
Research Article
Simulation of the Vibratory Behavior of Slender Shafts Subject to
Transverse Loads Moving in the Axial Direction

F. Bucchi and P. Forte

Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Largo Lazzarino, Italy

Correspondence should be addressed to F. Bucchi; francesco.bucchi@unipi.it

Received 30 April 2019; Revised 7 November 2019; Accepted 29 November 2019; Published 3 January 2020

Academic Editor: Stefano Marchesiello

Copyright © 2020 F. Bucchi and P. Forte. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In various machines of the manufacturing industry, and in particular in paper converting machinery, there are shafts
operating under conditions similar to that of a slender beam subjected to a transverse load moving in the axial direction. *is
condition can lead to vibrations and consequent deterioration of the machine performance and of the product quality. *e
problem has been theoretically studied in the literature since the 1990s. While shaft mass and stiffness are universally
considered among the most influential parameters on its vibratory behavior, less obvious and not investigated in the literature
is the influence of the spatial interval between two successive loads, an aspect that should be considered in the shaft design
phase. In fact, if that is less than the length of the shaft, i.e., if there is more than one transverse load on the shaft at a given time,
the vibration level may decrease with respect to the single-load configuration. *is work describes the development of a
mathematical model of a slender shaft hinged at its ends, representing the rotor of a paper roll perforating unit, with the SW
Mathematica. *e effect of a load moving axially at a given speed followed by similar loads after given spatial intervals was
simulated investigating the influence of speed and load interval on shaft vibrations and resonance. *e results showed how
reducing the load interval can lead to a reduction of the shaft vibration which is a useful indication on possible design
corrective actions.

1. Introduction

*e problem of vibrations of structures due to moving loads
is of interest in various engineering fields as overviewed in
[1]. Beams subjected to moving loads have been dealt with
especially in bridge design, and quite several papers can be
found in the literature on the topic, among which stands out
Frýba’s overview [2]. Quite fewer papers have addressed
similar topics in the field of mechanical engineering that is
vibrations of shafts subjected to moving loads due, for ex-
ample, to cutting tools. *e first treatise [3] compares dif-
ferent beam models. *e Euler–Bernoulli beam, a Rayleigh
beam (which includes rotary inertia effects), and a Timo-
shenko beam (which includes rotary inertia and shear de-
formation effects) are used to model the rotating shaft. *e
first appears suitable for slender shafts and the others for
stiffer ones. In [4], the effect of the shaft rotational speed is

investigated, finding that an increase of it has minimal effect
on the deflection in the direction of the applied load, while
the deflection in the orthogonal direction of the applied load
increases steadily with increased rotational speed. In [5, 6],
the influence of moving load deflection dependence is
studied and it is observed that if the load is not deflection
dependent, the resonance condition is simply given by the
equality of load frequency and beam natural frequency,
while the deflection dependence tends to reduce the values of
the beam displacement component in the loading direction.
Moreover, the deflection-dependent loading produces time-
dependent coefficients in the governing equations and the
possibility of parametric resonance and instability when
time dependence is periodic. *e vibration in the lathing
process has been specifically investigated considering a
moving transverse force in [7] and a more realistic three-
directional force on the rotating workpiece modelled as a
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Rayleigh or Timoshenko beam in [8–10], assuming the
clamped-hinged supports and including as in [11] the e�ect
of support elasticity.

Starting from this background, this article presents a
mathematical model for slender shafts subject to moving
transverse loads to ideally simulate the industrial perforation
process of paper rolls.�e rotor of a paper roll perforating unit
is a slender shaft with a given number of helicoidal blades that
come into contact with a countershaft to perforate the paper
sheet. Due to the helical shape of the blades, the contact is
ideally a point that moves axially as the shaft rotates.�ere can
be more than one blade simultaneously in contact with the
counteracting rotor depending on the number of blades and
on the helix angle. �e modelling and simulation of the dy-
namic behavior of such a system is of interest for the designer
in order to avoid vibrations and consequent deterioration of
the machine performance and of the product quality. �e
in�uence of various parameters including speed and load
interval on shaft vibrations and resonance was investigated.

2. Slender Shaft Model

2.1. Slender Shaft Geometry. �e shaft geometry considered
in this analysis is shown in Figure 1. �e end parts have
length L0 and a lower diameter in order to �t radial bearings.

