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Abstract

Economic Model Predictive Control is a technique for optimization of economic revenues arising from controllod dynamical
processes that has estabilished itself as a variant of standard Tracking Model Predictive Control. It departs from the latter in
that arbitrary cost functions are allowed in the formulation of the stage cost. This paper takes a further step in expanding the
applicability of Economic Model Predictive Control by illustrating how the paradigm can be adapted in order to accomodate
time-varying or parameter-varying costs.
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1 Introduction and motivations

Model Predictive Control is a model-based control de-
sign technique for MIMO systems subject to input and
state constraints. In its classical formulation it allows
to formulate general tracking problems for nonlinear
and/or linear systems by taking into account model-
based predictions throughout a finite control horizon and
setting up the control selection algorithm as an on-line
optimization problem where the adopted cost function
is a measure of the discrepancy of the predicted trajec-
tory with respect to the desired set-point signal.

In recent years, Economic MPC has emerged as a vari-
ant of Model Predictive Control where the primary con-
trol task is profitability enhancement, rather than min-
imization of a tracking error. From a mathematical per-
spective, this amounts to considering cost functionals,
defined over a typically finite control horizon, which can
take arbitrary shape, rather than being limited to some
(positive definite) distance function from a set-point of
interest. In particular, for nonlinear systems and/or non
convex cost functionals, profitability may be maximal
away from equilibrium states and this may in turn lead
to complex regimes of operation or transient behaviours
which may exhibit highly nonlinear features, such as
asymmetry with respect to initial conditions or slow and

highly oscillatory decays.

Motivated by applications in areas where price varia-
tions are comparable in speed with process dynamics,
the case of time-varying costs or parameter-varying costs
were recently explored in Ellis & Christofides (2014).
The method developed is a Lyapunov-based Economic
MPC scheme which allows to guarantee boundedness
of solutions as well as constraints satisfaction while at-
tempting to optimize a time-varying cost functional.

As a matter of fact, in recent years, many efforts have
been devoted to investigate Economic MPC variants al-
lowing time-varying costs in several domains of appli-
cation: management of energy in buildings (Touretzky
& Baldea (2014); Ma et al. (2014)), control of chemical
plants (Ellis & Christofides (2014)) and supervision of
distribution networks, such as water networks (Grosso
et al. (2014)), power grids (Hovgaard et al. (2010); Cole
et al. (2014); Adeodu & Chmielewski (2013),) gas net-
works, etc (Gopalakrishnan & Biegler (2013)). Other
Economic MPC approaches dealing either time-varying
cost or cyclic plant operations from a theoretical per-
spective can be found in Ferramosca et al. (2014); Limon
et al. (2014); Huang et al. (2012). Indeed, the extension
of EconomicModel PredictiveControl to encompass cost
variability appears to be a natural question, both from
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a practical and theoretical perspective, and conceptu-
ally similar to the traditional departure from set-point
tracking towards tracking of more general reference tra-
jectories.

Two recent papers, Angeli et al. (2015b) andAngeli et al.
(2015a), have attempted to extend the Economic Model
Predictive Control analysis framework of Angeli et al.
(2012) to this set-up. Hereby we recall the control algo-
rithms and the main results of Angeli et al. (2015b) and
Angeli et al. (2015a) while providing a comparison of
their main merits and limitations, together with a sim-
ulated case study where both approaches are tested and
evaluated against each other. This manuscript is an ex-
tended version of Angeli et al. (2015c) suitably edited
for this special issue.

2 Preliminaries and problem set-up

The basic formulation of Economic Model Predictive
Control deals with discrete-time systems of the follow-
ing form:

x(t+ 1) = f(x(t), u(t)), x(0) = x0 (1)

with t ∈ N, state variable x ∈ X ⊂ R
n, control input u ∈

U ⊂ R
m and continuous state-transition map f : X ×

U → X . Additionally, system’s evolutions are subject to
pointwise-in-time constraints involving both states and
input variables,

(x(t), u(t)) ⊂ Z ∀ t ≥ 0 (2)

for some compact set Z ⊂ X × U . The control task is
to fulfill constraints (2) while, at the same time, mini-
mizing a cost functional defined integrating over time an
instantaneous (continuous) stage cost ℓ defined as:

ℓ(x, u) : X × U → R. (3)

For the case of Tracking Model Predictive Control, the
stage cost ℓ typically takes the form of a quadratic
function x′Qx+ u′Ru, or a shifted version of this, if an
equilibrium either than 0 is the desired target state.

