ∈ E,

where A : D(A) ⊆ E → E is an operator and G : M � E is a multimap, with M a
nonempty set in the Banach space E. According to [10], given V, p : M → [−∞, +∞],
two maps, the couple (V , p) is said to be a Lyapunov pair for the inclusion y ′ ∈ Ay +G(y)

if, for every ξ ∈ D(V ) = {x ∈ E : V (x) < +∞} there exists T > 0 and a mild solution



Lyapunov Pairs in Semilinear Differential Problems... 587

y : [0, T ] → M to the autonomous multivalued semilinear Cauchy problem (AP )ξ , the
map t 
→ p(y(t)) is integrable on [0, T ] and

V (y(t)) +
∫ t

0
p(y(s))ds ≤ V (ξ), for all t ∈ [0, T ].

In the case where E is an Hilbert space, G is single-valued and Lipschitz continuous, and A

is a not necessarily linear operator, Kocan and Soravia in [24] characterized the Lyapunov
pairs using the partial differential inequality

〈−A(x),DV (x)〉 + 〈G(x),DV (x)〉 ≥ p(x), for every x ∈ D(A)

whose solutions V are meant in the viscosity sense.
Recently, in the same setting of hypotheses as in [24], but with the operator A possi-

bly multivalued, in [1, 2], Adly et al. provide primal and dual criteria for weakly lower
semicontinuous Lyapunov pairs, explicitly formulated by means of the proximal and basic
subdifferentials of the involved functions.

In [12] Cârjǎ and Motreanu, considering an appropriate contingent derivative, obtain a
different characterization of Lyapunov pairs on Hilbert spaces, with A a linear operator and
G a locally Lipschitz mapping. Their approach is based on viability results and uses the
contingent derivative associated to the operator A defined as follows.

Definition 1.1 Let A : D(A) ⊆ E → E be an operator satisfying (A), V : E →
]−∞,+∞] be a map with a non-empty effective domain D(V ) = {x ∈ E : V (x) < +∞}.
The A-contingent derivative DAV (x)(u) of V at x ∈ D(V ) in the direction u ∈ E is
defined by

DAV (x)(u) = lim inf
h ↓ 0

w → 0E

1

h

[

V

(

U(h)x +
∫ h

0
U(h − s)uds + hw

)

− V (x)

]

.

Later the same authors in [13] extend this result to arbitrary Banach spaces and to m-
dissipative possibly multivalued operators A. In [11] Cârjǎ and Lazu obtain an analogous
characterization assuming only continuity on G but requiring that the semigroup generated
by the m-dissipative operator is compact. Assuming that A is a linear operator generating a
compact semigroup, Cârjǎ in [10] extends the results obtained in the previous cited papers
to the case of a multivalued map F . To this aim he introduces a new concept of contin-
gent derivative suitable for inclusions. Precisely, given a nonempty bounded set S ⊂ E, he
considers the set

SL1 = {f ∈ L1
loc(R

+;E) : f (s) ∈ S a.e. s ∈ R
+}, (1)

then the A-contingent derivative of V at x ∈ D(V ) in the direction S ⊂ E is defined as
follows.

Definition 1.2 Let A : D(A) ⊆ E → E be an operator satisfying (A), V : E →] −
∞, +∞] be a map with non-empty effective domain D(V ) = {x ∈ E : V (x) < +∞}. The
A-contingent derivative DAV (x)(S) of V at x ∈ D(V ) in the direction S ⊂ E is defined by

DAV (x)(S) = lim inf
h ↓ 0

w → 0E

inf
f ∈S

L1

1

h

[

V

(

U(h)x +
∫ h

0
U(h − s)f (s)ds + hw

)

− V (x)

]

.

In this paper we introduce a new type of Lyapunov pair, not depending on a mild solution.
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Definition 1.3 Given two maps V, p : E → R, we say that (V , p) is an equi-Lyapunov
pair for the inclusion

y′(t) ∈ Ay(t) + G(t, y(t)), for a.e. t ∈ [0, a], (2)

if, for every (τ, ξ) ∈ [0, a[×E and every mild solution y : [τ, a] → M to the multivalued
semilinear Cauchy problem

(P )(τ,ξ)

{
y′(t) ∈ Ay(t) + G(t, y(t)), for a.e. t ∈ [τ, a]
y(τ) = ξ,

the map t 
→ p(y(t)) is integrable on [τ, a] and

V (y(t)) +
∫ t

τ

p(y(s))ds ≤ V (ξ), for all t ∈ [τ, a].

Following the approach described in [10], we give sufficient conditions for the existence
of equi-Lyapunov pairs in terms of a new concept of A-contingent derivative defined as
follows.

Definition 1.4 Let A : D(A) ⊆ E → E be an operator satisfying (A), V : E →] −
∞, +∞] be a map with non-empty effective domain D(V ) = {x ∈ E : V (x) < +∞}. The
strong-A-contingent derivative of V at x ∈ D(V ) in the direction f ∈ SL1 is defined by

DAV (x)(f ) = lim inf
h ↓ 0

w → 0E

1

h

[

V

(

U(h)x +
∫ h

0
U(h − s)f (s)ds + hw

)

− V (x)

]

.

We point out the fact that unlike all the cited results we consider a non-autonomous dif-
ferential inclusion on arbitrary Banach spaces with A a linear operator generating a non
necessarily compact semigroup.

Actually, to obtain existence results for mild solutions of the problem (IP ) it is sufficient
to consider a weaker definition of equi-Lyapunov pair, namely:

Definition 1.5 Given two maps V, p : E → R, we say that (V , p) is an equi-Lyapunov
pair for problem (P )(τ,ξ) if, for every mild solution y : [τ, a] → M to (P )(τ,ξ), the map
t 
→ p(y(t)) is integrable on [τ, a] and

V (y(t)) +
∫ t

τ

p(y(s))ds ≤ V (ξ), for all t ∈ [τ, a].

Using this definition it is possible to consider p : E → R depending on the initial values
(τ, ξ) of the Cauchy problem.

The paper is organized as follows: in Section 2 we prove an existence result for the
impulsive problem (IP ); in Section 3, after a preliminary study of the autonomous case (see
Section 3.1), we give sufficient conditions to have an equi-Lyapunov pair for the differential
inclusion (2) (see Section 3.2) and then we obtain another existence result for (IP ) via
equi-Lyapunov pairs defined as in Definition 1.5 (see Section 3.3); in Section 4 we give the
concluding remarks; finally, for the reader’s convenience in the Appendix we recall some
definitions and results the proofs are based on.
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2 Semilinear Differential Problem with State Dependent Impulses

In this Section we consider the problem (IP ) under the following assumptions.