�e central part of the shaft is assumed to have uniform
cross section of diameter D and length L. Along this part, a
given number nb of longitudinal blades are �xed to the rotor.
�e blades are adapted on the shaft following a helicoidal
pattern for a progressive cut. �e countershaft is installed
parallel to the perforating shaft, and it is assumed to have the
same geometry.

2.2. �e Euler–Bernoulli Model. �e model of Euler–
Bernoulli is convenient for slender shafts such as in this case
because, due to shaft slenderness, both shear and gyroscopic
e�ects can be neglected and the shaft can be treated as a
nonrotating beam. In [12], the gyroscopic e�ects for a spin-
ning beam as function of the slenderness ratio are investigated
showing that they decrease with it and are negligible for the
�rst natural frequencies.�e simpli�ed Euler–Bernoulli model
is recommended in [3] for subcritical rotational speed and
Rayleigh beam coe�cient, β � (π/L)(

���
I/A

√
), lower than 0.15,

as in the present case (β� 0.05).
�e shaft, schematically represented in Figure 2, in this

�rst analysis, is assumed of constant cross section, of length
L, and directly hinged to the frame, neglecting the com-
pliance and inertia of the end parts of reduced cross section,
which are schematically represented using the dashed lines.

Taking a reference system XYZ having origin on the left
end of the shaft, as indicated in Figure 2, and a longitudinal
coordinate z, the dynamic equilibrium equation of the shaft
can be written as

EI
z4u(z, t)

zz4
+ ρA

z2u(z, t)
zt2

� P(z, t), (1)

where EI is the �exural sti�ness of the shaft section, with E
Young’s modulus of the shaft material, I the moment of

inertia of the shaft cross section about a transverse axis, ρA, ρ
the shaft density, A the area of its cross section, u the
transverse displacement parallel toY, P themoving load, and
z and t the space and time variables, respectively.

�e boundary conditions are imposed at the shaft ends
in order to model the hinge constraints:

u(0, t) � 0, (2)

z2u(0, t)
zz2

� 0, (3)

u(L, t) � 0, (4)

z2u(L, t)
zz2

� 0. (5)

Moreover, the following initial conditions are imposed:

u(z, 0) � 0,

zu(z, 0)
zz

� 0.
(6)

2.3. Contact Force Model. Due to the helicoidal shape of the
blades, the contact patch where the perforation occurs
moves longitudinally (along z). �e blade pitch c (de�ned as
the angle measured on a plane perpendicular to the shaft
axis, between the two ends of a blade), shown in Figure 1, is
de�ned as

c �
2πc
nb
, (7)

where nb is the number of the blades and c is the contact
ratio. If the blades are equally spaced and there is only one
contact patch between the two shafts at any time, c � 1. On
the contrary, if more than one contact patch exists during a
portion of the shaft rotation c> 1, while if no contact occurs
at some given time, c< 1.

Perforating blades

Slender shaft

End parts
γ

Figure 1: Geometry of the analyzed shaft.

Z

L
Y

Figure 2: Shaft model.
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Consequently, the load speed is computed as

v(c) �
nbωL
2πc

, (8)

where ω is the shaft angular speed and the load frequency fP
is related to the shaft angular speed and to the number of
blades as follows:

fP �
nbω
2π
. (9)

�e load amplitude P(z) at a given time was imple-
mented, without introducing local contact models, as a
Gaussian pressure distribution having mean value in z0 and
standard deviation σ:

P(z) �
P0���
2π

√
σ
e− z− z0( )2/2σ2( ), (10)

where P0 is the amplitude of the distribution resultant force.
�e load time dependence can then be expressed

through the time-dependent position of z0. If no less than
one and no more than two contact patches exist at any time
during the operation, that is, 1≤ c≤ 2, and the number of
blades is even, it is useful to assume the moving load as the
sum of two consecutive load trains (related to two con-
secutive blades), moving at constant speed v(c) along the
shaft, each one having period 2TP and phase shift equal to
TP, with TP the reciprocal of the previously de�ned load
frequency:

P(z, t, c) �
P0���
2π

√
σ

e− z− v(c)t̂1( )2/2σ2( ) + e− z− v(c)t̂2( )2/2σ2( )( ),

(11)

where

t̂1(t) � t − 2TP
t

2TP
⌊ ⌋,

t̂2(t) � t − 2TP
t + TP
2TP

⌊ ⌋ −
1
2

( ),

(12)

where –� � is the symbol used for the �oor function.
Figure 3 shows the contact force distribution as a

function of space coordinate (z) and time (t), assuming
c � 1, while Figure 4 shows the contact force distribution, at
a given time, for three di�erent loading ratios. It is easy to
envisage that the larger the contact ratio is, the spatially
closer the loading force distribution peaks are.