In Economic Model Predictive Control, on the contrary,
ℓ may take an arbitrary shape, and this, in turn, can
affect considerably the optimal regimes of operations
for the system. Notice that the basic formulation of
Economic Model Predictive Control only entails time-
invariant “ingredients”, viz. dynamics, (1), operational
constraints, (2), and operational costs, (3). While it is
conceivable to allow all of them to be time-varying, we
argue that, in many applications of interest, dynamics
are in fact time-invariant, while the only significant
source of variability happens at the level of both cost

and constraints.

This is because a plant often operates in a manner that
does not change in time, apart from deteriorating phe-
nomena that are normally much slower than the time-
scales of interest. In this respect, only the environment
the plant is interacting with may experience faster and
significant variations. Moreover, if we are talking about
an ‘economic environment’, rather than a physical one,
time-varying constraints are typically not safety criti-
cal, and can often be modeled as soft constraints, that
is, as suitable cost penalties incurred only in case of
constraints violation.

These considerations allow to remarkably simplify the
set-up of a time-varying Economic Model Predictive
Control scheme and the associated analysis. They allow,
in fact, to avoid feasibility issues and associated tech-
nical complications that are known to occur whenever
time-variability affects constraints or dynamics. On the
grounds of such considerations, we consider next two
possible modifications of (3), in order to accommodate
time-varying or parameter-varying stage costs. Namely,
we allow ℓ to directly depend on time:

ℓ(t, x, u) : N×X × U → R (4)

or indirectly through a time-varying parameter θ taking
up finitely many values in Θ := {θ1, θ2, . . . , θN}:

ℓ̃(θ, x, u) : Θ×X × U → R. (5)

As expected, we are going to formulate the control selec-
tion policy as the solution of an associated optimization
problem to be performed on-line at each sampling time
on the basis of the current knowledge of state and future
predictions of both systems trajectories and stage costs
variations.

Notice that, also in the case of parameter-varying stage
costs, once the time evolution of the parameter θ is as-
signed, onemay define a corresponding time-varying cost
simply by composition of the functions ℓ̃ and θ(t), by
letting:

ℓ(t, x, u) := ℓ̃(θ(t), x, u). (6)

This notation allows to formulate a unified cost func-
tional for both cases, by considering:

JH(t,x,u) =
H−1
∑

k=0

ℓ(t+ k, x(k), u(k)), (7)

where x := [x(0), x(1), . . . , x(H − 1), x(H)] denotes the
sequence of predicted states, u = [u(0), . . . , u(H − 1)]
that of predicted controls and H denotes the prediction
horizon. In both scenarios, the input u is selected at each
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sampling time t by finding a solution to the following
optimization problem:

J⋆
H(t, x(t), xF (t)) :=min

z,v
JH(t, z,v)

subject to:

z(k + 1) = f(z(k), v(k)), (8)

(z(k), v(k)) ∈ Z, k = 0, . . . , H − 1

z(H) = xF (t)

z(0) = x(t)

and letting u(t) correspond to the first input value of
any optimal sequence v⋆ solution of (8). Notice that,
while continuity and compactness considerations guar-
antee existence of an optimal solution, this might in gen-
eral be non unique.

The terminal equality constraint, often used inMPC as a
means to achieve recursive feasibility (and possibly sta-
biliy), is specified in (8) as a function of a suitably de-
fined feasible trajectory xF (t). Indeed, xF (t) can be se-
lected according to different criteria. However, existence
of an input uF (t) fulfilling:

(1) xF (t+ 1) = f(xF (t), uF (t)) ∀ t ≥ 0,
(2) (xF (t), uF (t)) ∈ Z ∀ t ≥ 0,

is crucial to the following developments. Defining the
sequence of terminal constraints according to a feasible
solution, in fact, allows to easily achieve two important
goals: recursive feasibility and guaranteed optimal per-
formance. We recall next one of the technical Lemmas
in Angeli et al. (2015a).

Lemma 1 Consider system (1), controlled by the fol-
lowing time-varying state-feedback,

u(t) = v⋆
0(t, x(t))

where v⋆(t, x(t)) denotes the solution, at each time t, of
the optimization problem (8). Then, if a feasible solution
exists at time 0, problem (8) is feasible at each subsequent
time t. Moreover, the asymptotic average cost of closed-
loop trajectories is bounded from above as follows:

lim sup
τ→+∞

∑τ−1
t=0 ℓ(t, x(t), u(t))

τ

≤ lim sup
τ→+∞

∑τ−1
t=0 ℓ(t+H,xF (t), uF (t))

τ
.