(H1) for every j = 1, . . . , m, the map τj : E → R is a continuous function; moreover for
every x ∈ E it holds that

(H1.1) 0 < τj (x) < τj+1(x) < a, j = 1, . . . , m − 1;
(H1.2) τj (x + Ij (x)) ≤ τj (x) < τj+1(x + Ij (x)), j = 1, . . . , m − 1;
(H1.3) τm(x + Im(x)) ≤ τm(x).

We search for the existence of mild solutions of problem (IP ) in the space

C =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ : [0, a] → E :

∃ �j ∈ [0, a], j = 0, . . . , m + 1,

0 = �0 < · · · < �j < · · · < �m+1 = a

∃ v1, . . . , vm ∈ E such that
ξ continuous in 0 and in ]�j , �j+1], j = 0, . . . , m

ξ(�+
j ) = ξ(�j ) + vj , j = 1, . . . , m

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

A mild solution of the problem (IP ) is a map belonging to the space C such that it meets
exactly once each hypersurface �j = {(t, x) ∈ [0, a] × E : t − τj (x) = 0}, for every
j = 1, . . . , m. More precisely, we give the following definition.

Definition 2.1 A mild solution of problem (IP ) is a map y ∈ C such that for every j =
1, . . . , m there exist a unique tj ∈]0, a[ with τj (y(tj )) = tj and a map g ∈ L1([0, a];E),
g(s) ∈ G(s, y(s)) for a.e. s ∈ [0, a], such that

y(t) = U(t)y0 +
∑

0<tj <t

U(t − tj )Ij (y(tj )) +
∫ t

0
U(t − s)g(s) ds, t ∈ [0, a].

To prove the existence of at least one mild solution of the problem (IP ) we assume the
following hypotheses on the multimap G : [0, a] × E � E:

(G1) for every (t, x) ∈ [0, a] × E, G(t, x) is convex and compact;
(G2) for every x ∈ E, the multimap G(·, x) admits a strongly measurable selector, i.e.

there exists a strongly measurable function q : [0, a] → E such that q(t) ∈ G(t, x)

for a.a. t ∈ [0, a];
(G3) for every t ∈ [0, a], the multimap G(t, ·) is upper semicontinuous;
(G4) there exists α ∈ L1+([0, a]) such that

‖G(t, x)‖ ≤ α(t)(1 + ‖x‖), for a.e. t ∈ [0, a] and every x ∈ E;
(G5) there exists β ∈ L1+([0, a]) such that

χ(G(t, D)) ≤ β(t)χ(D), for every bounded set D ⊂ E, a.e. t ∈ [0, a],
where χ is the Hausdorff measure of noncompactness.

Remark 2.2 Notice that, under the above assumptions on the multimap G, for every (τ, ξ) ∈
[0, a[×E the Cauchy problem

(P )(τ,ξ)

{
y′(t) ∈ Ay(t) + G(t, y(t)), for a.e. t ∈ [τ, a]
y(τ) = ξ,

(3)
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admits at least one global mild solution by Theorem 4 in [9]. Therefore

S(τ,ξ) := {y : [τ, a] → E : y is a global mild solution of (P )(τ,ξ)} �= ∅. (4)

Moreover, we need the following viability-type condition:

(H2) for every j = 1, . . . , m, (τ, ξ) ∈ [0, a[×E, y ∈ S(τ,ξ), we have

τj (y(t)) − t < τj (ξ) − τ, for every t ∈]τ, a]. (5)

Remark 2.3 Notice that, if the functions τj , j = 1, . . . , m, are constant, then the prob-
lem (IP ) comes down to a problem with fixed moments of impulses. Clearly in this case
property (H2) is trivially satisfied.

Theorem 2.4 Let E be a Banach space, A : D(A) ⊆ E → E be a linear operator
satisfying (A), G : [0, a]×E � E be a multimap such that (G1)–(G5) hold, and τj : E →
R, j = 1, . . . , m, be functions satisfying (H1)–(H2). Then the problem (IP ) admits at least
one mild solution on the whole interval [0, a].

Proof The proof splits in four steps.

STEP 1. Let y0 ∈ S(0,y0) (cf. (4)), i.e. y0 : [0, a] → E is defined as

y0(t) = U(t)y0 +
∫ t

0
U(t − s)g0(s) ds, t ∈ [0, a], (6)

with g0 ∈ L1([0, a]; E), g0(s) ∈ G(s, y0(s)) a.e. s ∈ [0, a].
The function y0 : [0, a] → E defined in (6) is such that there exists t0

1 ∈]0, a[
such that t0

1 = τ1(y
0(t0

1 )). Indeed, let us introduce the map w0
1 : [0, a] → R

defined as

w0
1(t) = τ1(y

0(t)) − t, t ∈ [0, a];
notice that w0

1 is continuous by the continuity of the maps y0 and τ1; moreover,
by hypothesis (H1.1) we have

w0
1(0) = τ1(y

0(0)) > 0

w0
1(a) = τ1(y

0(a)) − a < a − a = 0.

Then, there exists at least one t0
1 ∈]0, a[ such that w0

1(t
0
1 ) = 0, i.e. t0

1 =
τ1(y

0(t0
1 )).

By the continuity of the map w0
1, without loss of generality (w.l.o.g.) we can

assume that t0
1 = min{t ∈]0, a[ : w0

1(t) = 0}.
STEP 2. We set y1 = y0(t0

1 ) + I1(y
0(t0

1 )). By hypothesis (H1.2) it follows that

τ1(y1) − t0
1 ≤ τ1(y

0(t0
1 )) − t0

1 = 0,

i.e. (y1, t
0
1 ) ∈ epi(τ1) = {(y, t) ∈ E × [0, a] : τ1(y) ≤ t}; hence the point

(t0
1 , y1) is on the right or belongs to the barrier �1. Further, it is on the left of

the barrier �2, i.e. (y1, t
0
1 ) belongs to the set {(y, t) ∈ E × [0, a] : τ2(y) > t};

indeed, by (H1.2) we have

τ2(y1) > τ1(y
0(t0

1 )) = t0
1 .
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We consider now a map y1 ∈ S(t0
1 ,y1)

, i.e. y1 : [t0
1 , a] → E such that

y1(t) = U(t − t0
1 )y1 +

∫ t

t0
1

U(t − s)g1(s) ds, t ∈ [t0
1 , a]

with g1 ∈ L1([t0
1 , a];E), g1(s) ∈ G(s, y1(s)) for a.e. s ∈ [t0

1 , a].
By conditions (H2) and (H1.2) we have

τ1(y
1(t)) − t < τ1(y

1(t0
1 )) − t0

1 = τ1(y1) − t0
1 ≤ τ1(y

0(t0
1 )) − t0

1 = 0, (7)

for every t ∈]t0
1 , a]. Therefore, the graph of y1 restricted to the interval ]t0

1 , a] is
on the right of the barrier �1.