2.4.Mathematical ProblemSolution. Equation (1) is a partial
di�erential equation involving two variables, z and t. In
order tomake the equation an ordinary di�erential equation,
modal superposition is employed as in [13, 14] and the
solution is assumed as the product of two functions that
depend only on the spatial and temporal coordinates, re-
spectively, as follows:

u(z, t) �∑ ϕn(z)qn(t), (13)

where q(t) is the generalized coordinate and ϕn(z) is the
shape of the nth vibration mode.

�e shape function describing each mode is as follows:

ϕn(z) � sin
nπz
L

( ), (14)

and, for each nth vibration mode, substituting u(z, t) and
integrating with respect to the spatial coordinate the left-
and right-hand parts of equation (1), we obtain

ρAL
2

€qn(t) + EI
n4π4

2L3
qn(t) � ∫

L

0
P(z, t)sin

nπz
L

( ) dz, (15)

which is a time-dependent ordinary di�erential equation.
�e right-hand term of equation (15) is computed nu-
merically to generalize the problem solution also for contact
force models which cannot be integrated analytically.

Considering the homogeneous equation associated with
equation (15) and the boundary conditions described by
equations (2)–(5), the natural frequency associated to each
vibration mode of the system is

fn �
π
2
n

L
( )

2
���
EI

ρA

√

. (16)

2.5. Simulation and Results. �e previous equations were
implemented in a numerical, solver and the solution was
found for di�erent shaft angular speeds ω and di�erent
contact ratios c, considering the shaft parameters listed in
Table 1. �e results are here compared in terms of shaft
transverse displacement at the center of the forcing patch.

Preliminary simulations were performed to assess the
e�ect of standard deviation of the pressure distribution,
considering the 0.05–0.20m range, and no appreciable
di�erences in the shaft deformation were found depending
on this parameter.

In addition, the �rst natural frequency of the shaft was
computed by equation (16) and resulted 44.6Hz, which
corresponds to a shaft critical speed of 2677 rpm, while the
second natural frequency of 178.4Hz corresponds to a shaft
critical speed of 10706 rpm, well beyond the shaft speed
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Figure 3: Contact force as a function of space and time for c� 1.
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operating range. Indeed, the considered speed range
(200–1200 rpm) is under-critical, apparently well below the
�rst critical speed. However, since the number of blades is
equal to 4 or 6, the loading frequency fp is greater than the
shaft rotating frequency and can reach and exceed the �rst
natural frequency of the shaft.

�ree case studies are presented in this section to in-
vestigate the in�uence of the blade number, the rotational
speed, and the contact ratio:

(i) Case Study 1: 4 blades, variable ω, c � 1
(ii) Case Study 2: 6 blades, variable ω, c � 1
(iii) Case Study 3: 4–6 blades, load-critical angular

speed, c � 1
(iv) Case Study 4: 4 blades, variable ω, c≠ 1

�e results and discussion may be presented separately,
or in one combined section, and may optionally be divided
into headed subsections.

2.5.1. Case Study 1. Figure 5 shows the normalized slender
shaft deformation contribution related to the �rst vibration
mode (n � 1 in equation (15)) for six load positions obtained
considering the shaft rotating at ω � 400 rpm. As occurs in
static conditions, the shaft deforms under the e�ect of the
constant amplitude contact force and the deformation be-
comes greater as the load approaches the central position of
the shaft. Having considered only the �rst vibration mode,
the maximum displacement occurs exactly at midspan.

Figure 6 is obtained considering the envelope of the shaft
transverse displacement at the center of the pressure

distribution. Since the shaft deformation, in general, is not
the same for two or more consecutive load runs, Figure 6
shows the above described envelope considering 3 s as
simulation time, which corresponds to 40–240 load runs
depending on the considered shaft angular speed. Consid-
ering themaximum deformation of the shaft, it is obtained at
600 rpm, while remarkable values in negative shaft defor-
mation are obtained at 800 rpm.