Proof: Let z⋆(t, x(t)) and v⋆(t, x(t)) denote the op-
timal state and control sequences for problem (8)
at time t. Then, at time t + 1, the shifted state
and control sequences z̃ = [z⋆1:H(t, x(t)), xF (t + 1)],

ṽ = [v⋆(t, x(t)), uF (t)] are also feasible for problem (8)
computed on the state x(t + 1) = f(x(t), u(t)). Hence,
recursive feasibility can be proved by induction provided
that x(0) is a feasible solution for (8) at time t = 0.
Furthermore, for the cost functional, we see that

J⋆
H(t+ 1, x(t+ 1), xF (t+ 1)) ≤ JH(t+ 1, z̃, ṽ)

= JH(t, z⋆(t, x(t)),v⋆(t, x(t))) − ℓ(t, x(t), u(t))

+ℓ(t+H,xF (t), uF (t))

= J⋆
H(t, x(t), xF (t))− ℓ(t, x(t), u(t))

+ℓ(t+H,xF (t), uF (t))

(9)

holds regardless of t ∈ N. Moreover, by (9) it follows:

J⋆
H(τ, x(τ), xF (τ)) − J⋆

H(0, x(0), xF (0))

=

τ−1
∑

t=0

J⋆
H(t+ 1, x(t+ 1), xF (t+ 1))− J⋆

H(t, x(t), xF (t))

≤

τ−1
∑

t=0

−ℓ(t, x(t), u(t)) + ℓ(t+H,xF (t), uF (t))

(10)
Finally, by dividing the cost by τ and letting τ → +∞,
it is found that:

0= lim inf
τ→+∞

J⋆
H(τ, x(τ), xF (τ)) − J⋆

H(0, x(0), xF (0))

τ

≤ lim inf
τ→+∞

τ−1
∑

t=0

−ℓ(t, x(t), u(t))+ℓ(t+H,xF (t), uF (t))

τ
(11)

where the first equality follows from the uniform bound-
edness of J⋆

H on the compact set Z. �

In words the Lemma states that closed-loop solutions
have an asymptotic average cost that is never worse than
that of the feasible solution adopted as a terminal con-
straint. It is therefore desirable to select xF (t) in order
to minimize its average asymptotic cost. In the next two
Sections we discuss criteria for the selection of xF (t),
both in the case of time-varying and parameter-varying
stage costs.

3 EMPC with time-varying stage costs

In order to select a suitable terminal constraint for the
optimization problem (8), we need to formulate extra as-
sumptions on the variability that ℓ(t, x, u) may exhibit.
Two cases are considered:

(1) Periodic stage cost: ∃T > 0 : ℓ(t + T, x, u) =
ℓ(t, x, u) ∀t ∈ N
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(2) Stage cost admitting asymptotic average:

ℓ̄(x, u) = lim
T→+∞

∑T−1
t=0 ℓ(t, x, u)

T
.

Clearly, a periodic stage cost admits an asymptotic av-
erage; however, the converse implication need not hold.
It is worth pointing out that ℓ̄ is defined for frozen state
and input values. In this respect, its value as a function
of x and u need not correspond to some form of aver-
age cost experienced along solutions of the system. All
phase information (concerning variations of the cost ex-
perienced at different times for any fixed (x, u) pair) is,
in fact, lost. For the simplest case of T -periodic stage
costs, one may define the best periodic solution of period
T as follows:

ℓ⋆T =min
z,v

JT (t, z,v)/T

subject to:

z(k + 1) = f(z(k), v(k)), k = 0, . . . , T − 1
(12)

z(T ) = z(0)

(z(k), v(k)) ∈ Z, k = 0, . . . , T − 1.