We consider now the map w1
2 : [t0

1 , a] → R defined as w1
2(t) = τ2(y

1(t))−t ,
t ∈ [t0

1 , a]. By (H1.2) we have

w1
2(t

0
1 ) = τ2(y1)−t0

1 = τ2(y
0(t0

1 )+I1(y
0(t0

1 )))−t0
1 > τ1(y

0(t0
1 ))−t0

1 = t0
1 −t0

1 = 0

and by (H1.1)

w1
2(a) = τ2(y

1(a)) − a < a − a = 0.

The map w1
2 is continuous by the continuity of the maps τ2 and y1. Therefore,

reasoning as in Step 1, we can say that there exists t1
2 = min{t∈]t0

1 , a[ : ω1
2(t) =

0}.
STEP 3. We proceed iteratively setting for every j = 2, . . . , m, yj = yj−1(t

j−1
j ) +

Ij (y
j−1(t

j−1
j )) and considering a map yj ∈ S

(t
j−1
j ,yj )

(cf. (4)), i.e. yj :
[tj−1

j , a] → E is such that

yj (t) = U(t − t
j−1
j )yj +

∫ t

t
j−1
j

U(t − s)gj (s) ds, t ∈ [tj−1
j , a]

with gj ∈ L1([tj−1
j , a]; E), gj (s) ∈ G(s, yj (s)) for a.e. s ∈ [tj−1

j , a]. We

notice that the point (t
j−1
j , yj ) is on the right or belongs to the barrier �j and

is on the left of the barrier �j+1 (assuming �m+1 = {(a, x) : x ∈ E}).
Moreover, the graph of yj restricted to the interval ]tj−1

j , a] is on the right of

the barrier �j . Further, the map yj intersects the barrier �j+1 (j �= m) in

t
j

j+1 = min
{
t ∈

]
t
j−1
j , a

[
: ω

j

j+1(t) = 0
}

.

STEP 4. We claim that the map y : [0, a] → E defined as

y(t) =

⎧
⎪⎨

⎪⎩

y0(t) t ∈ [0, t0
1 ]

yj (t) t ∈ ]tj−1
j , t

j

j+1], j = 1, . . . , m − 1
ym(t) t ∈ ]tm−1

m , a]
(8)

is a solution of the problem (IP ).
To this aim we define the map g : [0, a] → E as

g(t) =

⎧
⎪⎨

⎪⎩

g0(t) t ∈ [0, t0
1 ]

gj (t) t ∈ ]tj−1
j , t

j

j+1], j = 1, . . . , m − 1
gm(t) t ∈ ]tm−1

m , a].
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It is easy to see that g ∈ L1([0, a];E) and g(s) ∈ G(s, y(s)) for a.e. s ∈ [0, a].
We will prove now that

y(t)=U(t)y0+
∑

0<t
j−1
j <t

U(t−t
j−1
j )Ij (y(t

j−1
j ))+

∫ t

0
U(t−s)g(s) ds, t ∈ [0, a].

From (6), for t ∈ [0, t0
1 ] it is trivial. For t ∈]t0

1 , t1
2 ] we have

y(t) = y1(t) = U(t − t0
1 )

[
y0(t0

1 ) + I1(y
0(t0

1 ))
]

+
∫ t

t0
1

U(t − s)g1(s) ds

= U(t − t0
1 )

[

U(t0
1 )y0 +

∫ t0
1

0
U(t0

1 − s)g0(s) ds + I1(y
0(t0

1 ))

]

+
∫ t

t0
1

U(t − s)g1(s) ds

= U(t)y0 +
∫ t0

1

0
U(t − s)g0(s) ds + U(t − t0

1 )I1(y
0(t0

1 ))

+
∫ t

t0
1

U(t − s)g1(s) ds

= U(t)y0 + U(t − t0
1 )I1(y(t0

1 )) +
∫ t

0
U(t − s)g(s) ds. (9)

With an iterative method we obtain the claimed result.

As we could see, assumption (H2) was used to obtain (7) and, in consequence, to prove
that every trajectory meets each barrier exactly once. Since we consider in (IP ) a concrete
initial condition, we need slightly less than (H2). Below we describe one of possible situa-
tions where (7) and analogs for all j = 2, . . . , m are implied without (H2). In what follows,
by ‖ · ‖L(E) we denote a standard norm in the space of linear bounded operators from E to
itself and by Br

X(x) an open ball in a metric space X centered at x and with radius r > 0.

Corollary 2.5 Let E be a Banach space, y0 ∈ E, and A : D(A) ⊆ E → E be a linear
operator satisfying (A). Assume that Mj := supx∈E ||Ij (x)|| < ∞ for every j = 1, . . . , m,
G : [0, a] × E � E is a multimap satisfying (G1)–(G3), (G5) and

(G4)’ there exists α ∈ L1+([0, a]) such that
‖G(t, x)‖ ≤ α(t), for a.e. t ∈ [0, a] and every x ∈ E;

τj : E → R, j = 1, . . . , m, are Fréchet differentiable functions satisfying (H1) and