�e load ampli�cation and critical conditions are strictly
related to the relation between the �rst natural frequency of
the shaft and the load frequency. Indeed, considering the
equality of fP and f1, the following expression of the load-
critical angular speed ω is obtained:

ω �
2πcf1

nb
. (17)

If the 4-blade case is considered, the load critical angular
speed is 669 rpm, that is, between 600 and 800 rpm case
studies, where the maximum shaft deformation occurs.
�erefore, the deformation ampli�cation corresponding to
these speed values can be ascribed to the proximity of the
load-critical speed.

Considering that, in real operation, the contact load is
not constant as assumed in the simulations but actually
depends on elastic deformation, Figure 6 is very useful to
give an idea of the load variation that would occur during the
perforation process. Indeed, if the shaft displacement were
almost constant at the forcing point (excluding the cases
when the center of the pressure distribution is close to the
ends of the shaft, where the rigid support assumption does
not allow shaft deformation) when it moves along the shaft,
as it happens for ω � 1000 − 1200 rpm, the perforation
would be uniform and regular. On the contrary, if the
transversal displacement substantially varied with the load
position, the perforation could be uncertain, as it happens
for ω � 600 rpm. In addition, if the shaft displacement was
too high, separation could occur between the shafts and
perforation be interrupted; on the contrary, if the dis-
placement reached negative values, in real application, the
perforating load would increase beyond the preload and
blade failure or wear might occur. However, this e�ect will
be investigated more in depth in future studies.

Another interesting parameter which can be analyzed in
Figure 6 is the variation of the shaft deformation for di�erent
load runs. For low angular speed values (200–400 rpm), the
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Figure 4: Contact force at a given time for three di�erent contact ratios. (a) c � 1, (b) c � 1.1, and (c) c � 1.25.

Table 1: Shaft parameters used in the simulation.

Shaft length L 3.0m
Shaft diameter D 0.2m
Number of perforating blades nb 4/6
Shaft angular speed ω 200–1200 rpm
Shaft �exural sti�ness EI 1.6 × 107 Nm2

Shaft density ρ 7800 kg/m3

Shaft cross-sectional area A 0.0314m2

Contact force intensity P0 1000N
Contact ratio c 1.0/1.1/1.25
Standard deviation of the pressure
distribution σ 0.1m
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curves related to the shaft deformation for di�erent load
runs are almost overlapped, proving that consecutive cycles
produce almost identical shaft deformations. �is can be
explained considering that the loading frequency, which is
13.3Hz at 200 rpm and 26.6Hz at 400 rpm, is much lower
than the �rst shaft natural frequency so that the ampli�-
cation factor is close to 1 and the phase shift is close to zero.
For higher rotational speeds and loading frequencies, there is
a phase shift between the forcing function and the response
so that when the force starts its run �nds a di�erent shaft
deformation from the previous one and that creates a bundle
of curves of the shaft displacement at the forcing point.

�is phenomenon is more appreciable if the displace-
ment versus time of a point belonging to the shaft is ana-
lyzed. In particular, Figure 7 shows the amplitude of the fast
Fourier transform (FFT) of the central point of the shaft

(z � L/2) for all the considered angular speeds. For each
speed, a component appears at f � 44.6Hz (indicated in
Figure 7 by a gray arrow), which corresponds to the shaft
critical frequency f1. �e amplitude of this component peak
is greater for ω � 600 − 800 rpm, which, as discussed, are the
shaft angular speed values closer to the load-critical speed.
Furthermore, for each plot, one or more peaks appear for
frequency values equal to the load frequency fp or its
multiples. Consequently, these load-frequency peaks are
associated with higher frequencies as the shaft angular speed
rises. Also in this case, the amplitude of the load-frequency
peak is greater for ω � 600 − 800 rpm, again due to the
proximity between load speed and load-critical speed.