Letting z⋆,v⋆ denote the optimal solutions of (12), we
may define xF (t) := z⋆(t + H mod T ) and uF (t) :=
v⋆(t+H mod T ). This leads to a periodic terminal so-
lution xF , uF which has the best cost among all feasible
solutions of period T . For more general stage costs, such
as those admitting a well defined asymptotic average,
we may define the best Q periodic solution computed on
averaged costs as follows:

ℓ̄⋆Q =min
z,v

J̄Q(z,v)/Q

subject to:

z(k + 1) = f(z(k), v(k)), k = 0, . . . , Q− 1
(13)

z(Q) = z(0)

(z(k), v(k)) ∈ Z, k = 0, . . . , Q− 1.

where the averaged cost functional J̄Q is defined as:

J̄Q(x,u) =

Q−1
∑

k=0

ℓ̄(x(k), u(k)). (14)

Similarly, letting z⋆,v⋆ denote the optimal solutions of
(13), we may define xF (t) := z⋆(t mod Q) and uF (t) :=
v⋆(t mod Q). Proposition 1 in Angeli et al. (2015b)
states that, for periodic stage costs, the inequality ℓ⋆T ≤
ℓ̄⋆T holds; as intuitive, periodicity of stage-costs allows
selection of a better terminal constraint than what can
be achieved by only considering averaged stage costs ℓ̄.
On the contrary, if allowing periods Q 6= T , no simple
inequality between ℓ⋆T and ℓ̄⋆Q can be claimed in general

(see Example 1 in Angeli et al. (2015b)). Furthermore,
if the averaged stage-cost can be achieved also by aver-
aging the stage cost every Q sampling times, then the
average cost of xF (t) as defined above, can be related to
ℓ̄⋆Q. To this end the following assumption is needed:

Assumption 1 Q-steps sampling averaged cost is t in-
dependent and equals ℓ̄(x, u):

ℓ̄(x, u) = lim
L→+∞

∑L−1
k=0 ℓ(t+ kQ, x, u)

L
.

Notice that this is fulfilled, for instance, if ℓ is periodic of
period T and, at the same time, T and Q are relatively
prime numbers.

The following Lemma allows to relate the performance
bound provided by Lemma 1 with the cost of the best
Q-periodic solution computed on averaged stage-costs.

Lemma 2 Let ℓ(t, x, u) admits t independent Q-steps
averaged cost. Then, denoting xF (t) and uF (t) the best
Q-periodic solution of (13) and associated input, the fol-
lowing holds:

lim
τ→+∞

∑τ−1
t=0 ℓ(t+H,xF (t), uF (t))

τ
= ℓ̄⋆Q.

Proof : The Lemma is proved by performing the following
calculations:

lim
τ→+∞

∑τ−1
t=0 ℓ(t+H,xF (t), uF (t))

τ

= lim
τ→+∞

∑τ−1
t=0 ℓ(t+H, z⋆(t mod Q),v⋆(t mod Q))

τ

= lim
τ→+∞

Q−1
∑

i=0

∑⌊ τ−1−i
Q

⌋

k=0 ℓ(kQ+H + i,x⋆(i),u⋆(i))

τ

=

∑Q−1
i=0 ℓ̄(x⋆(i),u⋆(i))

Q
= ℓ̄⋆Q,

where the equalities hold true thanks to Assumption 1
and can be justified by denoting τ − 1 = SQ + (τ −
1) mod Q, S ∈ N and taking into account the following
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intermediate steps:

lim
τ→+∞

∑⌊ τ−1−i
Q

⌋

k=0 ℓ(kQ+H + i,x⋆(i),u⋆(i))

τ

= lim
S→+∞

∑S+⌊
(τ−1) mod Q−i

Q
⌋

k=0 ℓ(kQ+H+i,x⋆(i),u⋆(i))

SQ+ (τ − 1) mod Q

= lim
S→+∞

∑S−1
k=0 ℓ(kQ+H + i,x⋆(i),u⋆(i))

SQ+ (τ − 1) mod Q

+ lim
S→+∞

∑S+⌊
(τ−1) mod Q−i

Q
⌋

k=S ℓ(kQ+H+i,x⋆(i),u⋆(i))

SQ+ (τ − 1) mod Q

= lim
S→+∞

∑S−1
k=0 ℓ(kQ+H + i,x⋆(i),u⋆(i))

Q

=
ℓ̄(x⋆(i),u⋆(i))

Q
�

Remark 1 When analyzing asymptotic stability of pe-
riodic optimal solutions a suitable notion of dissipativity
for an extended system can be adopted in the context
of Economic MPC with time-invariant stage costs (see
for instance Müller et al. (2015)). We believe that simi-
lar conditions can be adopted in the context of periodic
stage costs given their ‘time-invariance’ for the period
T map. This is however outside the scope of the present
manuscript.