(H3) there exists K > 0 such that ‖τ ′
j (y)‖ ≤ K , for every j = 1, . . . , m and y ∈

clBN
E (y0),

where N := (B + 2)||y0|| + (B + 1)
∑m

j=1 Mj + B||α||L1 , B := sup{‖U(t)‖L(E) : 0 ≤
t ≤ a} < ∞. Moreover, assume that

(k) KB
∫ t2
t1

α(s)ds + KN‖U(t2 − t1) − I‖L(E) < t2 − t1, for each 0 ≤ t1 < t2 ≤ a,

where α and K are from (G4)’ and (H3), respectively.
Then the problem (IP ) admits at least one mild solution on [0, a].
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Proof As in the proof of Theorem 2.4, let y0 ∈ S(0,y0). Up to the first impulse time t0
1 we

have

‖y0(t) − y0‖ ≤ ‖U(t) − I‖L(E)‖y0‖ + B

∫ t

0
α(s)ds ≤ (B + 1)‖y0‖ + B||α||L1 ≤ N,

for every t ∈ [0, a]. So, denoted y1 = y0(t0
1 ) + I1(y

0(t0
1 )), we get

‖y1 − y0‖ ≤ M1 + (B + 1)‖y0‖ + B‖α‖L1 ≤ N (10)

and
‖y1‖ ≤ M1 + (B + 2)‖y0‖ + B‖α‖L1 ≤ N. (11)

Now we consider a map y1 ∈ S(t0
1 ,y1)

,

y1(t) = U(t − t0
1 )y1 +

∫ t

t0
1

U(t − s)g1(s) ds, t ∈ [t0
1 , a] (12)

with g1 ∈ L1([t0
1 , a]; E), g1(s) ∈ G(s, y1(s)) for a.e. s ∈ [t0

1 , a]. Defining the function

g1(t) =
{

g0(t) t ∈ [0, t0
1 ]

g1(t) t ∈ ]t0
1 , a],

by means of analogous calculations as in (9) we get

y1(t) = U(t)y0 + U(t − t0
1 )I1(y

0(t0
1 )) +

∫ t

0
U(t − s)g1(s) ds, t ∈ [t0

1 , a].

Moreover, for t ∈]t0
1 , a] we have

‖y1(t) − y0‖ ≤
∥
∥
∥
∥U(t)y0 − y0 + U(t − t0

1 )I1(y
1(t0

1 )) +
∫ t

0
U(t − s)g1(s)ds

∥
∥
∥
∥

≤ (B + 1)‖y0‖ + BM1 + B||α||L1 ≤ N. (13)

Hence, for every t ∈]t0
1 , a], thanks to (13) and (10) we can use (H3); so, by (11), (12),

and (k) we obtain
τ1(y

1(t)) − t − (τ1(y1) − t0
1 ) ≤ K‖y1(t) − y1‖ − (t − t0

1 )

≤ K

∥
∥
∥
∫ t

t0
1
U(t − s)g1(s)ds

∥
∥
∥ − (t − t0

1 ) + K‖U(t − t0
1 ) − I‖L(E)‖y1‖

≤ KB
∫ t

t0
1
α(s)ds − (t − t0

1 ) + KN‖U(t − t0
1 ) − I‖L(E) < 0.

Hence, as in the proof of Theorem 2.4, we know that the graph of y1 is on the right of �1,
and the next impulse time t1

2 is the time of a meeting point with �2.
Also for y2 = y1(t1

2 ) + I2(y
1(t1

2 )) we obtain

‖y2 − y0‖ ≤ M2 + (B + 1)‖y0‖ + BM1 + B‖α‖L1 ≤ N

and
‖y2‖ ≤ M2 + (B + 2)‖y0‖ + BM1 + B‖α‖L1 ≤ N,

so the map y2 ∈ S(t1
2 ,y2)

satisfies the following inequality

τ2(y
2(t)) − t − τ2(y2) + t1

2 < 0 for every t ∈]t1
2 , a].

Thus (5) is satisfied by y2. Then, proceeding iteratively, we can build a function y as in (8).
Like in the proof of Theorem 2.4, this map is a solution to problem (IP ).
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3 Existence Results via Equi-Lyapunov Pairs

Let M be a nonempty set in a Banach space E, G : [0, a] × M � E be a given multimap.
Consider the non-autonomous semilinear differential inclusion

y′(t) ∈ Ay(t) + G(t, y(t)), for a.e. t ∈ [0, a] (14)

and suppose that there exists at least one global mild solution of (14). Notice that the
existence of such a solution is guaranteed for example under assumptions (G1)–(G5) (see
Remark 2.2).

In order to study a characterization of equi-Lyapunov pairs of (14) (see Definition 1.3),
we need at first to consider an autonomous case.

3.1 Sufficient Conditions for Equi-Lyapunov Pairs: Autonomous Case

In this subsection we consider the following autonomous semilinear differential inclusion

y′(t) ∈ Ay(t) + G(y(t)), for a.e. t ∈ [0, a], (15)

where G : M � E and we obtain sufficient conditions to have equi-Lyapunov pairs for
(15) . Precisely we have the following result.

Theorem 3.1 Let E be a separable Banach space, A : D(A) ⊆ E → E be a linear
operator satisfying (A), G : E � E be a nonempty closed bounded valued multimap,
V : E → R be a lower semicontinuous function, and p : E → R be a function. If

(i) for every bounded set 
 ⊂ E there exists a constant L
 > 0 such that

G(x) ⊂ G(y) + L
‖x − y‖B1
E(0), for every x, y ∈ 


and
|p(x) − p(y)| ≤ L
‖x − y‖, for every x, y ∈ 
;

(ii) for every ξ ∈ E and every f ∈ G(ξ)L1 the next inequality holds

DAV (ξ)(f ) + p(ξ) ≤ 0;
then (V , p) is an equi-Lyapunov pair for inclusion (15).

Proof Let X = E × R be the separable Banach space endowed with the norm ‖(ξ, s)‖X =
max{‖ξ‖, |s|}, for every (ξ, s) ∈ X, and let F : X � X be the multimap defined as

F(ξ, s) = G(ξ) × {−p(ξ)}, (ξ, s) ∈ X.

We claim that F is Lipschitz on bounded sets, i.e. for every (ξ, r) ∈ X and for every R > 0
there exists a constant LR > 0 such that

F(x, s) ⊂ F(y, t) + LR‖(x, s) − (y, t)‖XB1
X(0),

for every (x, s), (y, t) ∈ BR
E(ξ) × BR

R
(r). Indeed, let (ξ, r) ∈ X, R > 0 and (x, s), (y, t) ∈

BR
E(ξ) × BR

R
(r). From assumption (i) there exists LR > 0 such that

F(x, s) = G(x) × {−p(x)} ⊂ G(y) × {−p(y)} + LR‖x − y‖ (B1
E(0) × B1

R
(0))

⊂ F(y, t) + LR‖(x, s) − (y, t)‖X B1
X(0).