Based on this analysis, it should be clear why the wider or
narrower bundle of curves appear in Figure 6. Considering
underload-critical speed values, ω � 200 − 400 rpm, the
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Figure 5: Shaft deformation for di�erent load positions (the red point represents the center of the pressure distribution)—ω � 400 rpm.
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Figure 6: Shaft displacement at the forcing point during several loading periods for di�erent angular speeds—�rst natural mode con-
tribution, 4 blades. (a) ω � 200 rpm; (b) ω � 400 rpm; (c) ω � 600 rpm; (d) ω � 800 rpm; (e) ω � 1000 rpm; (f ) ω � 1200 rpm.
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bundle of curves appears narrow since the shaft response is
dominated by the load-frequency component. Similarly, for
overload-critical speed values, ω � 1000 − 1200 rpm, the
natural frequency component is predominant, even if a
nonnegligible component at the load frequency exists and
the bundle of curves appears slightly wider than for
underload-critical speed. Finally, considering almost load-
critical speed, ω � 600 − 800 rpm, the natural frequency and
the load frequency components have both signi�cant am-
plitude in the shaft response and the bundle of curves ap-
pears wide.

In this case study, the contribution of the second vibration
mode was also analyzed, solving equation (15) with n � 2.�e
results in terms of shaft displacement at the forcing point
during several loading periods for di�erent angular speeds are
shown in Figure 8. �e deformed shape is di�erent if com-
pared to the shape found for n � 1 because the shape func-
tions ϕ1 and ϕ2 are di�erent and the amplitude of the shaft
deformation substantially decreases as the considered mode
index rises. In particular, for n � 2, the maximum shaft de-
formation is less than 10% of themaximum shaft deformation
found for n � 1. In addition, the maximum displacement for
n � 2 slightly increases with the shaft speed but, since the
operating range is well below the critical speed related to the
second vibration mode, the displacement ampli�cation in the
considered range is not pronounced. �ese �ndings con�rm
what is well known [2] about the contribution of the �rst
mode with respect to the others to the beam response, in
particular as regards the maximal one, small load velocities
and lightly damped beams [13, 15]. For this reason, the
following analysis will be presented considering only the
contribution of the �rst natural vibration mode without in-
troducing appreciable errors in the results and without af-
fecting the validity of the conclusions.

2.5.2. Case Study 2. Figure 9 shows the displacement of the
shaft axis for several speeds considering the 6-blade case. In
this case, the maximum displacement is found at 400 rpm
and the reason can be understood considering again
equation (16). In this case, the load-critical angular speed ω
is 446 rpm, and 400 rpm is the closest speed value among the
considered ones. �is result is again related to the shaft �rst
natural frequency and resonance speeds.

At lower speed, i.e., 200 rpm, similarly to the 4-blade
case, the curves are almost overlapped, while the magni�-
cation e�ect found at 400 rpm quickly vanishes, being the
shaft response almost the same for speed values higher than
600 rpm.

2.5.3. Case Study 3. In order to assess the shaft deformation
close to the load-critical angular speed ω computed in
equation (16), a simulation was performed for each blade
con�guration. In particular, the simulations were carried out
at 0.98 ω because the shaft has no damping and the exact
load-critical angular speed could produce singular results.

Figure 10 shows the shaft deformation at 660 rpm and
440 rpm for the 4-blade and 6-blade con�gurations, re-
spectively. It is worth noting that the vertical axis range is
larger than the one considered in the previous plots, since
the operation close to the load-critical angular speed pro-
duces larger deformation (about 0.7mm for both blade
con�gurations). No appreciable di�erences arise if 4-blade
and 6-blade con�gurations are compared, being both results
critical for the perforation operation. Indeed, in the real
application a nonconstant perforation force, which would
result particularly high when the deformation is negative
(close to the shaft ends) and low, or eventually zero, in the
central part of the shaft where detachment may occur, would
cause a nonuniform perforation line.
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Figure 7: FFT of the shaft displacement at the forcing point during several loading periods for di�erent angular speeds—4 blades.
(a) ω � 200 rpm; (b) ω � 400 rpm; (c) ω � 600 rpm; (d) ω � 800 rpm; (e) ω � 1000 rpm; (f ) ω � 1200 rpm.
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Figure 8: Shaft displacement at the forcing point during several loading periods for di�erent angular speeds—second natural mode
contribution, 4 blades. (a) ω � 200 rpm; (b) ω � 400 rpm; (c) ω � 600 rpm; (d) ω � 800 rpm; (e) ω � 1000 rpm; (f ) ω � 1200 rpm.
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Figure 9: Shaft displacement at the forcing point during several loading periods for di�erent angular speeds—6 blades. (a) ω � 200 rpm;
(b) ω � 400 rpm; (c) ω � 600 rpm; (d) ω � 800 rpm; (e) ω � 1000 rpm; (f ) ω � 1200 rpm.