4 EMPC with parameter-varying costs

We consider next the case of a stage cost taking the
form (5), when transitions between different parame-
ter values happen with a frequency that is comparable
to the inverse of the process transients. In this case, it
is meaningful to design terminal trajectories not only
in correspondence to the individual best-steady states
computed for frozen θ parameters, but also to consider
connection orbits that serve the purpose of achieving
an optimized transition between different best-operating
regimes, while, at the same time, avoiding feasibility
losses. For i = 1, . . . , N we may define best steady-states
as follows:

ℓ⋆i := min
x,u

ℓ̃(θi, x, u)

subject to (15)

x = f(x, u)

(x, u) ∈ Z.

We denote the corresponding best steady-state input
pairs as (x⋆

i , u
⋆
i ). At the same time, given i 6= j in

{1, 2, . . . , N}we assume existence of feasible trajectories
moving out of x⋆

i , reaching x⋆
j in τij > 0 steps. These

trajectories are taken by solving the following optimiza-

tion problem:

ℓ⋆ij := min
z,v

ℓ̃(θi, z(0), v(0)) +

τij−1
∑

k=1

ℓ̃(θj , z(k), v(k))

subject to

z(k + 1) = f(z(k), v(k)) (16)

(z(k), v(k)) ∈ Z

z(0) = x⋆
i

z(τij) = x⋆
j .

Our main assumptions for this set-up will be:

• For each pair (i, j) there exists a finite control sequence
u⋆
ij able to steer the state from x⋆

i to x⋆
j in τij steps.

We denote by x⋆
ij the corresponding state sequence.

• Dwell-time: after switching between θi to θj , at least
τij steps pass before another switching occurs.

The value of xF (t) is decided at each sampling time by
a supervisory logic that assigns xF (t) = x⋆

i , provided
the current value of θ(t) is θi. If, however, a switching is
detected between θi and θj , that is θ(t+H) = θj , (while
θ(t+H − 1) = θi, where H denotes the control horizon,
then a transition mode is enabled and the supervisor
assigns xF (t + k) = x⋆

ij(k) for the subsequent τij time

steps. Eventually,xF (t+τij+k) = x⋆
j , andmaintain such

value until further notice, viz. until another switching
is detected. Notice that this supervisory logic needs to
know ahead of time the value of θ(t). Accordingly, we
define the following indicator functions: χi(t) = 1 if and
only if the supervisory logic is operating in standard
mode with θ(t) = θi (χi(t) = 0 otherwise); χij(t) = 1
iff the supervisory logic is operating in transient mode
during a switch between parameters θi and θj . In order
to carry out derivations it will also be useful to define
the indicator function χij(t, k) = 1 iff at time t we are in
the k-th step of the transient mode between parameters
θi and θj .

We may define the average of χi(t) and χij(t) as given
below:

χ̄i = lim
T→+∞

∑T−1
t=0 χi(t)

T
χ̄ij = lim

T→+∞

∑T−1
t=0 χij(t)

T
.

Under the stated assumptions, an apriori bound on the
asymptotic performance may be obtained by consider-
ing that the average cost of xF (t) is given as from the
following Lemma.

Lemma 3 Assume that parameter switching occurs ac-
cording to the dwell-time constraint and that xF (t) is de-
fined according to the supervisory logic described, then,
if asymptotic averages of indicator functions χi and χij
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exist, the following holds:

lim
τ→+∞

∑τ−1
t=0 ℓ(t+H,xF (t), uF (t))

τ
=
∑

i

χ̄iℓ
⋆
i+
∑

i6=j

χ̄ij

ℓ⋆ij
τij

.

Proof : Notice that, by definition:

1 =

l
∑

i=1

χi(t) +
∑

i6=j

χij(t), ∀ t ∈ N. (17)

Moreover,

χij(t) =

τij−1
∑

k=0

χij(t, k).