Let A : D(A ) ⊆ X → X be the linear operator defined as D(A ) = D(A) × R, A =
(A, 0). It is known that A is the infinitesimal generator of the C0-semigroup {U (t)}t≥0 =
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{(U(t), 1R)}t≥0. Let K = epiV , we will prove now that for every (ξ, r) ∈ K we have (see
(1))

F(ξ, r)L1 ⊂ FA
K (ξ, r), (16)

where FA
K is the class of all A -tangent functions to K at (ξ, r) introduced in the next

Appendix.
Let (ξ, r) ∈ K and f ∈ F(ξ, r)L1 , i.e. there exists g ∈ L1

loc(R
+; E) with g(s) ∈ G(ξ)

for a.e. s ∈ R
+, such that

f (s) = (g(s),−p(ξ)), s ∈ R
+. (17)

By (ii) we have that (see Definition 1.4)

lim inf
h ↓ 0

w → 0E

1

h

[

V

(

U(h)ξ +
∫ h

0
U(h − s)g(s)ds + hw

)

− V (ξ)

]

≤ −p(ξ).

That is, there exist two sequences {hn}n ⊂ R
+, hn ↓ 0 and {wn}n ⊂ E, wn → 0E such that

for every n ∈ N

V

(

U(hn)ξ +
∫ hn

0
U(hn − s)g(s)ds + hnwn

)

≤ V (ξ) + hn

(

−p(ξ) + 1

n

)

. (18)

Hence, for every n ∈ N

(

U(hn)ξ +
∫ hn

0
U(hn − s)g(s)ds + hnwn, V (ξ) + hn

(

−p(ξ) + 1

n

))

∈ K.

By the definition of the C0-semigroup {U (t)}t≥0 and by (17) this implies that

U (hn)(ξ, V (ξ)) +
∫ hn

0
U (hn − s)f (s) ds + hn

(

wn,
1

n

)

∈ K.

Therefore, by Remark A.2, we have proven that for every ξ ∈ E, f (·) = (g(·),−p(ξ)) ∈
FA

K (ξ, V (ξ)).

We can estimate the right hand side of (18) by ρ+hn

(

−p(ξ) + 1

n

)

for every ρ ≥ V (ξ),

which implies

FA
K (ξ, V (ξ)) ⊂

⋂

ρ≥V (ξ)

FA
K (ξ, ρ) ⊂ FA

K (ξ, r),

therefore (16) holds. By Theorem A.3 with the uniqueness function defined as ωR(s) =
LR s, s ∈ R

+
0 , we have that K is invariant with respect to A + F , i.e. for every (τ, ξ, r) ∈

[0, a[×K and every mild solution w : [τ, a] → X, w = (y, z) of
⎧
⎪⎪⎨

⎪⎪⎩

y′(t) ∈ Ay(t) + G(y(t)), t ∈ [τ, a]
z′(t) = −p(y(t)), t ∈ [τ, a]
y(τ) = ξ

z(τ ) = r,

we have w(t) = (y(t), z(t)) ∈ K for every t ∈ [τ, a]. Hence V (y(t)) ≤ z(t) for every
t ∈ [τ, a]. From

z(t) = r −
∫ t

τ

p(y(s)) ds, for all t ∈ [τ, a]
we get for every mild solution y of (15) such that y(τ) = ξ

V (y(t)) +
∫ t

τ

p(y(s)) ds ≤ r, for all t ∈ [τ, a] and for all r ≥ V (ξ),
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in particular, with r = V (ξ) we obtain the claimed result.

We can prove an analogous result with p a lower semicontinuous map.

Theorem 3.2 Let E be a separable Banach space, A be a linear operator satisfying (A),
G : E � E be a nonempty closed bounded valued multimap, and V, p : E → R be lower
semicontinuous functions. If

(i)’ for every bounded set 
 ⊂ E there exists a constant L
 > 0 such that

G(x) ⊂ G(y) + L
‖x − y‖B1
E(0), for every x, y ∈ 
;

(ii) for every ξ ∈ E and every f ∈ G(ξ)L1 the next inequality holds

DAV (ξ)(f ) + p(ξ) ≤ 0;
(iii) there exist C > 0, r ≥ 1 such that

p(x) ≥ −C(1 + ‖x‖r ), for every x ∈ E;
then (V , p) is an equi-Lyapunov pair for inclusion (15).

Proof By Lemma A.1 there exists a sequence of functions {pn}n, pn : E → R such that pn

is Lipschitz continuous on bounded sets of E for every n ∈ N and pn ↑ p pointwise in E

as n goes to infinity. By condition (ii) we have that for every ξ ∈ E and every f ∈ G(ξ)L1

DAV (ξ)(f ) + pn(ξ) ≤ DAV (ξ)(f ) + p(ξ) ≤ 0, for every n ∈ N. (19)

By Theorem 3.1 we have that (V , pn) is an equi-Lyapunov pair for (15). From Definition
1.3 it follows that for every (τ, ξ) ∈ [0, a[×E and every mild solution y : [τ, a] → E to
the multivalued semilinear Cauchy problem (P )(τ,ξ)

V (y(t)) +
∫ t

τ

pn(y(s)) ds ≤ V (ξ), t ∈ [τ, a].
Then

V (y(t)) +
∫ t

τ

p(y(s)) ds = lim sup
n→+∞

(

V (y(t)) +
∫ t

τ

pn(y(s)) ds

)

≤ V (ξ),

for t ∈ [τ, a], obtaining that (V , p) is an equi-Lyapunov pair for (15).

3.2 Sufficient Conditions for Equi-Lyapunov Pairs: Non-autonomous Case

In this section, by using the results obtained in Section 3.1, we provide analogous results in
the non-autonomous case (14).

Theorem 3.3 Let E be a separable Banach space, A be a linear operator satisfying (A),
G : [0, a] × E � E be a nonempty closed bounded valued multimap, V : E → R be a
lower semicontinuous function, and p : E → R be a function. If

(j) for every bounded set 
 ⊂ [0, a] × E there exists a constant L
 > 0 such that

G(t, x) ⊂ G(s, y) + L
 max{|t − s|, ‖x − y‖}B1
E(0), for every (t, x), (s, y) ∈ 


and for every bounded set 
′ ⊂ E there exists a constant L
′ > 0 such that

|p(x) − p(y)| ≤ L
′ ‖x − y‖, for every x, y ∈ 
′;
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(jj) for every (τ, ξ) ∈ [0, a] × E and every f ∈ G(τ, ξ)L1 the next inequality holds

DAV (ξ)(f ) + p(ξ) ≤ 0;
then (V , p) is an equi-Lyapunov pair for inclusion (14).