u 
(×

10
−4

 m
)

8.0
6.0
4.0
2.0

–2.0
–4.0

10.0

0.5 1.0 1.5 2.0 2.5 3.0
z (m)

(a)

u 
(×

10
−4

 m
)

8.0
6.0
4.0
2.0

–2.0
–4.0

10.0

0.5 1.0 1.5 2.0 2.5 3.0
z (m)

(b)

Figure 10: Shaft displacement at the forcing point during several loading periods for 98% of the load-critical angular speed for c�1. (a) 4 and
(b) 6 blades.
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�erefore, this operating condition should be avoided,
operating at di�erent speed values or using a shaft damping
system or, �nally, designing the blades to have a contact ratio
greater than 1 (see next section). It is worth noting that, if the
machine is conceived to operate at speed values higher than
the load-critical speed, its value has to be crossed during
machine run up and coast down and particular caution
should be adopted in this phase.

2.5.4. Case Study 4. Figures 11 and 12 show the e�ect of the
contact ratio on the shaft deformation for the 4-blade
con�guration. In particular, Figure 11 shows the shaft de-
formation for di�erent speed values in the case c � 1.1, while
Figure 12 is obtained for c � 1.25. As the contact ratio

increases, that is, two perforation points simultaneously act
at the beginning and at the end of the shaft, no appreciable
di�erences, if compared with c � 1.0 case, are found far from
the load-critical speed values (ω � 200, 400, 800, 1000,
1200 rpm), being the shaft deformation always lower than
0.1mm. Only a thickening of the response curve envelope is
observed related to di�erences in consecutive runs.

A more in-depth analysis has to be carried out in the
proximity of the load-critical speed. Figure 13 shows the
shaft deformation for ω � 0.98ω for the di�erent contact
ratio cases. In order to fully represent the shaft deformation,
it is worth noting that the plot range is larger than in the
previous Figures 6–12.

�e curve shape is the same for the three cases, being the
shaft deformation negative close to the shaft ends and
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Figure 11: Nondimensional displacement at one of the forcing points during a loading period for di�erent angular speeds for c � 1.1.
(a) ω � 200 rpm; (b) ω � 400 rpm; (c) ω � 600 rpm; (d) ω � 800 rpm; (e) ω � 1000 rpm; (f ) ω � 1200 rpm.
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Figure 12: Nondimensional displacement at one of the forcing points during a loading period for di�erent angular speeds for c � 1.25.
(a) ω � 200 rpm; (b) ω � 400 rpm; (c) ω � 600 rpm; (d) ω � 800 rpm; (e) ω � 1000 rpm; (f ) ω � 1200 rpm.
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positive in the center, causing irregular perforation in real
application. However, the amplitude of the shaft deformation
is lower as the contact ratio increases, and, consequently, the
perforation force will be more uniform along the shaft.

3. Conclusions

An analytical model of a shaft subject to a moving load was
developed starting from the literature. Its con�guration
draws inspiration by paper converting machinery, in par-
ticular by the paper roll perforating unit. �e model is based
on modal superposition, and it is able to provide useful
indications to the designer considering just the �rst natural
mode of the shaft because, as demonstrated, the second (and
higher) natural mode contribution is negligible from an
engineering point of view.

It is shown that with a contact ratio equal to 1, resonance
is possible when the forcing point travels along the shaft in a
time equal to the shaft natural period, that is, when the
frequency of rotation is equal to the shaft �exural eigen-
frequency divided by the number of blades. �erefore,
among the most in�uential design parameters on the shaft
vibratory behavior, there are the shaft mass and sti�ness,
which determine its eigenfrequency, and the number of
blades, which multiplied by the rotation frequency, that
determine the frequency of excitation. On the basis of the
operating speed which is �xed depending on the whole paper
converting process, the shaft designer can choose suitable
parameters to avoid critical conditions.

In addition to those parameters, there is also the contact
ratio, which slightly a�ects the excitation frequency. �e
simulations show that increasing the contact ratio in most
cases �attens the deformed shape, generally leading to a lower
vibration level especially close to the resonance frequency.