Then, exploiting equation (17) yields:

τ−1
∑

t=0

ℓ(t+H,xF (t), uF (t)) =

τ−1
∑

t=0





l
∑

i=1

χi(t) +
∑

i6=j

χij(t)



 ℓ(θσ(t+H), xF (t), uF (t))

=

τ−1
∑

t=0

(

l
∑

i=1

χi(t)ℓ(θσ(t+H), xF (t), uF (t))+

∑

i6=j

χij(t)ℓ(θσ(t+H), xF (t), uF (t))





=

τ−1
∑

t=0

(

l
∑

i=1

χi(t)ℓ(θi, x
⋆
i , u

⋆
i )+

∑

i6=j

τij−1
∑

k=0

χij(t, k)ℓ(θσ(t+H), xF (t), uF (t))





=

τ−1
∑

t=0





l
∑

i=1

χi(t)ℓ(θi, x
⋆
i, u

⋆
i )+
∑

i6=j

(

χij(t, 0)ℓ(θi,x
⋆
ij(0),u

⋆
ij(0))+

τij−1
∑

k=1

χij(t, k)ℓ(θj ,x
⋆
ij(k),u

⋆
ij(k))

))

.

Then, by dividing the previous expression by τ and let-
ting τ → +∞, one has:

lim
τ→+∞

∑τ−1
t=0 ℓ(θσ(t+H), xF (t), uF (t))

τ

= lim
τ→+∞

∑τ−1
t=0

(

∑l

i=1 χi(t)ℓ(θi, x
⋆
i , u

⋆
i )
)

τ

+ lim
τ→+∞

∑τ−1
t=0

(

∑

i6=j

∑τij−1
k=0 χij(t, k)ℓ(θj ,x

⋆
ij(k),u

⋆
ij(k))

)

τ

=

l
∑

i=1

χ̄iℓ
⋆
i +

∑

i6=j

χ̄ij

τij
ℓ⋆ij .

where the last equality follows by considering that:

lim
τ→+∞

∑τ−1
t=0 χij(t, k)

τ
=

χ̄ij

τij
.

�

Application of Lemma 3, together with Lemma 1, al-
lows to have an a priori upper-bound for the asymptotic
average performance of the closed-loop system in rela-
tion to the terminal ingredients and transient trajectory
costs designed in the formulation of the economic MPC
algorithm as well as the switching signal θ(t).

Remark 2 It is known that asymptotic stability of Eco-
nomic MPC can be studied by making reference to suit-
able dissipativity notions. As shown in the Example con-
sidered in the following Section, the solution xF (t) ob-
tained by collating equilibrium solutions with transient
reconciling trajectories is not generally expected to be
optimal if cost functionals are persistently varying in
time (for instance in a periodic fashion). Hence, even if
individual equilibrium states may fulfill a dissipativity
property when considered in a time-invariant context
with their associated stage-cost, there is no reason why
asymptotic stability of the xF (t) solution should be ex-
pected in closed-loop. For signals θ(t) which are even-
tually constant and equal to θi, asymptotic stability of
the associated equilibrium follows provided strict dissi-
pativity holds for some storage function λ with respect
to the supply function ℓ(θi, x, u)− ℓ(θi, x

⋆
i , u

⋆
i ).

5 Simulation results

In this section the control of a nonlinear isothermal
chemical reactor with consecutive-competitive reac-
tions, see Lee & Bailey (1980), has been dealt with.
Such reactions arise in many chemical and biological
applications. In the simple case of two reactions, the
following structure should be taken into account

P0 +B → P1

P1 +B → P2

The dimensionless mass balances for this problem are

ẋ1 = u1 − x1 − σ1x1x2

ẋ2 = u2 − x2 − σ1x1x2 − σ2x2x3

ẋ3 = −x3 + σ1x1x2 − σ2x2x3

ẋ4 = −x4 + σ2x2x3

(18)

where x1, x2, x3 and x4 are the concentrations of P0,
B, P1 and P2 respectively, while u1 and u2 are the in-
flow rates of P0 and B and represent the manipulated
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variables. The parameters σ1 and σ2 take, in the follow-
ing simulations, the values 1 and 0.4 respectively. An
upper bound of 10 is imposed on u1. The simultaneous
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Fig. 5. Input Commands in the case of the AV-EMPC

approach of Flores-Tlacuahuac et al. (2008) has been
used to solve the dynamic regulation problem. The state-
space is divided into a fixed number of finite elements.
The input is parameterized according to zero-order hold
with the input value constant across a finite element. A
sampling time Ts = 0.1 s has been chosen. The system is
managed according to the following economic cost func-
tion that is based on two configurations of the price of
product P1 and flow rate of P0 and B