Proof Let Y = R × E be the separable Banach space endowed with the norm ‖z‖ =
‖(t, x)‖Y = max{|t |, ‖x‖}, for every (t, x) ∈ Y , A : D(A) ⊆ Y → Y be the linear
operator defined as D(A) = R×D(A), A = (0, A), that is, A(t, x) = (0, Ax). It is known
that A is the infinitesimal generator of the C0-semigroup {U(s)}s≥0 = {(1R, U(s))}s≥0,
U(s)z = (t, U(s)x) for every s ≥ 0, where z = (t, x) and {U(s)}s≥0 is the C0-semigroup
from (A). Let G : Y � Y be the multimap defined as

G(t, x) =
⎧
⎨

⎩

{1} × G(t, x) for t ∈ [0, a],
{1} × G(0, x) for t < 0,

{1} × G(a, x) for t > a.

It is not hard to check that G satisfies assumption (i) from Theorem 3.1. Indeed, denote
by π[0,a] a metric projection of R onto [0, a], and by π[0,a]×E : Y → [0, a] × E the
map π[0,a]×E(t, x) := (π[0,a](t), x). Given 
 ⊂ Y an arbitrary bounded set, the set 
̃ :=
π[0,a]×E(
) is a bounded subset of [0, a] × E. Let L
 := L
̃ be the Lipschitz constant
from (j). Then, for any (s, y), (τ, ξ) ∈ 
,

G(s, y) = {1} × G(π[0,a](s), y)

⊂ {1} × G(π[0,a](τ ), ξ) + {0} × L
 max{|π[0,a](s) − π[0,a](τ )|, ‖y − ξ‖}B1
E(0)

⊂ G(τ, ξ) + L
 max{|π[0,a](s) − π[0,a](τ )|, ‖y − ξ‖}B1
R×E(0)

⊂ G(τ, ξ) + L
 max{|s − τ |, ‖y − ξ‖}B1
R×E(0).

Hence letting (τ, ξ) ∈ [0, a[×E be fixed and z : [0, a − τ ] → Y be defined as z(s) =
(t (s), y(s)), s ∈ [0, a−τ ] we can rewrite the problem (P )(τ,ξ) as the following autonomous
problem in the separable Banach space Y :

(P )(0,ζ )

{
z′(s) ∈ Az(s) + G(z(s)), a.e. s ∈ [0, a − τ ]
z(0) = ζ = (τ, ξ).

Indeed, the above problem is equivalent to
⎧
⎪⎪⎨

⎪⎪⎩

t ′(s) = 1
y′(s) ∈ Ay(s) + G(t(s), y(s)), a.e. s ∈ [0, a − τ ]
t (0) = τ

y(0) = ξ,

that is ⎧
⎨

⎩

t (s) = s + τ

y ′(s) ∈ Ay(s) + G(s + τ, y(s)), a.e. s ∈ [0, a − τ ]
y(0) = ξ.

(20)

and we can obtain (P )(τ,ξ) setting t = s +τ and x : [τ, a] → E so defined x(t) = y(t −τ).
To see this we notice that a mild solution of (P )(0,ζ ) is given by

z(s) = (t (s), y(s)) = U(s)ζ +
∫ s

0
U(s − σ)(1, g(σ )) dσ

=
(

s + τ, U(s)ξ +
∫ s

0
U(s − σ)g(σ ) dσ

)

, s ∈ [0, a − τ ]
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where g ∈ L1([0, a]; E), g(s) ∈ G(t(s), y(s)) for a.e. s ∈ [0, a − τ ]. Since t (s) = s + τ ,
we have

x(t) = y(t − τ) = U(t − τ)ξ +
∫ t

τ

U(t − r)g(r − τ) dr, t ∈ [τ, a]

where g(r − τ) ∈ G(t(r − τ), y(r − τ)) = G(r, x(r)). Hence, x is a mild solution of
(P )(τ,ξ). In consequence, any solution z(·) to (P )(0,ζ ) can be written as

z(s) = (t (s), y(s)) = (t (s), y(t (s) − τ)) = (t (s), x(t (s))),

where x : [τ, a] → E is a mild solution of (P )(τ,ξ).
Let f ∈ G(ζ )L1 , i.e., f = (1, f̃ ), with f̃ ∈ G(τ, ξ)L1 . Setting ω = (t, w) ∈ [0, a] × E,

we have that

U(h)ζ +
∫ h

0
U(h − s)f (s) ds + hω

= (τ, U(h)ξ) +
(

h,

∫ h

0
U(h − s)f̃ (s) ds

)

+ h(t, w)

=
(

τ + h + ht, U(h)ξ +
∫ h

0
U(h − s)f̃ (s) ds + hw

)

, for every h ∈ R
+.

Therefore, defining V : Y → R as V(z) ≡ V(t, x) = V (x), for every z = (t, x) ∈ Y , we
have

V
(

U(h)(ζ ) +
∫ h

0
U(h − s)f (s) ds + hω

)

= V

(

U(h)ξ +
∫ h

0
U(h − s)f̃ (s) ds + hw

)

for every h ∈ R
+. Thus, defining P : Y → R as P(z) ≡ P(t, x) = p(x), for every

z = (t, x) ∈ Y , by (jj) it follows that

DAV(ζ )(f ) + P(ζ ) ≤ 0.

Hence, by the arbitrariness of ζ and f , we can apply Theorem 3.1 and so we obtain that
(V,P) is an equi-Lyapunov pair for the inclusion

z′(s) ∈ Az(s) + G(z(s)), a.e. s ∈ [0, a − τ ],
i.e. for any ζ = (τ, ξ) ∈ Y and for any mild solution z : [0, a − τ ] → Y of (P )(0,ζ ) we have

V(z(s)) +
∫ s

0
P(z(r)) dr ≤ V(ζ ), s ∈ [0, a − τ ].

Therefore, recalling that z(s) = (t (s), x(t (s))) for every s ∈ [0, a − τ ], where x : [τ, a] →
E is a mild solution of (P )(τ,ξ), it follows that

V (x(s + τ)) +
∫ s

0
p(x(r + τ)) dr ≤ V (ξ), s ∈ [0, a − τ ].