�erefore, in case of operation near critical speeds,
possible corrective actions are those aimed at shifting shaft
eigenfrequencies by modifying its sti�ness or mass, at
shifting excitation frequency by changing the number of
blades, and at smoothing the deformed shape by increasing
the contact ratio.

Future work will be devoted to include support �nite
sti�ness and countershaft elastic reaction in the model.
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[2] L. Frýba, Dynamics of Railway Bridges, Telford, London, UK,
2nd edition, 1996.

[3] R. Katz, C. W. Lee, A. G. Ulsoy, and R. A. Scott, “�e dy-
namic response of a rotating shaft subject to a moving load,”
Journal of Sound and Vibration, vol. 122, no. 1, pp. 131–148,
1988.

[4] H. P. Lee, “Dynamic response of a rotating Timoshenko shaft
subject to axial forces and moving loads,” Journal of Sound
and Vibration, vol. 181, no. 1, pp. 169–177, 1995.

[5] A. Argento, “A spinning beam subjected to a moving de-
�ection dependent load,,” Journal of Sound and Vibration,
vol. 182, no. 4, pp. 595–615, 1995.

[6] A. Argento and H. L. Morano, “A spinning beam subjected to
a moving de�ection dependent load,,” Journal of Sound and
Vibration, vol. 182, no. 4, pp. 617–622, 1995.

[7] Y.-M. Huang and C.-Y. Lee, “Dynamics of a rotating Rayleigh
beam subject to a repetitively travelling force,” International
Journal of Mechanical Sciences, vol. 40, no. 8, pp. 779–792,
1998.

[8] H. Ouyang and M. Wang, “A dynamic model for a rotating
beam subjected to axially moving forces,” Journal of Sound
and Vibration, vol. 308, no. 3–5, pp. 674–682, 2007.

[9] Y. M. Huang and M. L. Yang, “Dynamic analysis of a rotating
beam subjected to repeating axial and transverse forces for
simulating a lathing process,” International Journal of Me-
chanical Sciences, vol. 51, no. 3, pp. 256–268, 2009.

[10] W. C. Hsu, C. H. Kang, Y. W. Chen, T. N. Shiau, and D. S. Liu,
“Dynamic analysis of a rotating shaft subject to the double
cutting force and time-varying mass e�ects of the rod,”
Procedia Engineering, vol. 79, pp. 386–396, 2014.

[11] B. Lv,W. Li, andH. Ouyang, “Moving force-induced vibration
of a rotating beam with elastic boundary conditions,” Inter-
national Journal of Structural Stability and Dynamics, vol. 15,
no. 1, Article ID 1450035, 24 pages, 2015.

u 
(×

10
−4

 m
)

8.0
6.0
4.0
2.0

–2.0
–4.0

10.0

0.5 1.0 1.5 2.0 2.5 3.0
z (m)

(a)

u 
(×

10
−4

 m
)

8.0
6.0
4.0
2.0

–2.0
–4.0

10.0

0.5 1.0 1.5 2.0 2.5 3.0
z (m)

(b)

u 
(×

10
−4

 m
)

8.0
6.0
4.0
2.0

–2.0
–4.0

10.0

0.5 1.0 1.5 2.0 2.5 3.0
z (m)

(c)

Figure 13: Nondimensional displacement at one of the forcing points during a loading period for di�erent angular speeds for 4-blade
con�guration. (a) c � 1, (b) c� 1.1, and (c) c�1.25.

Shock and Vibration 9



[12] G. J. Sheu and S. M. Yang, “Dynamic analysis of a spinning
Rayleigh beam,” International Journal of Mechanical Sciences,
vol. 47, no. 2, pp. 157–169, 2005.

[13] A. V. Pesterev, B. Yang, L. A. Bergman, and C. A. Tan,
“Revisiting the moving force problem,” Journal of Sound and
Vibration, vol. 261, no. 1, pp. 75–91, 2003.

[14] C. P. S. Kumar, C. Sujatha, and K. Shankar, “Vibration of
simply supported beams under a single moving load: a de-
tailed study of cancellation phenomenon,” International
Journal of Mechanical Sciences, vol. 99, pp. 40–47, 2015.

[15] C. Svedholm, A. Zangeneh, C. Pacoste, S. François, and
R. Karoumi, “Vibration of damped uniform beams with
general end conditions under moving loads,” Engineering
Structures, vol. 126, pp. 40–52, 2016.

10 Shock and Vibration



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