ℓ(t, x, u) = −θ1i (t)x3 + θ2i (t)u1 + θ2i (t)u2 (19)

where the parameters θi = (θ1i , θ
2
i ), i = 1, 2 are the prices

per unit of product for the i-th configuration. It is as-
sumed that the cost parameters periodically varies be-
tween the cost configuration θ1 = (7, 1), θ2 = (10, 2)
following the trend of a discrete-time square wave with
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period T = 30 (see Figure 1). As a consequence, the av-
eraged cost ℓ̄ takes the following form

ℓ̄(x, u) = −
θ11 + θ12

2
x3 +

θ21 + θ22
2

u1 +
θ21 + θ22

2
u2 (20)

In this example the above presented EMPC based
schemes have been compared. For the sake of clarity we
denote with the acronym TV-EMPC the scheme based
on the best periodic solution (12), while the scheme as-
sociated to the averaged solution (13) is here referred as
AV-EMPC. Finally the acronym PV-EMPC will iden-
tify the EMPC with parameter-varying cost described
in Section 4. In this respect, we have first computed
by means of (15) the economically optimal steady-
state conditions associated to each cost configuration
obtaining: x⋆

1 = [4.9759, 1.0097, 3.5787, 1.4454]T u⋆
1 =

[10, 7.4791]T , x⋆
2 = [45.3813, 0.8583, 3.4383, 1.1804]T

u⋆
2 = [10, 6.6573]T , with related steady-state cost

ℓ⋆1 = −7.57 and ℓ⋆2 = −1.07 respectively. From these
solutions, two reconciliating sequences xij , i 6= j have
been derived (see Figures 2 (blue dash-dotted line)
and 3 (green dash-dotted line)) for the PV-EMPC
by exploiting (16), along with related dwell times

τ12 = τ21 = 8 and associated transient costs
ℓ⋆12
τ12

= −2.58

and
ℓ⋆21
τ21

= −7.14. Secondly, we have solved problem

(12) and computed the best T -periodic solutions for

the TV-EMPC algorithm and obtained the minimum
cost ℓ⋆T = −15.81 with solutions depicted in Figures 2
(black dashed line) and 4 (red dashed line). Thirdly, a
Q-periodic solution for the AV-EMPC algorithm has
been evaluated for Q = 30 from (13) obtaining the
minimum averaged cost ℓ̄⋆Q = −9.94 and Q-periodic

solutions depicted in Figures 2 (black dotted line) and
5 (red dashed line).

The prediction horizon has been set toN = 5. The initial
condition is x(0) = x⋆

1. A simulation horizon of 30s is
chosen with sampling time Ts.

The system behavior along the simulation has been plot-
ted in the Figures 3-6 while in Figure 7 the active modes
for the PV-EMPC have been illustrated. All the con-
trollers give rise to an oscillating solution. This aspect
is expected for both TV-EMPC and AV-EMPC and it
is not surprising for the PV-EMPC because, from a per-
formance point of view, its ”oscillating behavior” rep-
resents an economic benefit with respect to a ”converg-
ing behavior” to a steady state solution ((Angeli et al.,
2012) ). In this respect in order to compare the behav-
ior of closed-loop systems, the average profit, that is
Av[θ1i x3 − θ2i u1 − θ2i u2], has been evaluated and com-
pared in Table I. It is evident that the strategies based
on pre-computed terminal constraints (TV-EMPC, AV-
EMPC) present better performance with respect to the
PV-EMPC.

Case Avg. cost Apriori upper bound

TV-EMPC - 16.47 ℓ⋆30 = −15.81

AV-EMPC - 10.02 ℓ̄⋆40 = −9.94

PV-EMPC - 5.93
7

30

(

ℓ
⋆
12

τ12
+

ℓ
⋆
21

τ21

)

+ 8

30
(ℓ⋆1 + ℓ⋆2) = −4.6

Table 1
Average Profit for the Closed-Loop profiles
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6 Conclusions

This paper illustrates and interprets recent advances
in time-varying Economic Model Predictive Control. In
particular, it deals with the case of time-varying costs,
both in the case of a priori known time-varying costs
(periodic or admitting an asymptotic average) and in
the case of parameter varying costs. The different solu-
tions and performance bounds are compared by means
of a simple case study where all the different approaches
have been tested. The question of how dissipativity may
affect stability and convergence of solutions to the ter-
minal constraints xF (t) is still open, although, we ex-
pect some form of these conditions to be applicable, at
least in the case of periodic stage costs and/or eventu-
ally constant LPV scenarios.
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