Hence, setting r + τ = σ we obtain

V (x(s + τ)) +
∫ s+τ

τ

p(x(σ )) dσ ≤ V (ξ), s ∈ [0, a − τ ].
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Finally, recalling that t = s + τ we have

V (x(t)) +
∫ t

τ

p(x(σ )) dσ ≤ V (ξ), t ∈ [0, a],
concluding the proof.

With similar arguments we can prove a result analogous to the previous one, but
involving a map p as in Theorem 3.2.

Theorem 3.4 Let E be a separable Banach space, A be a linear operator satisfying (A),
G : [0, a] × E � E be a nonempty closed bounded valued multimap, and V, p : E → R

be lower semicontinuous functions. If

(j)’ for every bounded set 
 ⊂ [0, a] × E there exists a constant L
 > 0 such that

G(t, x) ⊂ G(s, y) + L
 max{|t − s|, ‖x − y‖}B1
E(0), for every (t, x), (s, y) ∈ 
;

(jj) for every (τ, ξ) ∈ [0, a] × E and for every f ∈ G(τ, ξ)L1 the next inequality holds

DAV (ξ)(f ) + p(ξ) ≤ 0;
(iii) there exist C > 0, r ≥ 1 such that

p(x) ≥ −C(1 + ‖x‖r ), for every x ∈ E;
then (V , p) is an equi-Lyapunov pair for inclusion (14).

3.3 Existence of Impulsive Mild Solutions

In this Section we give existence results for problem (IP ) via equi-Lyapunov pairs.
Firstly, observe that it is possible to provide results analogous to Theorems 3.1–3.4 obtaining
the existence of an equi-Lyapunov pair for problem (P )(τ,ξ) (see Definition 1.5). We state
the analog to Theorem 3.4, since we will need it in the sequel.

Corollary 3.5 Let E be a separable Banach space, A : D(A) ⊆ E → E be a linear oper-
ator satisfying (A), G : [0, a] × E � E be a nonempty closed bounded valued multimap
satisfying (j)’, V : E → R be a lower semicontinuous function and (τ, ξ) ∈ [0, a[×E. If
there exists a lower semicontinuous function p(τ,ξ) : E →]0, +∞[ such that
(jj)’ for every (θ, η) ∈ [0, a] × E and f ∈ G(θ, η)L1 the next inequality holds

DAV (η)(f ) + p(τ,ξ)(η) ≤ 0;
(iii) there exist C > 0, r ≥ 1 such that

p(τ,ξ)(x) ≥ −C(1 + ‖x‖r ), for every x ∈ E;
then, (V , p(τ,ξ)) is an equi-Lyapunov pair for problem (P )(τ,ξ).

The proof of the above corollary is the same as the one of Theorem 3.4, since the fact that
(τ, ξ) is fixed in the hypotheses leads us to achieve a weaker thesis in the corollary with
respect to the one of the corresponding theorem, i.e. an equi-Lyapunov pair for the Cauchy
problem (P )(τ,ξ) (see Definition 1.5) instead of for the inclusion (see Definition 1.3).

Now, we can provide the results on the existence of mild solutions for problem (IP ) by
using equi-Lyapunov pairs in the weak sense of Definition 1.5.
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Theorem 3.6 Let E be a separable Banach space, A : D(A) ⊆ E → E be a linear
operator satisfying (A). Assume that G : [0, a] × E � E is a multimap satisfying (G1),
(G4) and hypothesis (j)’ of Theorem 3.4, and that τj : E → R, j = 1, . . . , m, are functions
satisfying (H1). Suppose that

(H2)’ for every j = 1, . . . , m, and (τ, ξ) ∈ [0, a[×E, there exists a lower semicontinuous
function pj,(τ,ξ) : E →]0, +∞[ such that the couple (τj , pj,(τ,ξ) − 1) is an equi-
Lyapunov pair for problem (P )(τ,ξ).

Then the problem (IP ) admits at least one mild solution on the whole interval [0, a].

Proof Let us note that condition (H2)’ means that
for every j = 1, . . . , m, (τ, ξ) ∈ [0, a[×E and every y(τ,ξ) ∈ S(τ,ξ) (see (4)) the next

inequality holds:

τj (y(τ,ξ)(t)) +
∫ t

τ

pj,(τ,ξ)(y(τ,ξ)(s)) ds − (t − τ) ≤ τj (ξ), for every t ∈ [τ, a].
Hence, since pj,(τ,ξ) takes positive values, we deduce that:

for every j = 1, . . . , m, (τ, ξ) ∈ [0, a[×E, and every y(τ,ξ) ∈ S(τ,ξ) it holds that

τj (y(τ,ξ)(t)) − t < τj (ξ) − τ, for every t ∈]τ, a],
which is property (H2).

Now, by the hypothesis (j)’ of Theorem 3.4 the multimap G is trivially upper semi-
continuous with respect to the second variable, implying assumption (G3), and measurable
with respect to the first. Hence by the separability of the space E and the Kuratowski-Ryll-
Nardzewski Theorem (see, e.g. [22, Ch. 2, Theorem 2.1]) the multimap G satisfies also
assumption (G2) (see [23, Theorem 1.3.1]). Moreover, the hypothesis (j)’ implies that G

satisfies (G5). Indeed, let D ⊂ E be a bounded set, ε > 0, S = {x1, . . . , xqδ(ε)
} a finite

δ(ε)-net of D with
δ(ε) := χ(D) + ε, (21)

so that

D ⊂
qδ(ε)⋃

i=1

B(xi, δ(ε)).

Let t ∈ [0, a], and z ∈ G(t,D) be fixed, hence there exists x ∈ D such that z ∈ G(t, x).
By (j)’ with t = s and y = xj , j = 1, . . . , qδ(ε) it holds

z ∈ G(t, x) ⊂ G(t, xj ) + LDδ(ε)B1
E(0) ⊂

qδ(ε)⋃

j=1

G(t, xj ) + LDδ(ε)B1
E(0). (22)

Put K = ⋃qδ(ε)

j=1 G(t, xj ), this set is compact and the family of balls
{
B

LDδ(ε)
E (y) : y ∈ K

}

is an open cover of K . So we can extract a finite sub-cover, i.e. there exist yε
1, . . . , yε

m(ε) ∈ K

such that

K ⊂
m(ε)⋃

i=1

B
LDδ(ε)
E (yε

i ). (23)
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Hence by (22) and (23) we have

G(t, D) ⊂
m(ε)⋃

i=1

B
LDδ(ε)
E (yε

i ) + LDδ(ε)B1
E(0) ⊂

m(ε)⋃

i=1

B
2LDδ(ε)
E (yε

i ).

Therefore the set {yε
i : i = 1, . . . , n} is a finite 2LDδ(ε)-net of G(t, D), obtaining, by the

definition of δ(ε) (see (21)) that

χ(G(t,D)) ≤ 2LD(χ(D) + ε).

By the arbitrariness of ε > 0 we achieve condition (G5) with β(t) = 2LD for every t ∈
[0, a].

So, we can apply Theorem 2.4 and obtain the claimed result.

We finish with the result where the analytic sufficient condition for assumption (H2)’ is
provided.

Theorem 3.7 Let E be a separable Banach space, A : D(A) ⊆ E → E be a linear
operator satisfying (A). Assume that G : [0, a] × E � E is a multimap satisfying (G1),
(G4) and hypothesis (j)’ of Theorem 3.4, and that τj : E → R, j = 1, . . . , m, are functions
satisfying (H1). Suppose that

(H2)’ for every j = 1, . . . , m, (τ, ξ) ∈ [0, a[×E, there exists a lower semicontinuous
function pj,(τ,ξ) : E →]0, +∞[ such that for every (θ, η) ∈ [0, a] × E and every
f ∈ G(θ, η)L1 the next inequality holds

DAτj (η)(f ) + pj,(τ,ξ)(η) − 1 ≤ 0.

Then the problem (IP ) admits at least one mild solution on the whole interval [0, a].

Proof For every j = 1, . . . , m and (τ, ξ) ∈ [0, a[×E, by (j)’and (H2)” we have that all
hypotheses of Corollary 3.5 are satisfied taking V = τj and p(τ,ξ) = pj,(τ,ξ) − 1. So we
can say that the couple (τj , pj,(τ,ξ) − 1) is an equi-Lyapunov pair for problem (P )(τ,ξ), i.e.
(H2)’ is satisfied. Hence, by Theorem 3.6 we obtain the claimed result.

4 Concluding Remarks

The research presented in the preceding sections leads us to several open problems and
motivates to a further study. At first, the case where the multivalued perturbation G (see
problem (IP )) is only measurable with respect to the first variable and sufficiently regular
(e.g., lipschitzian) with respect to the second one should be examined. Of course, different
method of proof (other than in Theorem 3.3) has to be found.

The second direction of research focuses on non-compact valued perturbations and,
instead, compact semigroups or compact evolution systems. We deeply believe it is possible
to obtain important analogous results in this case and we take it as a subject of the future
study. This development will open an opportunity to examine properties of solutions of new
kinds of evolution PDEs with state-dependent impulses.

As the third open problem we can mention the question on topological properties of the
mild solution set to problem (IP ). Especially, a compactness, contractibility or Rδ-property
would be welcome under different types of assumptions.

We hope our paper and the above remarks will be considered interesting and inspiring.
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Appendix

For the reader’s convenience in this section we collect some of definitions and results the
proofs are based on.

In order to consider in Theorems 3.2 and 3.4 a lower semicontinuous map p we need the
following approximation result contained in [15].

Lemma A.1 ([15], Lemma 13.2.3) Let X be a Banach space and let g : X → (−∞,+∞]
a lower semicontinuous function with non-empty effective domain satisfying the following
condition: there exist two constants C > 0 and r ≥ 1

g(x) ≥ −C(1 + ‖x‖r ) for every x ∈ X.

Then there exists a sequence {gn}n of functions gn : X → R such that every gn is Lipschitz
continuous on bounded subsets of X and gn ↑ g pointwise on X as n goes to infinity.

To prove the characterization of the equi-Lyapunov pair for the inclusion (2) (see Definition
1.3) we need to give the following tangency concept introduced by Cârjǎ and Postolache
in [14]. Let K be a subset in E and ξ ∈ K . If A : D(A) ⊆ E → E is the infinitesimal
generator of a C0-semigroup {U(t)}t≥0, a function f ∈ L1

loc(R
+; E) is A-tangent to the set

K at the point ξ ∈ K if

lim inf
h ↓ 0

1

h
dist

(

U(h)ξ +
∫ h

0
U(h − s)f (s)ds;K

)

= 0.

The class of all A-tangent functions to K at ξ ∈ K is denoted by FA
K (ξ).

Remark A.2 ([14], Remark 3) It is possible to characterize the tangency by means of
sequences as follows: f ∈ FA

K (ξ) if and only if there exist sequences {hn}n ⊂ R
+ and

{wn}n ⊂ X with hn ↓ 0 and wn → 0 such that

U(hn)ξ +
∫ hn

0
U(hn − s)f (s)ds + hnwn ∈ K , for every n ∈ N.

http://creativecommons.org/licenses/by/4.0/
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Moreover, we recall that a uniqueness function ω : R
+
0 → R

+
0 is a continuous,

nondecreasing function, such that the only C1-solution of the Cauchy problem
{

x′(t) = ω(x(t))

x(0) = 0

is x ≡ 0 (see [14, Definition 4]). Given the Cauchy problem
{

u′(t) ∈ Au(t) + F(u(t)), t ∈ [0, T ]
u(0) = ξ ∈ E

(24)

where A : D(A) ⊆ E → E is a linear operator satisfying (A), F : E � E is a multimap,
a subset K ⊂ E is said to be invariant with respect to A + F if for every ξ ∈ K each mild
solution u : [0, T ] → E of the problem (24) is in K , that is u(t) ∈ K , for every t ∈ [0, T ].
In Section 3 we use the following result.

Theorem A.3 ([14], Theorem 2) Let E be a separable Banach space, A : D(A) ⊆ E → E

be a linear operator satisfying (A), K a nonempty and closed subset of E and F : E � E

a nonempty, closed and bounded valued multimap. Assume that

(a) there exists an open neighborhood W ⊆ E of K , such that for every ξ ∈ K and

 ⊆ W , a bounded open set containing ξ, there exists an uniqueness function ω
 :
R

+
0 → R

+
0 such that

F(x) ⊂ F(y) + ω
(‖x − y‖)B1
E(0),

for every x ∈ 
 \ K, y ∈ K ∩ 
;
(b) for every ξ ∈ K ,

F(ξ)L1 ⊂ FA
K (ξ).

Then K is invariant with respect to A + F .
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